

Welcome to Verilog-to-Routing’s documentation!

[image: _images/des90_placement_macros.gif]
[image: _images/des90_nets.gif]
[image: _images/des90_routing_util.gif]
For more information on the Verilog-to-Routing (VTR) project see VTR and VTR CAD Flow.

For documentation and tutorials on the FPGA architecture description language see: FPGA Architecture Description.

For more specific documentation about VPR see VPR.

Quick Start

	VTR Quick Start
	Setting Up VTR

	Running VPR

	Running the VTR Flow

	Next Steps

Usage

	VTR
	VTR CAD Flow

	Get VTR

	Building VTR

	Optional Build Information

	Running the VTR Flow

	Benchmarks

	Power Estimation

	Tasks

	run_vtr_flow

	run_vtr_task

	parse_vtr_flow

	parse_vtr_task

	Parse Configuration

	Pass Requirements

	VTR Flow Python library

	FPGA Architecture Description
	Architecture Reference

	Example Architecture Specification

	VPR
	Basic flow

	Command-line Options

	Graphics

	Timing Constraints

	VPR Placement Constraints

	SDC Commands

	File Formats

	Debugging Aids

	Placer and Router Debugger

	Parmys
	Quickstart

	Yosys

	Parmys Plugin

	Structure

	Odin II
	Quickstart

	User guide

	Verilog Support

	Contributing

	Regression Tests

	Verify Script

	TESTING ODIN II

	ABC

	Tutorials
	Design Flow Tutorials

	Architecture Modeling

	Running the Titan Benchmarks

	Post-Implementation Timing Simulation

	Utilities
	FPGA Assembly (FASM) Output Support

	Router Diagnosis Tool

Development

	Developer Guide
	Contribution Guidelines

	Commit Procedures

	Commit Messages and Structure

	Code Formatting

	Running Tests

	Evaluating Quality of Result (QoR) Changes

	Adding Tests

	Debugging Aids

	Speeding up the edit-compile-test cycle

	Speeding Compilation

	Profiling VTR

	External Subtrees

	Finding Bugs with Coverity

	Release Procedures

	Sphinx API Documentation for C/C++ Projects

	Documenting VTR Code with Doxygen

	Developer Tutorials

	VTR Support Resources

	VTR License

	VTR Change Log
	Unreleased

	v8.0.0 - 2020-03-24

	v8.0.0-rc2 - 2019-08-01

	v8.0.0-rc1 - 2019-06-13

Appendix

	Contact
	Mailing Lists

	Issue Tracker

	Glossary

	Publications & References

API Reference

	VPR API
	Contexts

	Netlist mapping

	Netlists

	Route Tree

	Routing Resource Graph

	VTRUTIL API
	IDs - Ranges

	Containers

	Container Utils

	Logging - Errors - Assertions

	Geometry

	Other

	VPR INTERNALS
	VPR Draw Structures

	VPR UI

	VPR Draw Files

	VPR NoC

Indices and tables

	Index

	Search Page

VTR Quick Start

This is a quick introduction to VTR which covers how to run VTR and some if its associated tools (VPR, Odin II, ABC).

Setting Up VTR

Download VTR

The first step is to download VTR [https://verilogtorouting.org/download/] and extract VTR on your local machine.

Note

Developers planning to modify VTR should clone the VTR git repository [https://github.com/verilog-to-routing/vtr-verilog-to-routing/].

Environment Setup

If you cloned the repository you will need to set up the git submodules (if you downloaded and extracted a release, you can skip this step):

> git submodule init
> git submodule update

VTR requires several system packages and Python packages to build and run the flow. You can install the required system packages using the following command (this works on Ubuntu 18.04, 20.04 and 22.04, but you may require different packages on other Linux distributions). Our CI testing is on Ubuntu 22.04, so that is the best tested platform and recommended for development.

> ./install_apt_packages.sh

Then, to install the required Python packages (optionally within a new Python virtual environment):

> make env # optional: install python virtual environment
> source .venv/bin/activate # optional: activate python virtual environment
> pip install -r requirements.txt # install python packages (in virtual environment if prior commands run, system wide otherwise)

Build VTR

On most unix-like systems you can run:

> make

from the VTR root directory (hereafter referred to as $VTR_ROOT) to build VTR.

Note

In the VTR documentation lines starting with > (like > make above), indicate a command (i.e. make) to run from your terminal.
When the \ symbol appears at the end of a line, it indicates line continuation.

Note

$VTR_ROOT refers to the root directory of the VTR project source tree.
To run the examples in this guide on your machine, either:

	define VTR_ROOT as a variable in your shell (e.g. if ~/trees/vtr is the path to the VTR source tree on your machine, run the equivalent of VTR_ROOT=~/trees/vtr in BASH) which will allow you to run the commands as written in this guide, or

	manually replace $VTR_ROOT in the example commands below with your path to the VTR source tree.

For more details on building VTR on various operating systems/platforms see Building VTR.

Running VPR

Lets now try taking a simple pre-synthesized circuit (consisting of LUTs and Flip-Flops) and use the VPR tool to implement it on a specific FPGA architecture.

Running VPR on a Pre-Synthesized Circuit

First, lets make a directory in our home directory where we can work:

#Move to our home directory
> cd ~

#Make a working directory
> mkdir -p vtr_work/quickstart/vpr_tseng

#Move into the working directory
> cd ~/vtr_work/quickstart/vpr_tseng

Now, lets invoke the VPR tool to implement:

	the tseng circuit ($VTR_ROOT/vtr_flow/benchmarks/blif/tseng.blif), on

	the EArch FPGA architecture ($VTR_ROOT/vtr_flow/arch/timing/EArch.xml).

We do this by passing these files to the VPR tool, and also specifying that we want to route the circuit on a version of EArch with a routing architecture channel width of 100 (--route_chan_wdith 100):

> $VTR_ROOT/vpr/vpr \
 $VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
 $VTR_ROOT/vtr_flow/benchmarks/blif/tseng.blif \
 --route_chan_width 100

This will produce a large amount of output as VPR implements the circuit, but you should see something similar to:

VPR FPGA Placement and Routing.
Version: 8.1.0-dev+2b5807ecf
Revision: v8.0.0-1821-g2b5807ecf
Compiled: 2020-05-21T16:39:33
Compiler: GNU 7.3.0 on Linux-4.15.0-20-generic x86_64
Build Info: release VTR_ASSERT_LEVEL=2

University of Toronto
verilogtorouting.org
vtr-users@googlegroups.com
This is free open source code under MIT license.

#
#Lots of output trimmed for brevity....
#

Geometric mean non-virtual intra-domain period: 6.22409 ns (160.666 MHz)
Fanout-weighted geomean non-virtual intra-domain period: 6.22409 ns (160.666 MHz)

VPR suceeded
The entire flow of VPR took 3.37 seconds (max_rss 40.7 MiB)

which shows that VPR as successful (VPR suceeded), along with how long VPR took to run (~3 seconds in this case).

You will also see various result files generated by VPR which define the circuit implementation:

> ls *.net *.place *.route

tseng.net tseng.place tseng.route

along with a VPR log file which contains what VPR printed when last invoked:

> ls *.log

vpr_stdout.log

and various report files describing the characteristics of the implementation:

> ls *.rpt

packing_pin_util.rpt report_timing.hold.rpt report_unconstrained_timing.hold.rpt
pre_pack.report_timing.setup.rpt report_timing.setup.rpt report_unconstrained_timing.setup.rpt

Visualizing Circuit Implementation

Note

This section requires that VPR was compiled with graphic support. See VPR Graphics for details.

The .net, .place and .route files (along with the input .blif and architecture .xml files) fully defined the circuit implementation.
We can visualize the circuit implementation by:

	Re-running VPR’s analysis stage (--analysis), and

	enabling VPR’s graphical user interface (--disp on).

This is done by running the following:

> $VTR_ROOT/vpr/vpr \
 $VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
 $VTR_ROOT/vtr_flow/benchmarks/blif/tseng.blif \
 --route_chan_width 100 \
 --analysis --disp on

which should open the VPR graphics and allow you to explore the circuit implementation.

As an exercise try the following:

	View the connectivity of a block (connections which drive it, and those which it drives)

	View the internals of a logic block (e.g. try to find the LUTs/.names and Flip-Flops/.latch)

	Visualize all the routed circuit connections

See also

For more details on the various graphics options, see VPR Graphics

[image: ../_images/tseng_nets.png]

Fig. 1 Routed net connections of tseng on EArch.

[image: ../_images/tseng_blk1.png]

Fig. 2 Input (blue)/output (red) nets of block n_n3199 (highlighted green).

Note

If you do not provide --analysis, VPR will re-implement the circuit from scratch.
If you also specify --disp on, you can see how VPR modifies the implementation as it runs.
By default --disp on stops at key stages to allow you to view and explore the implementation.
You will need to press the Proceed button in the GUI to allow VPR to continue to the next stage.

Running the VTR Flow

In the previous section we have implemented a pre-synthesized circuit onto a pre-existing FPGA architecture using VPR, and visualized the result.
We now turn to how we can implement our own circuit on a pre-existing FPGA architecture.

To do this we begin by describing a circuit behaviourly using the Verilog Hardware Description Language (HDL).
This allows us to quickly and consisely define the circuit’s behaviour.
We will then use the VTR Flow to synthesize the behavioural Verilog description it into a circuit netlist, and implement it onto an FPGA.

Example Circuit

We will use the following simple example circuit, which causes it’s output to toggle on and off:

Listing 1 blink.v ($VTR_ROOT/doc/src/quickstart/blink.v)

 1//A simple cricuit which blinks an LED on and off periodically
 2module blink(
 3 input clk, //Input clock
 4 input i_reset, //Input active-high reset
 5 output o_led); //Output to LED
 6
 7 //Sequential logic
 8 //
 9 //A reset-able counter which increments each clock cycle
10 reg[4:0] r_counter;
11 always @(posedge clk) begin
12 if (i_reset) begin //When reset is high, clear counter
13 r_counter <= 5'd0;
14 end else begin //Otherwise increment counter each clock (note that it will overflow back to zero)
15 r_counter <= r_counter + 1'b1;
16 end
17 end
18
19 //Combinational logic
20 //
21 //Drives o_led high if count is below a threshold
22 always @(*) begin
23 if (r_counter < 5'd16) begin
24 o_led <= 1'b1;
25 end else begin
26 o_led <= 1'b0;
27 end
28 end
29
30endmodule

This Verilog creates a sequential 5-bit register (r_counter) which increments every clock cycle.
If the count is below 16 it drives the output (o_led) high, otherwise it drives it low.

Manually Running the VTR Flow

Lets start by making a fresh directory for us to work in:

> mkdir -p ~/vtr_work/quickstart/blink_manual
> cd ~/vtr_work/quickstart/blink_manual

Next we need to run the three main sets of tools:

	Odin II performs ‘synthesis’ which converts our behavioural Verilog (.v file) into a circuit netlist (.blif file) consisting of logic equations and FPGA architecture primitives (Flip-Flops, adders etc.),

	ABC performs ‘logic optimization’ which simplifies the circuit logic, and ‘technology mapping’ which converts logic equations into the Look-Up-Tables (LUTs) available on an FPGA, and

	VPR which performs packing, placement and routing of the circuit to implement it on the targetted FPGA architecture.

Synthesizing with ODIN II

First we’ll run ODIN II on our Verilog file to synthesize it into a circuit netlist, providing the options:

	-a $VTR_ROOT/vtr_flow/arch/timing/EArch.xml which specifies what FPGA architecture we are targetting,

	-V $VTR_ROOT/doc/src/quickstart/blink.v which specifies the verilog file we want to synthesize, and

	-o blink.odin.blif which specifies the name of the generated .blif circuit netlist.

The resulting command is:

> $VTR_ROOT/odin_ii/odin_ii \
 -a $VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
 -V $VTR_ROOT/doc/src/quickstart/blink.v \
 -o blink.odin.blif

which when run should end with something like:

Total time: 14.7ms
Odin ran with exit status: 0
Odin II took 0.01 seconds (max_rss 5.1 MiB)

where Odin ran with exit status: 0 indicates Odin successfully synthesized our verilog.

We can now take a look at the circuit which ODIN produced (blink.odin.blif).
The file is long and likely harder to follow than our code in blink.v; however it implements the same functionality.
Some interesting highlights are shown below:

Listing 2 Instantiations of rising-edge triggered Latches (i.e. Flip-Flops) in blink.odin.blif (implements part of r_counter in blink.v)

.latch blink^nMUX~0^MUX_2~23 blink^r_counter~0_FF re blink^clk 3
.latch blink^nMUX~0^MUX_2~27 blink^r_counter~4_FF re blink^clk 3

Listing 3 Adder primitive instantiations in blink.odin.blif, used to perform addition (implements part of the + operator in blink.v)

.subckt adder a[0]=blink^r_counter~0_FF b[0]=vcc cin[0]=blink^ADD~2-0[0]\
 cout[0]=blink^ADD~2-1[0] sumout[0]=blink^ADD~2-1[1]

.subckt adder a[0]=blink^r_counter~1_FF b[0]=gnd cin[0]=blink^ADD~2-1[0]\
 cout[0]=blink^ADD~2-2[0] sumout[0]=blink^ADD~2-2[1]

Listing 4 Logic equation (.names truth-table) in blink.odin.blif, implementing logical OR (implements part of the < operator in blink.v)

.names blink^LT~4^GT~10 blink^LT~4^GT~12 blink^LT~4^GT~14 blink^LT~4^GT~16 blink^LT~4^GT~18 blink^LT~4^lOR~9
1---- 1
-1--- 1
--1-- 1
---1- 1
----1 1

See also

For more information on the BLIF file format see BLIF Netlist (.blif).

Optimizing and Technology Mapping with ABC

Next, we’ll optimize and technology map our circuit using ABC, providing the option:

	-c <script>, where <script> is a set of commands telling ABC how to synthesize our circuit.

We’ll use the following, simple ABC commands:

read blink.odin.blif; #Read the circuit synthesized by ODIN
if -K 6; #Technology map to 6 input LUTs (6-LUTs)
write_hie blink.odin.blif blink.abc_no_clock.blif #Write new circuit to blink.abc_no_clock.blif

Note

Usually you should use a more complicated script (such as that used by run_vtr_flow) to ensure ABC optitmizes your circuit well.

The corresponding command to run is:

> $VTR_ROOT/abc/abc \
 -c 'read blink.odin.blif; if -K 6; write_hie blink.odin.blif blink.abc_no_clock.blif'

When run, ABC’s output should look similar to:

ABC command line: "read blink.odin.blif; if -K 6; write_hie blink.odin.blif blink.abc_no_clock.blif".

Hierarchy reader converted 6 instances of blackboxes.
The network was strashed and balanced before FPGA mapping.
Hierarchy writer reintroduced 6 instances of blackboxes.

If we now inspect the produced BLIF file (blink.abc_no_clock.blif) we see that ABC was able to significantly simplify and optimize the circuit’s logic (compared to blink.odin.blif):

Listing 5 blink.abc_no_clock.blif

 1# Benchmark "blink" written by ABC on Tue May 19 15:42:50 2020
 2.model blink
 3.inputs blink^clk blink^i_reset
 4.outputs blink^o_led
 5
 6.latch n19 blink^r_counter~0_FF 2
 7.latch n24 blink^r_counter~4_FF 2
 8.latch n29 blink^r_counter~3_FF 2
 9.latch n34 blink^r_counter~2_FF 2
10.latch n39 blink^r_counter~1_FF 2
11
12
13.subckt adder a[0]=blink^r_counter~0_FF b[0]=vcc cin[0]=blink^ADD~2-0[0] cout[0]=blink^ADD~2-1[0] sumout[0]=blink^ADD~2-1[1]
14.subckt adder a[0]=blink^r_counter~1_FF b[0]=gnd cin[0]=blink^ADD~2-1[0] cout[0]=blink^ADD~2-2[0] sumout[0]=blink^ADD~2-2[1]
15.subckt adder a[0]=blink^r_counter~2_FF b[0]=gnd cin[0]=blink^ADD~2-2[0] cout[0]=blink^ADD~2-3[0] sumout[0]=blink^ADD~2-3[1]
16.subckt adder a[0]=blink^r_counter~3_FF b[0]=gnd cin[0]=blink^ADD~2-3[0] cout[0]=blink^ADD~2-4[0] sumout[0]=blink^ADD~2-4[1]
17.subckt adder a[0]=blink^r_counter~4_FF b[0]=gnd cin[0]=blink^ADD~2-4[0] cout[0]=blink^ADD~2-5[0] sumout[0]=blink^ADD~2-5[1]
18.subckt adder a[0]=gnd b[0]=gnd cin[0]=unconn cout[0]=blink^ADD~2-0[0] sumout[0]=blink^ADD~2-0~dummy_output~0~1
19
20
21.names blink^i_reset blink^ADD~2-1[1] n19
2201 1
23.names blink^i_reset blink^ADD~2-5[1] n24
2401 1
25.names blink^i_reset blink^ADD~2-4[1] n29
2601 1
27.names blink^i_reset blink^ADD~2-3[1] n34
2801 1
29.names blink^i_reset blink^ADD~2-2[1] n39
3001 1
31.names vcc
32 1
33.names gnd
34 0
35.names unconn
36 0
37.names blink^r_counter~4_FF blink^o_led
380 1
39.end
40
41
42.model adder
43.inputs a[0] b[0] cin[0]
44.outputs cout[0] sumout[0]
45.blackbox
46.end

ABC has kept the .latch and .subckt adder primitives, but has significantly simplified the other logic (.names).

However, there is an issue with the above BLIF produced by ABC: the latches (rising edge Flip-Flops) do not have any clocks or edge sensitivity specified, which is information required by VPR.

Re-inserting clocks

We will restore the clock information by running a script which will transfer that information from the original ODIN BLIF file (writing it to the new file blink.pre-vpr.blif):

> $VTR_ROOT/vtr_flow/scripts/restore_multiclock_latch.pl \
 blink.odin.blif \
 blink.abc_no_clock.blif \
 blink.pre-vpr.blif

If we inspect blink.pre-vpr.blif we now see that the clock (blink^clk) has been restored to the Flip-Flops:

> grep 'latch' blink.pre-vpr.blif

.latch n19 blink^r_counter~0_FF re blink^clk 3
.latch n24 blink^r_counter~4_FF re blink^clk 3
.latch n29 blink^r_counter~3_FF re blink^clk 3
.latch n34 blink^r_counter~2_FF re blink^clk 3
.latch n39 blink^r_counter~1_FF re blink^clk 3

Implementing the circuit with VPR

Now that we have the optimized and technology mapped netlist (blink.pre-vpr.blif), we can invoke VPR to implement it onto the EArch FPGA architecture (in the same way we did with the tseng design earlier).
However, since our BLIF file doesn’t match the design name we explicitly specify:

	blink as the circuit name, and

	the input circuit file with --circuit_file.

to ensure the resulting .net, .place and .route files will have the correct names.

The resulting command is:

> $VTR_ROOT/vpr/vpr \
 $VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
 blink --circuit_file blink.pre-vpr.blif \
 --route_chan_width 100

and after VPR finishes we should see the resulting implementation files:

> ls *.net *.place *.route

blink.net blink.place blink.route

We can then view the implementation as usual by appending --analysis --disp on to the command:

> $VTR_ROOT/vpr/vpr \
 $VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
 blink --circuit_file blink.pre-vpr.blif \
 --route_chan_width 100 \
 --analysis --disp on

[image: ../_images/blink_implementation.png]

Fig. 3 blink.v circuit implementation on the EArch FPGA architecture as viewed in the VPR GUI

Automatically Running the VTR Flow

Running each stage of the flow manually is time consuming (and potentially error prone).
For convenience, VTR provides a script (run_vtr_flow) which automates this process.

First, make sure you sure you have activated the Python virtual environment created at the beginning of this tutorial:

> source $VTR_ROOT/.venv/bin/activate

Next, make a new directory to work in named blink_run_flow:

> mkdir -p ~/vtr_work/quickstart/blink_run_flow
> cd ~/vtr_work/quickstart/blink_run_flow

Now lets run the script ($VTR_ROOT/vtr_flow/scripts/run_vtr_flow.py) passing in:

	The circuit verilog file ($VTR_ROOT/doc/src/quickstart/blink.v)

	The FPGA architecture file ($VTR_ROOT/vtr_flow/arch/timing/EArch.xml)

and also specifying the options:

	-temp_dir . to run in the current directory (. on unix-like systems)

	--route_chan_width 100 a fixed FPGA routing architecture channel width.

The resulting command is:

> $VTR_ROOT/vtr_flow/scripts/run_vtr_flow.py \
 $VTR_ROOT/doc/src/quickstart/blink.v \
 $VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
 -temp_dir . \
 --route_chan_width 100

Note

Options unrecognized by run_vtr_flow (like --route_chan_width) are passed on to VPR.

which should produce output similar to:

EArch/blink OK (took 0.26 seconds)

There are also multiple log files (including for ABC, ODIN and VPR), which by convention the script names with the .out suffix:

> ls *.out

0_blackboxing_latch.out odin.out report_clocks.abc.out vanilla_restore_clocks.out
abc0.out report_clk.out restore_latch0.out vpr.out

With the main log files of interest including the ODIN log file (odin.out), log files produced by ABC (e.g. abc0.out), and the VPR log file (vpr.out).

Note

ABC may be invoked multiple times if a circuit has multiple clock domains, producing multiple log files (abc0.out, abc1.out, …)

You will also see there are several BLIF files produced:

> ls *.blif

0_blink.abc.blif 0_blink.raw.abc.blif blink.odin.blif
0_blink.odin.blif blink.abc.blif blink.pre-vpr.blif

With the main files of interest being blink.odin.blif (netlist produced by ODIN), blink.abc.blif (final netlist produced by ABC after clock restoration), blink.pre-vpr.blif netlist used by VPR (usually identical to blink.abc.blif).

Like before, we can also see the implementation files generated by VPR:

> ls *.net *.place *.route

blink.net blink.place blink.route

which we can visualize with:

> $VTR_ROOT/vpr/vpr \
 $VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
 blink --circuit_file blink.pre-vpr.blif \
 --route_chan_width 100 \
 --analysis --disp on

Next Steps

Now that you’ve finished the VTR quickstart, you’re ready to start experimenting and using VTR.

Here are some possible next steps for users wishing to use VTR:

	Try modifying the Verilog file (e.g. blink.v) or make your own circuit and try running it through the flow.

	Learn about FPGA architecture modelling (Tutorials, Reference), and try modifying a copy of EArch to see how it changes the implementation of blink.v.

	Read more about the VTR CAD Flow, and Task automation framework.

	Find out more about using other benchmark sets, like how to run the Titan Benchmark Suite.

	Discover how to generate FASM for bitstream creation.

	Suggest or make enhancements to VTR’s documentation.

Here are some possible next steps for developers wishing to modify and improve VTR:

	Try the next steps listed for users above to learn how VTR is used.

	Work through the new developer tutorial.

	Read through the developer guide.

	Look for open issues to which you can contribute.

	Begin exploring the source code for the main tools in VTR (e.g. VPR in $VTR_ROOT/vpr/src).

VTR

[image: Placement]
[image: Critical Path]
[image: Wiring]
[image: Routing Usage]
The Verilog-to-Routing (VTR) project [LAK+14, RLY+12] is a world-wide collaborative effort to provide a open-source framework for conducting FPGA architecture and CAD research and development.
The VTR design flow takes as input a Verilog description of a digital circuit, and a description of the target FPGA architecture.

It then perfoms:

	Elaboration & Synthesis (Odin II)

	Logic Optimization & Technology Mapping (ABC)

	Packing, Placement, Routing & Timing Analysis (VPR)

Generating FPGA speed and area results.

VTR also includes a set of benchmark designs known to work with the design flow.

	VTR CAD Flow
	CAD Flow Variations

	Bitstream Generation

	Get VTR
	How to Cite

	Download

	VTR Docker Image

	Release

	Development Repository

	Building VTR
	Setting up Your Environment

	Building

	Verifying Installation

	Optional Build Information
	Dependencies

	Build Options

	Other platforms

	Running the VTR Flow
	Running a Single Benchmark

	Running Multiple Benchmarks & Architectures with Tasks

	Extracting Information & Statistics

	Benchmarks
	VTR Benchmarks

	Titan Benchmarks

	Koios 2.0 Benchmarks

	MCNC20 Benchmarks

	SymbiFlow Benchmarks

	NoC Benchmarks

	Power Estimation
	Running VTR with Power Estimation

	Supporting Tools

	Architecture Modelling

	Other Architecture Options & Techniques

	Tasks
	Example Tasks

	Directory Layout

	Creating a New Task

	Task Configuration File

	Required Fields

	Optional Fields

	run_vtr_flow
	Basic Usage

	Output

	Advanced Usage

	Detailed Command-line Options

	run_vtr_task
	Basic Usage

	Output

	Detailed Command-line Options

	parse_vtr_flow
	Usage

	Output

	parse_vtr_task
	Usage

	Output

	Detailed Command-line Options

	Parse Configuration
	Format

	Example File

	Pass Requirements
	Task Configuration

	File Location

	File Format

	Example File

	VTR Flow Python library
	VTR flow

	Parmys

	ODIN II

	ABC

	ACE

	VPR

VTR CAD Flow

[image: ../_images/vtr_flow_fig.svg]
Fig. 4 VTR CAD flow (and variants)

In the standard VTR Flow (Fig. 4), Parmys converts a Verilog Hardware Destription Language (HDL) design into a flattened netlist consisting of logic gates, flip-flops, and blackboxes representing heterogeneous blocks (e.g. adders, multipliers, RAM slices).

Next, the ABC synthesis package is used to perform technology-independent logic optimization, and technology-maps the circuit into LUTs [CCMB07, PHMB07, SG].
The output of ABC is a .blif format netlist of LUTs, flip flops, and blackboxes.

VPR then packs this netlist into more coarse-grained logic blocks, places and then routes the circuit [BR97a, Bet98, BR96a, BR96b, BR97b, BR00, BRM99, MBR99, MBR00].
Generating output files for each stage.
VPR will analyze the resulting implementation, producing various statistics such as the minimum number of tracks per channel required to successfully route, the total wirelength, circuit speed, area and power.
VPR can also produce a post-implementation netlist for simulation and formal verification.

CAD Flow Variations

Titan CAD Flow

The Titan CAD Flow [KTK23, MWL+13, MWL+15] interfaces Intel’s Quartus tool with VPR.
This allows designs requiring industrial strength language coverage and IP to be brought into VPR.

Other CAD Flow Variants

Many other CAD flow variations are possible.

For instance, it is possible to use other logic synthesis tools like Yosys [Wol] to generate the design netlist.
One could also use logic optimizers and technology mappers other than ABC; just put the output netlist from your technology-mapper into .blif format and pass it into VPR.

It is also possible to use tools other than VPR to perform the different stages of the implementation.

For example, if the logic block you are interested in is not supported by VPR, your CAD flow can bypass VPR’s packer by outputting a netlist of logic blocks in .net format.
VPR can place and route netlists of any type of logic block – you simply have to create the netlist and describe the logic block in the FPGA architecture description file.

Similarly, if you want only to route a placement produced by another CAD tool you can create a .place file, and have VPR route this pre-existing placement.

If you only need to analyze an implementation produced by another tool, you can create a .route file, and have VPR analyze the implementation, to produce area/delay/power results.

Finally, if your routing architecture is not supported by VPR’s architecture generator, you can describe your routing architecture in an rr_graph.xml file, which can be loaded directly into VPR.

Bitstream Generation

The technology mapped netlist and packing/placement/routing results produced by VPR contain the information needed to generate a device programming bitstreams.

VTR focuses on the core physical design optimization tools and evaluation capabilities for new architectures and does not directly support generating device programming bitstreams.
Bitstream generators can either ingest the implementation files directly or make use of VTR utilities to emit FASM.

Get VTR

How to Cite

Citations are important in academia, as they ensure contributors receive credit for their efforts.
Therefore please use the following paper as a general citation whenever you use VTR:

	
	Murray, O. Petelin, S. Zhong, J. M. Wang, M. ElDafrawy, J.-P. Legault, E. Sha, A. G. Graham, J. Wu, M. J. P. Walker, H. Zeng, P. Patros, J. Luu, K. B. Kent and V. Betz “VTR 8: High Performance CAD and Customizable FPGA Architecture Modelling”, ACM TRETS, 2020

Bibtex:

@article{vtr8,
 title={VTR 8: High Performance CAD and Customizable FPGA Architecture Modelling},
 author={Murray, Kevin E. and Petelin, Oleg and Zhong, Sheng and Wang, Jai Min and ElDafrawy, Mohamed and Legault, Jean-Philippe and Sha, Eugene and Graham, Aaron G. and Wu, Jean and Walker, Matthew J. P. and Zeng, Hanqing and Patros, Panagiotis and Luu, Jason and Kent, Kenneth B. and Betz, Vaughn},
 journal={ACM Trans. Reconfigurable Technol. Syst.},
 year={2020}
}

We are always interested in how VTR is being used, so feel free email the vtr-users [https://verilogtorouting.org/contact/] list with how you are using VTR.

Download

The official VTR release is available from:

https://verilogtorouting.org/download

VTR Docker Image

A docker image for VTR is available. This image provides all the required packages and python libraries required. However, this ease to compile and run comes at the cost of some runtime increase (<10%). To pull and run the docker image of latest VTR repository, you can run the following commands:

> sudo docker pull mohamedelgammal/vtr-master:latest
> sudo docker run -it mohamedelgammal/vtr-master:latest

Release

The VTR 8.1 release provides the following:

	benchmark circuits,

	sample FPGA architecture description files,

	the full CAD flow, and

	scripts to run that flow.

The FPGA CAD flow takes as input, a user circuit (coded in Verilog) and a description of the FPGA architecture.
The CAD flow then maps the circuit to the FPGA architecture to produce, as output, a placed-and-routed FPGA.
Here are some highlights of the 8.1 full release:

	Timing-driven logic synthesis, packing, placement, and routing with multi-clock support.

	Power Analysis

	Benchmark digital circuits consisting of real applications that contain both memories and multipliers.

Seven of the 19 circuits contain more than 10,000 6-LUTs. The largest of which is just under 100,000 6-LUTs.

	Sample architecture files of a wide range of different FPGA architectures including:

	Timing annotated architectures

	Various fracturable LUTs (dual-output LUTs that can function as one large LUT or two smaller LUTs with some shared inputs)

	Various configurable embedded memories and multiplier hard blocks

	One architecture containing embedded floating-point cores, and

	One architecture with carry chains.

	A front-end Verilog elaborator that has support for hard blocks.

This tool can automatically recognize when a memory or multiplier instantiated in a user circuit is too large for a target FPGA architecture.
When this happens, the tool can automatically split that memory/multiplier into multiple smaller components (with some glue logic to tie the components together).
This makes it easier to investigate different hard block architectures because one does not need to modify the Verilog if the circuit instantiates a memory/multiplier that is too large.

	Packing/Clustering support for FPGA logic blocks with widely varying functionality.

This includes memories with configurable aspect ratios, multipliers blocks that can fracture into smaller multipliers, soft logic clusters that contain fracturable LUTs, custom interconnect within a logic block, and more.

	Ready-to-run scripts that guide a user through the complexities of building the tools as well as using the tools to map realistic circuits (written in Verilog) to FPGA architectures.

	Regression tests of experiments that we have conducted to help users error check and/or compare their work.

Along with experiments for more conventional FPGAs, we also include an experiment that explores FPGAs with embedded floating-point cores investigated in [HYL+09] to illustrate the usage of the VTR framework to explore unconventional FPGA architectures.

Development Repository

The development repository for the Verilog-to-Routing project is hosted at:

https://github.com/verilog-to-routing/vtr-verilog-to-routing

Unlike the nicely packaged official releases the code in a constant state of flux.
You should expect that the tools are not always stable and that more work is needed to get the flow to run.

Building VTR

Setting up Your Environment

If you cloned the repository you will need to set up the git submodules (if you downloaded and extracted a release, you can skip this step):

git submodule init
git submodule update

VTR requires several system packages. From the top-level directory, run the following script to install the required packages on a modern Debian or Ubuntu system:

./install_apt_packages.sh

You will also need several Python packages. You can optionally install and activate a Python virtual environment so that you do not need to modify your system Python installation:

make env
source .venv/bin/activate

Then to install the Python packages:

pip install -r requirements.txt

Note: If you chose to install the Python virtual environment, you will need to remember to activate it on any new terminal window you use, before you can run the VTR flow or regressions tests (source .venv/bin/activate).

Building

From the top-level, run:

make

which will build all the required tools.

The complete VTR flow has been tested on 64-bit Linux systems.
The flow should work in other platforms (32-bit Linux, Windows with cygwin) but this is untested.

Full information about building VTR, including setting up required system packages and Python packages, can be found in Optional Build Information page.

Please let us know your experience with building VTR so that we can improve the experience for others.

The tools included official VTR releases have been tested for compatibility.
If you download a different version of those tools, then those versions may not be mutually compatible with the VTR release.

Verifying Installation

To verfiy that VTR has been installed correctly run::

./vtr_flow/scripts/run_vtr_task.py regression_tests/vtr_reg_basic/basic_timing

The expected output is::

k6_N10_mem32K_40nm/single_ff OK
k6_N10_mem32K_40nm/single_ff OK
k6_N10_mem32K_40nm/single_wire OK
k6_N10_mem32K_40nm/single_wire OK
k6_N10_mem32K_40nm/diffeq1 OK
k6_N10_mem32K_40nm/diffeq1 OK
k6_N10_mem32K_40nm/ch_intrinsics OK
k6_N10_mem32K_40nm/ch_intrinsics OK

Optional Build Information

This page contains additional information about the VTR build system, and how to build VTR on other OS platforms or with non-standard build options. If you only need to the default features of VTR on a Debian/Ubuntu system, the previous Building VTR page should be sufficient and you can skip this page.

Dependencies

Most package and Python dependencies can be installed using the instructions on the previous Building VTR page. However, more detailed information is provided here.

CMake

VTR uses CMake [https://cmake.org] as it’s build system.

CMake provides a portable cross-platform build systems with many useful features.

For unix-like systems we provide a wrapper Makefile which supports the traditional make and make clean commands, but calls CMake behind the scenes.

Tested Compilers

VTR requires a C++-14 compliant compiler.
It is tested against the default compilers of all Debian and Ubuntu releases within their standard support lifetime. Currently, those are the following:

	GCC/G++: 9, 10, 11, 12

	Clang/Clang++: 11, 12, 13, 14

Other compilers may work but are untested (your milage may vary).

Package Dependencies

	On Linux, the fastest way to set up all dependencies is to enter the commands listed in the VTR Quick Start Environment Setup [https://docs.verilogtorouting.org/en/latest/quickstart/#environment-setup].

	At minimum you will require:

	A modern C++ compiler supporting C++14 (such as GCC >= 4.9 or clang >= 3.6)

	cmake, make

	bison, flex, pkg-config

	Additional packages are required for the VPR GUI (Cairo, FreeType, libXft, libX11, fontconfig, libgtk-3-dev)

	The scripts to run the entire VTR flow, as well as the regressions scripts, require Python3 and Python packages listed in the requirements.txt file.

	Developers may also wish to install other packages (git, ctags, gdb, valgrind, clang-format-7)

	To generate the documentation you will need Sphinx, Doxygen, and several Python packages. The Python packages can be installed with the following command:

pip install -r doc/requirements.txt

Build Options

Build Type

You can specify the build type by passing the BUILD_TYPE parameter.

For instance to create a debug build (no optimization and debug symbols):

#In the VTR root
$ make BUILD_TYPE=debug
...
[100%] Built target vpr

Passing parameters to CMake

You can also pass parameters to CMake.

For instance to set the CMake configuration variable VTR_ENABLE_SANITIZE on:

#In the VTR root
$ make CMAKE_PARAMS="-DVTR_ENABLE_SANITIZE=ON"
...
[100%] Built target vpr

Both the BUILD_TYPE and CMAKE_PARAMS can be specified concurrently:

#In the VTR root
$ make BUILD_TYPE=debug CMAKE_PARAMS="-DVTR_ENABLE_SANITIZE=ON"
...
[100%] Built target vpr

Using CMake directly

You can also use cmake directly.

First create a build directory under the VTR root:

#In the VTR root
$ mkdir build
$ cd build

#Call cmake pointing to the directory containing the root CMakeLists.txt
$ cmake ..

#Build
$ make

Changing configuration on the command line

You can change the CMake configuration by passing command line parameters.

For instance to set the configuration to debug:

#In the build directory
$ cmake . -DCMAKE_BUILD_TYPE=debug

#Re-build
$ make

Changing configuration interactively with ccmake

You can also use ccmake to to modify the build configuration.

#From the build directory
$ ccmake . #Make some configuration change

#Build
$ make

Other platforms

CMake supports a variety of operating systems and can generate project files for a variety of build systems and IDEs.
While VTR is developed primarily on Linux, it should be possible to build on different platforms (your milage may vary).
See the CMake documentation [https://cmake.org] for more details about using cmake and generating project files on other platforms and build systems (e.g. Eclipse, Microsoft Visual Studio).

Nix

Nix can be used to build VTR on other platforms, such as MacOS.

If you don’t have Nix [https://nixos.org/nix/], you can get it [https://nixos.org/nix/download.html] with:

$ curl -L https://nixos.org/nix/install | sh

These commands will set up dependencies for Linux and MacOS and build VTR:

#In the VTR root
$ nix-shell dev/nix/shell.nix
$ make

Microsoft Windows

NOTE: VTR support on Microsoft Windows is considered experimental

WSL

The Windows Subsystem for Linux [https://docs.microsoft.com/en-us/windows/wsl/] (WSL), “lets developers run a GNU/Linux environment – including most command-line tools, utilities, and applications – directly on Windows, unmodified, without the overhead of a traditional virtual machine or dual-boot setup.”

This is the recommended way to run VTR on Windows systems.

Cygwin

Cygwin [https://www.cygwin.com/] provides a POSIX (i.e. unix-like) environment for Microsoft Windows.

From within the cygwin terminal follow the Unix-like build instructions listed above.

Note that the generated executables will rely upon Cygwin (e.g. cygwin1.dll) for POSIX compatibility.

Cross-compiling from Linux to Microsoft Windows with MinGW-W64

It is possible to cross-compile from a Linux host system to generate Microsoft Windows executables using the MinGW-W64 [https://mingw-w64.org] compilers.
These can usually be installed with your Linux distribution’s package manager (e.g. sudo apt-get install mingw-w64 on Debian/Ubuntu).

Unlike Cygwin, MinGW executables will depend upon the standard Microsoft Visual C++ run-time.

To build VTR using MinGW:

#In the VTR root
$ mkdir build_win64
$ cd build_win64

#Run cmake specifying the toolchain file to setup the cross-compilation environment
$ cmake .. -DCMAKE_TOOLCHAIN_FILE ../cmake/toolchains/mingw-linux-cross-compile-to-windows.cmake

#Building will produce Windows executables
$ make

Note that by default the MS Windows target system will need to dynamically link to the libgcc and libstdc++ DLLs.
These are usually found under /usr/lib/gcc on the Linux host machine.

See the toolchain file [https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/cmake/toolchains/mingw-linux-cross-compile-to-windows.cmake] for more details.

Microsoft Visual Studio

CMake can generate a Microsft Visual Studio project, enabling VTR to be built with the Microsoft Visual C++ (MSVC) compiler.

Installing additional tools

VTR depends on some external unix-style tools during it’s buid process; in particular the flex and bison parser generators.

One approach is to install these tools using MSYS2 [http://www.msys2.org/], which provides up-to-date versions of many unix tools for MS Windows.

To ensure CMake can find the flex and bison executables you must ensure that they are available on your system path.
For instance, if MSYS2 was installed to C:\msys64 you would need to ensure that C:\msys64\usr\bin was included in the system PATH environment variable.

Generating the Visual Studio Project

CMake (e.g. the cmake-gui) can then be configured to generate the MSVC project.

Running the VTR Flow

VTR is a collection of tools that perform the full FPGA CAD flow from Verilog to routing.

The design flow consists of:

	Parmys (Logic Synthesis & Partial Mapping)

	ABC (Logic Optimization & Technology Mapping)

	VPR (Pack, Place & Route)

There is no single executable for the entire flow.

Instead, scripts are provided to allow the user to easily run the entire tool flow.
The following provides instructions on using these scripts to run VTR.

Running a Single Benchmark

The run_vtr_flow script is provided to execute the VTR flow for a single benchmark and architecture.

Note

In the following $VTR_ROOT means the root directory of the VTR source code tree.

$VTR_ROOT/vtr_flow/scripts/run_vtr_flow.py <circuit_file> <architecture_file>

It requires two arguments:

	<circuit_file> A benchmark circuit, and

	<architecture_file> an FPGA architecture file

Circuits can be found under:

$VTR_ROOT/vtr_flow/benchmarks/

Architecture files can be found under:

$VTR_ROOT/vtr_flow/arch/

The script can also be used to run parts of the VTR flow.

See also

run_vtr_flow for the detailed command line options of run_vtr_flow.py.

Running Multiple Benchmarks & Architectures with Tasks

VTR also supports tasks, which manage the execution of the VTR flow for multiple benchmarks and architectures.
By default, tasks execute the run_vtr_flow for every circuit/architecture combination.

VTR provides a variety of standard tasks which can be found under:

$VTR_ROOT/vtr_flow/tasks

Tasks can be executed using run_vtr_task:

$VTR_ROOT/vtr_flow/scripts/run_vtr_task.py <task_name>

See also

run_vtr_task for the detailed command line options of run_vtr_task.py.

See also

Tasks for more information on creating, modifying and running tasks.

Extracting Information & Statistics

VTR can also extract useful information and statistics from executions of the flow such as area, speed tool execution time etc.

For single benchmarks parse_vtr_flow extrastics statistics from a single execution of the flow.

For a Task, parse_vtr_task can be used to parse and assemble statistics for the entire task (i.e. multiple circuits and architectures).

For regression testing purposes these results can also be verified against a set of golden reference results.
See parse_vtr_task for details.

Benchmarks

There are several sets of benchmark designs which can be used with VTR.

VTR Benchmarks

The VTR benchmarks [LAK+14, RLY+12] are a set of medium-sized benchmarks included with VTR.
They are fully compatible with the full VTR flow.
They are suitable for FPGA architecture research and medium-scale CAD research.

Table 1 The VTR 7.0 Benchmarks.

	Benchmark

	Domain

	bgm

	Finance

	blob_merge

	Image Processing

	boundtop

	Ray Tracing

	ch_intrinsics

	Memory Init

	diffeq1

	Math

	diffeq2

	Math

	LU8PEEng

	Math

	LU32PEEng

	Math

	mcml

	Medical Physics

	mkDelayWorker32B

	Packet Processing

	mkPktMerge

	Packet Processing

	mkSMAdapter4B

	Packet Processing

	or1200

	Soft Processor

	raygentop

	Ray Tracing

	sha

	Cryptography

	stereovision0

	Computer Vision

	stereovision1

	Computer Vision

	stereovision2

	Computer Vision

	stereovision3

	Computer Vision

The VTR benchmarks are provided as Verilog under:

$VTR_ROOT/vtr_flow/benchmarks/verilog

This provides full flexibility to modify and change how the designs are implemented (including the creation of new netlist primitives).

The VTR benchmarks are also included as pre-synthesized BLIF files under:

$VTR_ROOT/vtr_flow/benchmarks/vtr_benchmarks_blif

Titan Benchmarks

The Titan benchmarks are a set of large modern FPGA benchmarks compatible with Intel Stratix IV [MWL+13, MWL+15] and Stratix 10 [KTK23] devices.
The pre-synthesized versions of these benchmarks are compatible with recent versions of VPR.

The Titan benchmarks are suitable for large-scale FPGA CAD research, and FPGA architecture research which does not require synthesizing new netlist primitives.

Note

The Titan benchmarks are not included with the VTR release (due to their size). However they can be downloaded and extracted by running make get_titan_benchmarks from the root of the VTR tree. They can also be downloaded manually [https://www.eecg.utoronto.ca/~vaughn/titan/].

See also

Running the Titan Benchmarks

Koios 2.0 Benchmarks

The Koios benchmarks [ABR+21] are a set of Deep Learning (DL) benchmarks.
They are suitable for DL related architecture and CAD research.
There are 40 designs that include several medium-sized benchmarks and some large benchmarks.
The designs target different network types (CNNs, RNNs, MLPs, RL) and layer types (fully-connected, convolution, activation, softmax, reduction, eltwise).
Some of the designs are generated from HLS tools as well.
These designs use many precisions including binary, different fixed point types int8/16/32, brain floating point (bfloat16), and IEEE half-precision floating point (fp16).

Table 2 The Koios Benchmarks.

	Benchmark

	Description

	dla_like

	Intel-DLA-like accelerator

	clstm_like

	CLSTM-like accelerator

	deepfreeze

	ARM FixyNN design

	tdarknet_like

	Accelerator for Tiny Darknet

	bwave_like

	Microsoft-Brainwave-like design

	lstm

	LSTM engine

	bnn

	4-layer binary neural network

	lenet

	Accelerator for LeNet-5

	dnnweaver

	DNNWeaver accelerator

	tpu_like

	Google-TPU-v1-like accelerator

	gemm_layer

	20x20 matrix multiplication engine

	attention_layer

	Transformer self-attention layer

	conv_layer

	GEMM based convolution

	robot_rl

	Robot+maze application

	reduction_layer

	Add/max/min reduction tree

	spmv

	Sparse matrix vector multiplication

	eltwise_layer

	Matrix elementwise add/sub/mult

	softmax

	Softmax classification layer

	conv_layer_hls

	Sliding window convolution

	proxy

	Proxy/synthetic benchmarks

The Koios benchmarks are provided as Verilog (enabling full flexibility to modify and change how the designs are implemented) under:

$VTR_ROOT/vtr_flow/benchmarks/verilog/koios

To use these benchmarks, please see the documentation in the README file at: https://github.com/verilog-to-routing/vtr-verilog-to-routing/tree/master/vtr_flow/benchmarks/verilog/koios

MCNC20 Benchmarks

The MCNC benchmarks [Yan91] are a set of small and old (circa 1991) benchmarks.
They consist primarily of logic (i.e. LUTs) with few registers and no hard blocks.

Warning

The MCNC20 benchmarks are not recommended for modern FPGA CAD and architecture research.
Their small size and design style (e.g. few registers, no hard blocks) make them unrepresentative of modern FPGA usage.
This can lead to misleading CAD and/or architecture conclusions.

The MCNC20 benchmarks included with VTR are available as .blif files under:

$VTR_ROOT/vtr_flow/benchmarks/blif/

The versions used in the VPR 4.3 release, which were mapped to [image: K]-input look-up tables using FlowMap [CD94], are available under:

$VTR_ROOT/vtr_flow/benchmarks/blif/<#>

where [image: K=] <#>.

Table 3 The MCNC20 benchmarks.

	Benchmark

	Approximate Number of Netlist Primitives

	alu4

	934

	apex2

	1116

	apex4

	916

	bigkey

	1561

	clma

	3754

	des

	1199

	diffeq

	1410

	dsip

	1559

	elliptic

	3535

	ex1010

	2669

	ex5p

	824

	frisc

	3291

	misex3

	842

	pdc

	2879

	s298

	732

	s38417

	4888

	s38584.1

	4726

	seq

	1041

	spla

	2278

	tseng

	1583

SymbiFlow Benchmarks

SymbiFlow benchmarks are a set of small and medium sized tests to verify and test the SymbiFlow-generated
architectures, including primarily the Xilinx Artix-7 device families.

The tests are generated by nightly builds from the symbiflow-arch-defs repository [https://github.com/SymbiFlow/symbiflow-arch-defs], and uploaded to a Google Cloud Platform
from where they are fetched and executed in the VTR benchmarking suite.

The circuits are the following:

Table 4 The SymbiFlow benchmarks.

	Benchmark

	Description

	picosoc @100 MHz

	simple SoC with a picorv32 CPU running @100MHz

	picosoc @50MHz

	simple SoC with a picorv32 CPU running @50MHz

	base-litex

	LiteX-based SoC with a VexRiscv CPU booting into a BIOS only

	ddr-litex

	LiteX-based SoC with a VexRiscv CPU and a DDR controller

	ddr-eth-litex

	LiteX=based SoC with a VexRiscv CPU, a DDR controller and an Ethernet core

	linux-litex

	LiteX-based SoC with a VexRiscv CPU capable of booting linux

The SymbiFlow benchmarks can be downloaded and extracted by running the following:

cd $VTR_ROOT
make get_symbiflow_benchmarks

Once downloaded and extracted, benchmarks are provided as post-synthesized blif files under:

$VTR_ROOT/vtr_flow/benchmarks/symbiflow

NoC Benchmarks

NoC benchmarks are composed of synthetic and MLP benchmarks and target NoC-enhanced FPGA architectures. Synthetic
benchmarks include a wide variety of traffic flow patters and are divided into two groups: 1) simple and 2) complex
benchmarks. As their names imply, simple benchmarks use very simple and small logic modules connected to NoC routers,
while complex benchmarks implement more complicated functionalities like encryption. These benchmarks do not come from
real application domains. On the other hand, MLP benchmarks include modules that perform matrix-vector multiplication
and move data. Pre-synthesized netlists for the synthetic benchmarks are added to VTR project, but MLP netlists should
be downloaded separately.

Note

The NoC MLP benchmarks are not included with the VTR release (due to their size). However they can be downloaded and extracted by running make get_noc_mlp_benchmarks from the root of the VTR tree. They can also be downloaded manually [https://www.eecg.utoronto.ca/~vaughn/titan/].

Power Estimation

VTR provides transistor-level dynamic and static power estimates for a given architecture and circuit.

Fig. 5 illustrates how power estimation is performed in the VTR flow.
The actual power estimation is performed within the VPR executable; however, additional files must be provided.
In addition to the circuit and architecture files, power estimation requires files detailing the signal activities and technology properties.

Running VTR with Power Estimation details how to run power estimation for VTR.
Supporting Tools provides details on the supporting tools that are used to generate the signal activities and technology properties files.
Architecture Modelling provides details about how the tool models architectures, including different modelling methods and options.
Other Architecture Options & Techniques provides more advanced configuration options.

[image: ../../_images/power_flow.svg]
Fig. 5 Power Estimation in the VTR Flow

Running VTR with Power Estimation

VTR Flow

The easiest way to run the VTR flow is to use the run_vtr_flow script.

In order to perform power estimation, you must add the following options:

	run_vtr_flow.py -power

	run_vtr_flow.py -cmos_tech <cmos_tech_properties_file>

The CMOS technology properties file is an XML file that contains relevant process-dependent information needed for power estimation.
XML files for 22nm, 45nm, and 130nm PTM models can be found here:

$VTR_ROOT/vtrflow/tech/*

See Technology Properties for information on how to generate an XML file for your own SPICE technology model.

In this mode, the VTR will run ODIN->ABC->ACE->VPR. The ACE stage is additional and specific to this power estimation flow. Using run_vtr_flow.py will automatically run ACE 2.0 to generate activity information and a new BLIF file (see :ACE 2.0 Activity Estimation for details).

The final power estimates will be available in file named <circuit_name>.power in the result directory.

Here is an example command:

VPR

Power estimation can also be run directly from VPR with the following (all required) options:

	vpr --power: Enables power estimation.

	vpr --activity_file <activities.act>: The activity file, produce by ACE 2.0, or another tool.

	vpr --tech_properties <tech_properties.xml>: The technology properties file.

Power estimation requires an activity file, which can be generated as described in ACE 2.0 Activity Estimation.

Supporting Tools

Technology Properties

Power estimation requires information detailing the properties of the CMOS technology.
This information, which includes transistor capacitances, leakage currents, etc. is included in an .xml file, and provided as a parameter to VPR.
This XML file is generated using a script which automatically runs HSPICE, performs multiple circuit simulations, and extract the necessary values.

Some of these technology XML files are included with the release, and are located here:

$VTR_ROOT/vtr_flow/tech/*

If the user wishes to use a different CMOS technology file, they must run the following script:

Note

HSPICE must be available on the users path

$VTR_ROOT/vtr_flow/scripts/generate_cmos_tech_data.pl <tech_file> <tech_size> <vdd> <temp>

where:

	<tech_file>: Is a SPICE technology file, containing a pmos and nmos models.

	<tech_size>: The technology size, in meters.

Example:

A 90nm technology would have the value 90e-9.

	<vdd>: Supply voltage in Volts.

	<temp>: Operating temperature, in Celcius.

ACE 2.0 Activity Estimation

Power estimation requires activity information for the entire netlist.
This ativity information consists of two values:

	The Signal Probability, [image: P_1], is the long-term probability that a signal is logic-high.

Example:

A clock signal with a 50% duty cycle will have [image: P_1(clk) = 0.5].

	The Transition Density (or switching activity), [image: A_S], is the average number of times the signal will switch during each clock cycle.

Example:

A clock has [image: A_S(clk)=2].

The default tool used to perform activity estimation in VTR is ACE 2.0 [LW06].
This tool was originally designed to work with the (now obsolete) Berkeley SIS tool
ACE 2.0 was modifed to use ABC, and is included in the VTR package here:

$VTR_ROOT/ace2

The tool can be run using the following command-line arguments:

$VTR_ROOT/ace2/ace -b <abc.blif> -c <clock_name> -o <activities.act> -n <new.blif>

where

	<abc.blif>: Is the input BLIF file produced by ABC.

	<clock_name>: Is the name of the clock in the input BLIF file

	<activities.act>: Is the activity file to be created.

	<new.blif>: The new BLIF file.

This will be functionally identical in function to the ABC blif; however, since ABC does not maintain internal node names, a new BLIF must be produced with node names that match the activity file. This blif file is fed to the subsequent parts of the flow (to VPR). If a user is using run_vtr_flow.py (which will run ACE 2.0 underneath if the options mentioned earlier like -power are used), then the flow will copy this ACE2 generated blif file (<circuit_name>.ace.blif) to <circuit_name>.pre-vpr.blif and then launch VPR with this new file.

User’s may with to use their own activity estimation tool.
The produced activity file must contain one line for each net in the BLIF file, in the following format:

<net name> <signal probability> <transistion density>

Architecture Modelling

The following section describes the architectural assumptions made by the power model, and the related parameters in the architecture file.

Complex Blocks

The VTR architecture description language supports a hierarchichal description of blocks. In the architecture file, each block is described as a pb_type, which may includes one or more children of type pb_type, and interconnect structures to connect them.

The power estimation algorithm traverses this hierarchy recursively, and performs power estimation for each pb_type.
The power model supports multiple power estimation methods, and the user specifies the desired method in the architecture file:

<pb_type>
 <power method="<estimation-method>"/>
</pb_type>

The following is a list of valid estimation methods.
Detailed descriptions of each type are provided in the following sections.
The methods are listed in order from most accurate to least accurate.

	specify-size: Detailed transistor level modelleling.

The user supplies all buffer sizes and wire-lengths.
Any not provided by the user are ignored.

	auto-size: Detailed transistor level modelleling.

The user can supply buffer sizes and wire-lengths; however, they will be automatically inserted when not provided.

	pin-toggle: Higher-level modelling.

The user specifies energy per toggle of the pins.
Static power provided as an absolute.

	C-internal: Higher-level modelling.

The user supplies the internal capacitance of the block.
Static power provided as an absolute.

	absolute: Highest-level modelling.

The user supplies both dynamic and static power as absolutes.

Other methods of estimation:

	ignore: The power of the pb_type is ignored, including any children.

	sum-of-children: Power of pb_type is solely the sum of all children pb_types.

Interconnect between the pb_type and its children is ignored.

Note

If no estimation method is provided, it is inherited from the parent pb_type.

Note

If the top-level pb_type has no estimation method, auto-size is assumed.

specify-size

This estimation method provides a detailed transistor level modelling of CLBs, and will provide the most accurate power estimations.
For each pb_type, power estimation accounts for the following components (see Fig. 6).

	Interconnect multiplexers

	Buffers and wire capacitances

	Child pb_types

[image: ../../_images/power_sample_clb.svg]
Fig. 6 Sample Block

Multiplexers:
Interconnect multiplexers are modelled as 2-level pass-transistor multiplexers, comprised of minimum-size NMOS transistors.
Their size is determined automatically from the <interconnect/> structures in the architecture description file.

Buffers and Wires:
Buffers and wire capacitances are not defined in the architecture file, and must be explicitly added by the user.
They are assigned on a per port basis using the following construct:

<pb_type>
 <input name="my_input" num_pins="1">
 <power ...options.../>
 </input>
</pb_type>

The wire and buffer attributes can be set using the following options.
If no options are set, it is assumed that the wire capacitance is zero, and there are no buffers present.
Keep in mind that the port construct allows for multiple pins per port.
These attributes will be applied to each pin in the port.
If necessary, the user can seperate a port into multiple ports with different wire/buffer properties.

	wire_capacitance=1.0e-15: The absolute capacitance of the wire, in Farads.

	wire_length=1.0e-7: The absolute length of the wire, in meters.

The local interconnect capacitance option must be specified, as described in Local Interconnect Capacitance.

	wire_length=auto: The wirelength is automatically sized. See Local Wire Auto-Sizing.

	buffer_size=2.0: The size of the buffer at this pin. See for more Buffer Sizing information.

	buffer_size=auto: The size of the buffer is automatically sized, assuming it drives the above wire capacitance and a single multiplexer. See Buffer Sizing for more information.

Primitives:
For all child pb_types, the algorithm performs a recursive call.
Eventually pb_types will be reached that have no children.
These are primitives, such as flip-flops, LUTs, or other hard-blocks.
The power model includes functions to perform transistor-level power estimation for flip-flops and LUTs (Note: the power model doesn’t, by default, include power estimation for single-bit adders that are commonly found in logic blocks of modern FPGAs).
If the user wishes to use a design with other primitive types (memories, multipliers, etc), they must provide an equivalent function.
If the user makes such a function, the power_usage_primitive function should be modified to call it.
Alternatively, these blocks can be configured to use higher-level power estimation methods.

auto-size

This estimation method also performs detailed transistor-level modelling.
It is almost identical to the specify-size method described above.
The only difference is that the local wire capacitance and buffers are automatically inserted for all pins, when necessary.
This is equivalent to using the specify-size method with the wire_length=auto and buffer_size=auto options for every port.

Note

This is the default power estimation method.

Although not as accurate as user-provided buffer and wire sizes, it is capable of automatically capturing trends in power dissipation as architectures are modified.

pin-toggle

This method allows users to specify the dynamic power of a block in terms of the energy per toggle (in Joules) of each input, output or clock pin for the pb_type.
The static power is provided as an absolute (in Watts).
This is done using the following construct:

<pb_type>
 ...
 <power method="pin-toggle">
 <port name="A" energy_per_toggle="1.0e-12"/>
 <port name="B[3:2]" energy_per_toggle="1.0e-12"/>
 <port name="C" energy_per_toggle="1.0e-12" scaled_by_static_porb="en1"/>
 <port name="D" energy_per_toggle="1.0e-12" scaled_by_static_porb_n="en2"/>
 <static_power power_per_instance="1.0e-6"/>
 </power>
</pb_type>

Keep in mind that the port construct allows for multiple pins per port.
Unless an subset index is provided, the energy per toggle will be applied to each pin in the port.
The energy per toggle can be scaled by another signal using the scaled_by_static_prob.
For example, you could scale the energy of a memory block by the read enable pin.
If the read enable were high 80% of the time, then the energy would be scaled by the [image: signal_probability], 0.8.
Alternatively scaled_by_static_prob_n can be used for active low signals, and the energy will be scaled by [image: (1-signal_probability)].

This method does not perform any transistor-level estimations; the entire power estimation is performed using the above values.
It is assumed that the power usage specified here includes power of all child pb_types.
No further recursive power estimation will be performed.

C-internal

This method allows the users to specify the dynamic power of a block in terms of the internal capacitance of the block.
The activity will be averaged across all of the input pins, and will be supplied with the internal capacitance to the standard equation:

[image: P_{dyn}=\frac{1}{2}\alpha CV^2.]

Again, the static power is provided as an absolute (in Watts).
This is done using the following construct:

<pb_type>
 <power method="c-internal">
 <dynamic_power C_internal="1.0e-16"/>
 <static_power power_per_instance="1.0e-16"/>
 </power>
</pb_type>

It is assumed that the power usage specified here includes power of all child pb_types.
No further recursive power estimation will be performed.

absolute

This method is the most basic power estimation method, and allows users to specify both the dynamic and static power of a block as absolute
values (in Watts).
This is done using the following construct:

<pb_type>
 <power method="absolute">
 <dynamic_power power_per_instance="1.0e-16"/>
 <static_power power_per_instance="1.0e-16"/>
 </power>
</pb_type>

It is assumed that the power usage specified here includes power of all child pb_types.
No further recursive power estimation will be performed.

Global Routing

Global routing consists of switch boxes and input connection boxes.

Switch Boxes

Switch boxes are modelled as the following components (Fig. 7):

	Multiplexer

	Buffer

	Wire capacitance

[image: ../../_images/power_sb.svg]
Fig. 7 Switch Box

Multiplexer:
The multiplexer is modelled as 2-level pass-transistor multiplexer, comprised of minimum-size NMOS transistors.
The number of inputs to the multiplexer is automatically determined.

Buffer:
The buffer is a multistage CMOS buffer.
The buffer size is determined based upon output capacitance provided in the architecture file:

<switchlist>
 <switch type="mux" ... C_out="1.0e-16"/>
</switchlist>

The user may override this method by providing the buffer size as shown below:

<switchlist>
 <switch type="mux" ... power_buf_size="16"/>
</switchlist>

The size is the drive strength of the buffer, relative to a minimum-sized inverter.

Input Connection Boxes

Input connection boxes are modelled as the following components (Fig. 8):

	One buffer per routing track, sized to drive the load of all input multiplexers to which the buffer is connected (For buffer sizing see Buffer Sizing).

	One multiplexer per block input pin, sized according to the number of routing tracks that connect to the pin.

[image: ../../_images/power_cb.svg]
Fig. 8 Connection Box

Clock Network

The clock network modelled is a four quadrant spine and rib design, as illustrated in Fig. 9.
At this time, the power model only supports a single clock.
The model assumes that the entire spine and rib clock network will contain buffers separated in distance by the length of a grid tile.
The buffer sizes and wire capacitances are specified in the architecture file using the following construct:

<clocks>
 <clock ... clock_options ... />
</clocks>

The following clock options are supported:

	C_wire=1e-16: The absolute capacitance, in fards, of the wire between each clock buffer.

	C_wire_per_m=1e-12: The wire capacitance, in fards per m.

The capacitance is calculated using an automatically determined wirelength, based on the area of a tile in the FPGA.

	buffer_size=2.0: The size of each clock buffer.

This can be replaced with the auto keyword.
See Buffer Sizing for more information on buffer sizing.

[image: ../../_images/power_clock_network.svg]
Fig. 9 The clock network. Squares represent CLBs, and the wires represent the clock network.

Other Architecture Options & Techniques

Local Wire Auto-Sizing

Due to the significant user effort required to provide local buffer and wire sizes, we developed an algorithm to estimate them automatically.
This algorithm recursively calculates the area of all entities within a CLB, which consists of the area of primitives and the area of local interconnect multiplexers.
If an architecture uses new primitives in CLBs, it should include a function that returns the transistor count.
This function should be called from within power_count_transistors_primitive().

In order to determine the wire length that connects a parent entity to its children, the following assumptions are made:

	
	Assumption 1:
	All components (CLB entities, multiplexers, crossbars) are assumed to be contained in a square-shaped area.

	
	Assumption 2:
	All wires connecting a parent entity to its child pass through the interconnect square, which is the sum area of all interconnect multiplexers belonging to the parent entity.

Fig. 10 provides an illustration of a parent entity connected to its child entities, containing one of each interconnect type (direct, many-to-1, and complete).
In this figure, the square on the left represents the area used by the transistors of the interconnect multiplexers.
It is assumed that all connections from parent to child will pass through this area.
Real wire lengths could me more or less than this estimate; some pins in the parent may be directly adjacent to child entities, or they may have to traverse a distance greater than just the interconnect area.
Unfortuantely, a more rigorous estimation would require some information about the transistor layout.

[image: ../../_images/power_local_interconnect.svg]
Fig. 10 Local interconnect wirelength.

Table 5 Local interconnect wirelength and capacitance. [image: C_{inv}] is the input capacitance of a minimum-sized inverter.

	Connection from Entity Pin to:

	Estimated Wirelength

	Transistor Capacitance

	Direct (Input or Output)

	[image: 0.5 \cdot L_{interc}]

	0

	Many-to-1 (Input or Output)

	[image: 0.5 \cdot L_{interc}]

	[image: C_{INV}]

	Complete m:n (Input)

	[image: 0.5 \cdot L_{interc} + L_{crossbar}]

	[image: n \cdot C_{INV}]

	Complete m:n (Output)

	[image: 0.5 \cdot L_{interc}]

	[image: C_{INV}]

Table 5 details how local wire lengths are determined as a function of entity and interconnect areas.
It is assumed that each wire connecting a pin of a pb_type to an interconnect structure is of length [image: 0.5 \cdot L_{interc}].
In reality, this length depends on the actual transistor layout, and may be much larger or much smaller than the estimated value.
If desired, the user can override the 0.5 constant in the architecture file:

<architecture>
 <power>
 <local_interconnect factor="0.5"/>
 </power>
</architecture>

Buffer Sizing

In the power estimator, a buffer size refers to the size of the final stage of multi-stage buffer (if small, only a single stage is used).
The specified size is the [image: \frac{W}{L}] of the NMOS transistor.
The PMOS transistor will automatically be sized larger.
Generally, buffers are sized depending on the load capacitance, using the following equation:

[image: \text{Buffer Size} = \frac{1}{2 \cdot f_{LE}} * \frac{C_{Load}}{C_{INV}}]

In this equation, [image: C_{INV}] is the input capacitance of a minimum-sized inverter, and [image: f_{LE}] is the logical effort factor.
The logical effort factor is the gain between stages of the multi-stage buffer, which by default is 4 (minimal delay).
The term [image: (2\cdot f_{LE})] is used so that the ratio of the final stage to the driven capacitance is smaller.
This produces a much lower-area, lower-power buffer that is still close to the optimal delay, more representative of common design practises.
The logical effort factor can be modified in the architecture file:

<architecture>
 <power>
 <buffers logical_effor_factor="4"/>
 </power>
</architecture>

Local Interconnect Capacitance

If using the auto-size or wire-length options (Architecture Modelling), the local interconnect capacitance must be specified.
This is specified in the units of Farads/meter.

<architecture>
 <power>
 <local_interconnect C_wire="2.5e-15"/>
 </power>
</architecture>

Tasks

Tasks provide a framework for running the VTR flow on multiple benchmarks, architectures and with multiple CAD tool parameters.

A task specifies a set of benchmark circuits, architectures and CAD tool parameters to be used.
By default, tasks execute the run_vtr_flow script for every circuit/architecture/CAD parameter combination.

Example Tasks

	basic_flow: Runs the VTR flow mapping a simple Verilog circuit to an FPGA architecture.

	timing: Runs the flagship VTR benchmarks on a comprehensive, realistic architecture file.

	timing_chain: Same as timing but with carry chains.

	regression_mcnc: Runs VTR on the historical MCNC benchmarks on a legacy architecture file. (Note: This is only useful for comparing to the past, it is not realistic in the modern world)

	regression_titan/titan_small: Runs a small subset of the Titan benchmarks targetting a simplified Altera Stratix IV (commercial FPGA) architecture capture

	regression_fpu_hard_block_arch: Custom hard FPU logic block architecture

Directory Layout

All of VTR’s included tasks are located here:

$VTR_ROOT/vtr_flow/tasks

If users wishes to create their own task, they must do so in this location.

All tasks must contain a configuration file located here:

$VTR_ROOT/vtr_flow/tasks/<task_name>/config/config.txt

Fig. 11 illustrates the directory layout for a VTR task.
Every time the task is run a new run<#> directory is created to store the output files, where <#> is the smallest integer to make the run directory name unique.

The symbolic link latest will point to the most recent run<#> directory.

[image: ../_images/vtr_task_fig.svg]
Fig. 11 Task directory layout.

Creating a New Task

	Create the folder $VTR_ROOT/vtr_flow/tasks/<task_name>

	Create the folder $VTR_ROOT/vtr_flow/tasks/<task_name>/config

	Create and configure the file $VTR_ROOT/vtr_flow/tasks/<task_name>/config/config.txt

Task Configuration File

The task configuration file contains key/value pairs separated by the = character.
Comment line are indicted using the # symbol.

Example configuration file:

Path to directory of circuits to use
circuits_dir=benchmarks/verilog

Path to directory of architectures to use
archs_dir=arch/timing

Add circuits to list to sweep
circuit_list_add=ch_intrinsics.v
circuit_list_add=diffeq1.v

Add architectures to list to sweep
arch_list_add=k6_N10_memSize16384_memData64_stratix4_based_timing_sparse.xml

Parse info and how to parse
parse_file=vpr_standard.txt

Note

run_vtr_task will invoke the script (default run_vtr_flow) for the cartesian product of circuits, architectures and script parameters specified in the config file.

Required Fields

	circuit_dir: Directory path of the benchmark circuits.

Absolute path or relative to $VTR_ROOT/vtr_flow/.

	arch_dir: Directory path of the architecture XML files.

Absolute path or relative to $VTR_ROOT/vtr_flow/.

	circuit_list_add: Name of a benchmark circuit file.

Use multiple lines to add multiple circuits.

	arch_list_add: Name of an architecture XML file.

Use multiple lines to add multiple architectures.

	parse_file: Parse Configuration file used for parsing and extracting the statistics.

Absolute path or relative to $VTR_ROOT/vtr_flow/parse/parse_config.

Optional Fields

	script_path: Script to run for each architecture/circuit combination.

Absolute path or relative to $VTR_ROOT/vtr_flow/scripts/ or $VTR_ROOT/vtr_flow/tasks/<task_name>/config/)

Default: run_vtr_flow

Users can set this option to use their own script instead of the default.
The circuit path will be provided as the first argument, and architecture path as the second argument to the user script.

	script_params_common: Common parameters to be passed to all script invocations.

This can be used, for example, to run partial VTR flows.

Default: none

	script_params: Alias for script_params_common

	script_params_list_add: Adds a set of command-line arguments

Multiple script_params_list_add can be provided which are addded to the cartesian product of configurations to be evaluated.

	sdc_dir: Directory path to benchmark SDC files.

Absolute path or relative to $VTR_ROOT/vtr_flow/.

If provided, each benchmark will look for a similarly named SDC file.

For instance with circuit_list_add=my_circuit.v or circuit_list_add=my_circuit.blif, the flow would look for an SDC file named my_circuit.sdc within the specified sdc_dir.

	includes_dir: Directory path to benchmark _include_ files

Absolute path or relative to $VTR_ROOT/vtr_flow/.

Note: Multiple includes_dir are NOT allowed in a task config file.

	include_list_add: A path to an include file, which is relative to includes_dir

Multiple include_list_add can be provided.

include files could act as the top module complementary, like definitions, memory initialization files, macros or sub-modules.

Note: Only include files, written in supported HDLs by each frontend, are synthesized. The others are only copied to the destination folder.

Note: include files will be shared among all benchmark circuits in the task config file.

	pass_requirements_file: Pass Requirements file.

Absolute path or relative to $VTR_ROOT/vtr_flow/parse/pass_requirements/ or $VTR_ROOT/vtr_flow/tasks/<task_name>/config/

Default: none

run_vtr_flow

This script runs the VTR flow for a single benchmark circuit and architecture file.

The script is located at:

$VTR_ROOT/vtr_flow/scripts/run_vtr_flow.py

Basic Usage

At a minimum run_vtr_flow.py requires two command-line arguments:

run_vtr_flow.py <circuit_file> <architecture_file>

where:

	<circuit_file> is the circuit to be processed

	<architecture_file> is the target FPGA architecture

Note

The script will create a ./temp directory, unless otherwise specified with the -temp_dir option.
The circuit file and architecture file will be copied to the temporary directory.
All stages of the flow will be run within this directory.
Several intermediate files will be generated and deleted upon completion.
Users should ensure that no important files are kept in this directory as they may be deleted.

Output

The standard out of the script will produce a single line with the format:

<architecture>/<circuit_name>...<status>

If execution completed successfully the status will be ‘OK’. Otherwise, the status will indicate which stage of execution failed.

The script will also produce an output files (*.out) for each stage, containing the standout output of the executable(s).

Advanced Usage

Additional optional command arguments can also be passed to run_vtr_flow.py:

run_vtr_flow.py <circuit_file> <architecture_file> [<options>] [<vpr_options>]

where:

	<options> are additional arguments passed to run_vtr_flow.py (described below),

	<vpr_options> are any arguments not recognized by run_vtr_flow.py. These will be forwarded to VPR.

For example:

run_vtr_flow.py my_circuit.v my_arch.xml -track_memory_usage --pack --place

will run the VTR flow to map the circuit my_circuit.v onto the architecture my_arch.xml; the arguments --pack and --place will be passed to VPR (since they are unrecognized arguments to run_vtr_flow.py).
They will cause VPR to perform only packing and placement.

Using the Yosys conventional Verilog parser
./run_vtr_flow <path/to/Verilog/File> <path/to/arch/file>

Using the Yosys-SystemVerilog plugin if installed, otherwise the Yosys conventional Verilog parser
./run_vtr_flow <path/to/SystemVerilog/File> <path/to/arch/file> -parser system-verilog

Running the VTR flow with the default configuration using the Yosys standalone front-end.
The parser for these runs is considered the Yosys conventional Verilog/SystemVerilog parser (i.e., read_verilog -sv), as the parser is not explicitly specified.

Using the Yosys-SystemVerilog plugin if installed, otherwise the Yosys conventional Verilog parser
./run_vtr_flow <path/to/SystemVerilog/File> <path/to/arch/file> -parser system-verilog

Using the Surelog plugin if installed, otherwise failure on the unsupported file type
./run_vtr_flow <path/to/UHDM/File> <path/to/arch/file> -parser surelog

Running the default VTR flow using the Parmys standalone front-end.
The Yosys HDL parser is considered as Yosys-SystemVerilog plugin (i.e., read_systemverilog) and Yosys UHDM plugin (i.e., read_uhdm), respectively.
Utilizing Yosys plugins requires passing the -DYOSYS_F4PGA_PLUGINS=ON compile flag to build and install the plugins for the Parmys front-end.

Using the Parmys (Partial Mapper for Yosys) plugin as partial mapper
./run_vtr_flow <path/to/Verilog/File> <path/to/arch/file>

Will run the VTR flow (default configuration) with Yosys frontend using Parmys plugin as partial mapper. To utilize the Parmys plugin, the -DYOSYS_PARMYS_PLUGIN=ON compile flag should be passed while building the VTR project with Yosys as a frontend.

Detailed Command-line Options

Note

Any options not recognized by this script is forwarded to VPR.

	
-starting_stage <stage>

	Start the VTR flow at the specified stage.

Accepted values:

	odin

	parmys

	abc

	scripts

	vpr

Default: parmys

	
-ending_stage <stage>

	End the VTR flow at the specified stage.

Accepted values:

	odin

	parmys

	abc

	scripts

	vpr

Default: vpr

	
-power

	Enables power estimation.

See Power Estimation

	
-cmos_tech <file>

	CMOS technology XML file.

See Technology Properties

	
-delete_intermediate_files

	Delete intermediate files (i.e. .dot, .xml, .rc, etc)

	
-delete_result_files

	Delete result files (i.e. VPR’s .net, .place, .route outputs)

	
-track_memory_usage

	Record peak memory usage and additional statistics for each stage.

Note

Requires /usr/bin/time -v command.
Some operating systems do not report peak memory.

Default: off

	
-limit_memory_usage

	Kill benchmark if it is taking up too much memory to avoid slow disk swaps.

Note

Requires ulimit -Sv command.

Default: off

	
-timeout <float>

	Maximum amount of time to spend on a single stage of a task in seconds.

Default: 14 days

	
-temp_dir <path>

	Temporary directory used for execution and intermediate files.
The script will automatically create this directory if necessary.

Default: ./temp

	
-valgrind

	Run the flow with valgrind while using the following valgrind
options:

	–leak-check=full

	–errors-for-leak-kinds=none

	–error-exitcode=1

	–track-origins=yes

	
-min_hard_mult_size <int>

	Tells Parmys/ODIN II the minimum multiplier size that should be implemented
using hard multiplier (if available). Smaller multipliers will be
implemented using soft logic.

Default: 3

	
-min_hard_adder_size <int>

	Tells Parmys/ODIN II the minimum adder size that should be implemented
using hard adders (if available). Smaller adders will be
implemented using soft logic.

Default: 1

	
-adder_cin_global

	Tells Parmys/ODIN II to connect the first cin in an adder/subtractor chain
to a global gnd/vdd net. Instead of creating a dummy adder to generate
the input signal of the first cin port of the chain.

	
-odin_xml <path_to_custom_xml>

	Tells VTR flow to use a custom ODIN II configuration value. The default
behavior is to use the vtr_flow/misc/basic_odin_config_split.xml.
Instead, an alternative config file might be supplied; compare the
default and vtr_flow/misc/custom_odin_config_no_mults.xml for usage
scenarios. This option is needed for running the entire VTR flow with
additional parameters for ODIN II that are provided from within the
.xml file.

	
-use_odin_simulation

	Tells ODIN II to run simulation.

	
-min_hard_mult_size <min_hard_mult_size>

	Tells Parmys/ODIN II the minimum multiplier size (in bits) to be implemented using hard multiplier.

Default: 3

	
-min_hard_adder_size <MIN_HARD_ADDER_SIZE>

	Tells Parmys/ODIN II the minimum adder size (in bits) that should be implemented using hard adder.

Default: 1

	
-top_module <TOP_MODULE>

	Specifies the name of the module in the design that should be considered as top

	
-yosys_script <YOSYS_SCRIPT>

	Supplies Parmys(Yosys) with a .ys script file (similar to Tcl script), including the synthesis steps.

Default: None

	
-parser <PARSER>

	Specify a parser for the Yosys synthesizer [default (Verilog-2005), surelog (UHDM), system-verilog].
The script uses the default conventional Verilog parser if this argument is not used.

Default: default

Note

Universal Hardware Data Model (UHDM) is a complete modeling of the IEEE SystemVerilog Object Model with VPI Interface, Elaborator, Serialization, Visitor and Listener.
UHDM is used as a compiled interchange format in between SystemVerilog tools. Typical inputs to the UHDM flow are files with .v or .sv extensions.
The system-verilog parser, which represents the read_systemverilog command, reads SystemVerilog files directly in Yosys.
It executes Surelog with provided filenames and converts them (in memory) into UHDM file. Then, this UHDM file is converted into Yosys AST. [Yosys-SystemVerilog] [https://github.com/antmicro/yosys-systemverilog#usage]
On the other hand, the surelog parser, which uses the read_uhdm Yosys command, walks the design tree and converts its nodes into Yosys AST nodes using Surelog. [UHDM-Yosys [https://github.com/chipsalliance/UHDM-integration-tests#uhdm-yosys], Surelog] [https://github.com/chipsalliance/Surelog#surelog]

Note

Parmys is a Yosys plugin which provides intelligent partial mapping features (inference, binding, and hard/soft logic trade-offs) from Odin-II for Yosys. For more information on available paramters see the Parmys [https://github.com/CAS-Atlantic/parmys-plugin.git] plugin page.

run_vtr_task

This script is used to execute one or more tasks (i.e. collections of benchmarks and architectures).

See also

See Tasks for creation and configuration of tasks.

This script runs the VTR flow for a single benchmark circuit and architecture file.

The script is located at:

$VTR_ROOT/vtr_flow/scripts/run_vtr_task.py

Basic Usage

Typical usage is:

run_vtr_task.py <task_name1> <task_name2> ...

Note

At least one task must be specified, either directly as a parameter or via the -l options.

Output

Each task will execute the script specified in the configuration file for every benchmark/circuit/option combination.
The standard output of the underlying script will be forwarded to the output of this script.

If golden results exist (see parse_vtr_task), they will be inspected for runtime and memory usage.

Detailed Command-line Options

	
-s <script_param> ...

	Treat the remaining command line options as parameters to forward to the underlying script (e.g. run_vtr_flow).

	
-j <N>

	Perform parallel execution using N threads.

Note

Only effective for -system local

Warning

Large benchmarks will use very large amounts of memory (several to 10s of gigabytes).
Because of this, parallel execution often saturates the physical memory, requiring the use of swap memory, which significantly slows execution.
Be sure you have allocated a sufficiently large swap memory or errors may result.

	
-l <task_list_file>

	A file containing a list of tasks to execute.

Each task name should be on a separate line, e.g.:

<task_name1>
<task_name2>
<task_name3>
...

	
-temp_dir <path>

	Alternate directory for files generated by a set of tasks.
The script will automatically create this directory if necessary.

Default: config/.. for each task being run

Specifies the parent directory for the output of this set of tasks, which will contain <task_name>/run<#> directories, as well as any generated parse results.

A task folder or list with a config directory must still be specified when invoking the script.

	
-system {local | scripts}

	Controls how the actions (e.g. invocations of run_vtr_flow) are called.

Default: local

	local: Runs the flow invocations on the local machine (potentially in parallel with the -j option).

Example:

#From $VTR_ROOT/vtr_flow/tasks

$../scripts/run_vtr_task.py regression_tests/vtr_reg_basic/basic_timing
regression_tests/vtr_reg_basic/basic_timing: k6_N10_mem32K_40nm.xml/ch_intrinsics.v/common OK (took 2.24 seconds)
regression_tests/vtr_reg_basic/basic_timing: k6_N10_mem32K_40nm.xml/diffeq1.v/common OK (took 10.94 seconds)

	scripts: Prints out all the generated script files (instead of calling them to run all the flow invocations).

Example:

#From $VTR_ROOT/vtr_flow/tasks

$../scripts/run_vtr_task.py regression_tests/vtr_reg_basic/basic_timing -system scripts
/project/trees/vtr/vtr_flow/tasks/regression_tests/vtr_reg_basic/basic_timing/run001/k6_N10_mem32K_40nm.xml/ch_intrinsics.v/common/vtr_flow.sh
/project/trees/vtr/vtr_flow/tasks/regression_tests/vtr_reg_basic/basic_timing/run001/k6_N10_mem32K_40nm.xml/diffeq1.v/common/vtr_flow.sh

Each generated script file (vtr_flow.sh) corresponds to a particular flow invocation generated by the task, and is located within its own directory.

This list of scripts can be used to run flow invocations on different computing infrastructures (e.g. a compute cluster).

Using the output of -system scripts to run a task

An example of using the output would be:

#From $VTR_ROOT/vtr_flow/tasks

$../scripts/run_vtr_task.py regression_tests/vtr_reg_basic/basic_timing -system scripts | parallel -j4 'cd $(dirname {}) && {}'
regression_tests/vtr_reg_basic/basic_timing: k6_N10_mem32K_40nm.xml/ch_intrinsics.v/common OK (took 2.11 seconds)
regression_tests/vtr_reg_basic/basic_timing: k6_N10_mem32K_40nm.xml/diffeq1.v/common OK (took 10.94 seconds)

where {} is a special variable interpretted by the parallel command to represent the input line (i.e. a script, see parallel’s documentation for details).
This will run the scripts generated by run_vtr_task.py in parallel (up to 4 at-a-time due to -j4).
Each script is invoked in the script’s containing directory (cd $(dirname {})), which mimics the behaviour of -system local -j4.

Note

While this example shows how the flow invocations could be run locally, similar techniques can be used to submit jobs to other compute infrastructures (e.g. a compute cluster)

Determining Resource Requirements

Often, when running in a cluster computing enviroment, it is useful to know what compute resources are required for each flow invocation.

Each generated vtr_flow.sh scripts contains the expected run-time and memory use of each flow invocation (derived from golden reference results).
These can be inspected to determine compute requirements:

$ grep VTR_RUNTIME_ESTIMATE_SECONDS /project/trees/vtr/vtr_flow/tasks/regression_tests/vtr_reg_basic/basic_timing/run001/k6_N10_mem32K_40nm.xml/ch_intrinsics.v/common/vtr_flow.sh
VTR_RUNTIME_ESTIMATE_SECONDS=2.96

$ grep VTR_MEMORY_ESTIMATE_BYTES /project/trees/vtr/vtr_flow/tasks/regression_tests/vtr_reg_basic/basic_timing/run001/k6_N10_mem32K_40nm.xml/ch_intrinsics.v/common/vtr_flow.sh
VTR_MEMORY_ESTIMATE_BYTES=63422464

Note

If the resource estimates are unkown they will be set to 0

parse_vtr_flow

This script parses statistics generated by a single execution of the VTR flow.

Note

If the user is using the Tasks framework, parse_vtr_task should be used.

The script is located at:

$VTR_ROOT/vtr_flow/scripts/python_libs/vtr/parse_vtr_flow.py

Usage

Typical usage is:

parse_vtr_flow.py <parse_path> <parse_config_file>

where:

	<parse_path> is the directory path that contains the files to be parsed (e.g. vpr.out, parmys.out, etc).

	<parse_config_file> is the path to the Parse Configuration file.

Output

The script will produce no standard output.
A single file named parse_results.txt will be produced in the <parse_path> folder.
The file is tab delimited and contains two lines.
The first line is a list of field names that were searched for, and the second line contains the associated values.

parse_vtr_task

This script is used to parse the output of one or more Tasks.
The values that will be parsed are specified using a Parse Configuration file, which is specified in the task configuration.

The script will always parse the results of the latest execution of the task.

The script is located at:

$VTR_ROOT/vtr_flow/scripts/python_libs/vtr/parse_vtr_task.py

Usage

Typical usage is:

parse_vtr_task.py <task_name1> <task_name2> ...

Note

At least one task must be specified, either directly as a parameter or through the -l option.

Output

By default this script produces no standard output.
A tab delimited file containing the parse results will be produced for each task.
The file will be located here:

$VTR_ROOT/vtr_flow/tasks/<task_name>/run<#>/parse_results.txt

If the -check_golden is used, the script will output one line for each task in the format:

<task_name>...<status>

where <status> will be [Pass], [Fail], or [Error].

Detailed Command-line Options

	
-l <task_list_file>

	A file containing a list of tasks to parse.
Each task name should be on a separate line.

	
-temp_dir <path>

	Alternate directory containing task results to parse (see run_vtr_task).

Default: config/.. for each task being parsed

Specifies the parent directory for the output of a set of tasks, which will contain <task_name>/run<#> directories, as well as any generated parse results.

A task folder or list with a config directory must still be specified when invoking the script.

	
-create_golden

	The results will be stored as golden results.
If previous golden results exist they will be overwritten.

The golden results are located here:

$VTR_ROOT/vtr_flow/tasks/<task_name>/config/golden_results.txt

	
-check_golden

	The results will be compared to the golden results using the Pass Requirements file specified in the task configuration.
A Pass or Fail will be output for each task (see below).
In order to compare against the golden results, they must already exist, and have the same architectures, circuits and parse fields, otherwise the script will report Error.

If the golden results are missing, or need to be updated, use the -create_golden option.

Parse Configuration

A parse configuration file defines a set of values that will be searched for within the specified files.

Format

The configuration file contains one line for each value to be searched for.
Each line contains a semicolon delimited tuple in the following format:

<field_name>;<file_to_search_within>;<regex>;<default_value>

	<field_name>: The name of the value to be searched for.

This name is used when generating the output files of parse_vtr_task and parse_vtr_flow.

	<file_to_search_within>: The name of the file that will be searched (vpr.out, parmys.out, etc.)

	<regex>: A perl regular expression used to find the desired value.

The regex must contain a single grouping () which will contain the desired value to be recorded.

	<default_value>: The default value for the given <field_name> if the <regex> does not match.

If no <default_value> is specified the value -1 is used.

Or an include directive to import parsing patterns from a separate file:

%include "<filepath>"

	<filepath> is a file containing additional parse specifications which will be included in the current file.

Comments can be specified with #. Anything following a # is ignored.

Example File

The following is an example parse configuration file:

vpr_status;output.txt;vpr_status=(.*)
vpr_seconds;output.txt;vpr_seconds=(\d+)
width;vpr.out;Best routing used a channel width factor of (\d+)
pack_time;vpr.out;Packing took (.*) seconds
place_time;vpr.out;Placement took (.*) seconds
route_time;vpr.out;Routing took (.*) seconds
num_pre_packed_nets;vpr.out;Total Nets: (\d+)
num_pre_packed_blocks;vpr.out;Total Blocks: (\d+)
num_post_packed_nets;vpr.out;Netlist num_nets:\s*(\d+)
num_clb;vpr.out;Netlist clb blocks:\s*(\d+)
num_io;vpr.out;Netlist inputs pins:\s*(\d+)
num_outputs;vpr.out;Netlist output pins:\s*(\d+)
num_lut0;vpr.out;(\d+) LUTs of size 0
num_lut1;vpr.out;(\d+) LUTs of size 1
num_lut2;vpr.out;(\d+) LUTs of size 2
num_lut3;vpr.out;(\d+) LUTs of size 3
num_lut4;vpr.out;(\d+) LUTs of size 4
num_lut5;vpr.out;(\d+) LUTs of size 5
num_lut6;vpr.out;(\d+) LUTs of size 6
unabsorb_ff;vpr.out;(\d+) FFs in input netlist not absorbable
num_memories;vpr.out;Netlist memory blocks:\s*(\d+)
num_mult;vpr.out;Netlist mult_36 blocks:\s*(\d+)
equiv;abc.out;Networks are (equivalent)
error;output.txt;error=(.*)

%include "my_other_metrics.txt" #Include metrics from the file 'my_other_metrics.txt'

Pass Requirements

The parse_vtr_task scripts allow you to compare an executed task to a golden reference result.
The comparison, which is performed when using the parse_vtr_task.py -check_golden option, which reports either Pass or Fail.
The requirements that must be met to qualify as a Pass are specified in the pass requirements file.

Task Configuration

Tasks can be configured to use a specific pass requirements file using the pass_requirements_file keyword in the Tasks configuration file.

File Location

All provided pass requirements files are located here:

$VTR_ROOT/vtr_flow/parse/pass_requirements

Users can also create their own pass requirement files.

File Format

Each line of the file indicates a single metric, data type and allowable values in the following format:

<metric>;<requirement>

	<metric>: The name of the metric.

	<requirement>: The metric’s pass requirement.

Valid requiremnt types are:

	Equal(): The metric value must exactly match the golden reference result.

	Range(<min_ratio>,<max_ratio>): The metric value (normalized to the golden result) must be between <min_ratio> and <max_ratio>.

	RangeAbs(<min_ratio>,<max_ratio>,<abs_threshold>): The metric value (normalized to the golden result) must be between <min_ratio> and <max_ratio>, or the metric’s absolute value must be below <abs_threshold>.

Or an include directive to import metrics from a separate file:

%include "<filepath>"

	<filepath>: a relative path to another pass requirements file, whose metric pass requirements will be added to the current file.

In order for a Pass to be reported, all requirements must be met.
For this reason, all of the specified metrics must be included in the parse results (see Parse Configuration).

Comments can be specified with #. Anything following a # is ignored.

Example File

vpr_status;Equal() #Pass if precisely equal
vpr_seconds;RangeAbs(0.80,1.40,2) #Pass if within -20%, or +40%, or absolute value less than 2
num_pre_packed_nets;Range(0.90,1.10) #Pass if withing +/-10%

%include "routing_metrics.txt" #Import all pass requirements from the file 'routing_metrics.txt'

VTR Flow Python library

The VTR flow can be imported and implemented as a python library. Below are the descriptions of the useful functions.

VTR flow

Parmys

ODIN II

ABC

ACE

VPR

FPGA Architecture Description

VTR uses an XML-based architecture description language to describe the targeted FPGA architecture.
This flexible description langauge allows the user to describe a large number of hypothetical and commercial-like FPGA architectures.

See the Architecture Modeling for an introduction to the architecture description langauge.
For a detailed reference on the supported options see the Architecture Reference.

	Architecture Reference
	Top Level Tags

	Recognized BLIF Models (<models>)

	Global FPGA Information

	FPGA Grid Layout

	FPGA Layer Information

	FPGA Device Information

	Switches

	Physical Tiles

	Complex Blocks

	NoC Description

	Wire Segments

	Clocks

	Power

	Direct Inter-block Connections

	Custom Switch Blocks

	Architecture metadata

	Example Architecture Specification

Architecture Reference

This section provides a detailed reference for the FPGA Architecture description used by VTR.
The Architecture description uses XML as its representation format.

As a convention, curly brackets { } represents an option with each option separated by |. For example, a={1 | 2 | open} means field a can take a value of 1, 2, or open.

Top Level Tags

The first tag in all architecture files is the <architecture> tag.
This tag contains all other tags in the architecture file.
The architecture tag contains the following tags:

	<models>

	<tiles>

	<layout>

	<device>

	<switchlist>

	<segmentlist>

	<directlist>

	<complexblocklist>

	<noc>

Recognized BLIF Models (<models>)

The <models> tag contains <model name="string" never_prune="string"> tags.
Each <model> tag describes the BLIF .subckt model names that are accepted by the FPGA architecture.
The name of the model must match the corresponding name of the BLIF model.

The never_prune flag is optional and can be either:

	false (default)

	true

Normally blocks with no output nets are pruned away by the netlist sweepers in vpr (removed from the netlist); this is the default behaviour. If never_prune = “true” is set on a model, then blocks that are instances of that model will not be swept away during netlist cleanup. This can be helpful for some special blocks that do have only input nets and are required to be placed on the device for some features to be active, so space on the chip is still reserved for them, despite them not driving any connection.
One example is the IDELAYCTRL of the Series7 devices, which takes as input a reference clock and internally controls and synchronizes all the IDELAYs in a specific clock region, with no output net necessary for it to function correctly.

Note

Standard blif structures (.names, .latch, .input, .output) are accepted by default, so these models should not be described in the <models> tag.

Each model tag must contain 2 tags: <input_ports> and <output_ports>.
Each of these contains <port> tags:

	
<port name="string" is_clock="{0 | 1} clock="string" combinational_sink_ports="string1 string2 ..."/>

	
	Required Attributes:

	
	name – The port name.

	Optional Attributes:

	
	is_clock – Identifies if the port as a clock port.

See also

The Primitive Timing Modelling Tutorial for usage of is_clock to model clock control blocks such as clock generators, clock buffers/gates and clock muxes.

Default: 0

	clock – Indicates the port is sequential and controlled by the specified clock (which must be another port on the model marked with is_clock=1). Default: port is treated as combinational (if unspecified)

	combinational_sink_ports – A space-separated list of output ports which are combinationally connected to the current input port. Default: No combinational connections (if unspecified)

Defines the port for a model.

An example models section containing a combinational primitive adder and a sequential primitive single_port_ram follows:

<models>
 <model name="single_port_ram">
 <input_ports>
 <port name="we" clock="clk" />
 <port name="addr" clock="clk" combinational_sink_ports="out"/>
 <port name="data" clock="clk" combinational_sink_ports="out"/>
 <port name="clk" is_clock="1"/>
 </input_ports>
 <output_ports>
 <port name="out" clock="clk"/>
 </output_ports>
 </model>

 <model name="adder">
 <input_ports>
 <port name="a" combinational_sink_ports="cout sumout"/>
 <port name="b" combinational_sink_ports="cout sumout"/>
 <port name="cin" combinational_sink_ports="cout sumout"/>
 </input_ports>
 <output_ports>
 <port name="cout"/>
 <port name="sumout"/>
 </output_ports>
 </model>
</models>

Note that for single_port_ram above, the ports we, addr, data, and out are sequential since they have a clock specified.
Additionally addr and data are shown to be combinationally connected to out; this corresponds to an internal timing path between the addr and data input registers, and the out output registers.

For the adder the input ports a, b and cin are each combinationally connected to the output ports cout and sumout (the adder is a purely combinational primitive).

See also

For more examples of primitive timing modeling specifications see the Primitive Block Timing Modeling Tutorial

Global FPGA Information

	
<tiles>content</tiles>

	Content inside this tag contains a group of <pb_type> tags that specify the types of functional blocks and their properties.

	
<layout/>

	Content inside this tag specifies device grid layout.

See also

FPGA Grid Layout

	
<layer die='int'>content</layer>

	Content inside this tag specifies the layout of a single (2D) die; using multiple layer tags one can describe multi-die FPGAs (e.g. 3D stacked FPGAs).

	
<device>content</device>

	Content inside this tag specifies device information.

See also

FPGA Device Information

	
<switchlist>content</switchlist>

	Content inside this tag contains a group of <switch> tags that specify the types of switches and their properties.

	
<segmentlist>content</segmentlist>

	Content inside this tag contains a group of <segment> tags that specify the types of wire segments and their properties.

	
<complexblocklist>content</complexblocklist>

	Content inside this tag contains a group of <pb_type> tags that specify the types of functional blocks and their properties.

	
<noc link_bandwidth="float" link_latency="float" router_latency="float" noc_router_tile_name="string">content</noc>

	Content inside this tag specifies the Network-on-Chip (NoC) architecture on the FPGA device and its properties.

FPGA Grid Layout

The valid tags within the <layout> tag are:

	
<auto_layout aspect_ratio="float">

	
	Optional Attributes:

	
	aspect_ratio – The device grid’s target aspect ratio ([image: width / height])

Default: 1.0

Defines a scalable device grid layout which can be automatically scaled to a desired size.

Note

At most one <auto_layout> can be specified.

	
<fixed_layout name="string" width="int" height="int">

	
	Required Attributes:

	
	name – The unique name identifying this device grid layout.

	width – The device grid width

	height – The device grid height

Defines a device grid layout with fixed dimensions.

Note

Multiple <fixed_layout> tags can be specified.

Each <auto_layout> or <fixed_layout> tag should contain a set of grid location tags.

FPGA Layer Information

The layer tag is an optional tag to specify multi-die FPGAs. If not specified, a single-die FPGA with a single die (with index 0) is assumed.

	
<layer die="int">

	
	Optional Attributes:

	
	die – Specifies the index of the die; index 0 is assumed to be at the bottom of a stack.

Default: 0

Note

If die number left unspecified, a single-die FPGA (die number = 0) is assumed.

<!-- Describe 3D FPGA using layer tag -->
<fixed_layout name="3D-FPGA" width="device_width" height="device_height">
 <!-- First die (base die) -->
 <layer die="0"/>
 <!-- Specifiy base die Grid layout (e.g., fill with Network-on-Chips) -->
 <fill type="NoC">
 </layer>
 <!-- Second die (upper die) -->
 <layer die="1">
 <!-- Specifiy upper die Grid layout (e.g., fill with logic blocks) -->
 <fill type="LAB">
 </layer>
</fixed_layout>

Note

Note that all dice have the same width and height. Since we can always fill unused parts of a die with EMPTY blocks this does not restrict us to have the same usable area on each die.

Grid Location Priorities

Each grid location specification has an associated numeric priority.
Larger priority location specifications override those with lower priority.

Note

If a grid block is partially overlapped by another block with higher priority the entire lower priority block is removed from the grid.

Empty Grid Locations

Empty grid locations can be specified using the special block type EMPTY.

Note

All grid locations default to EMPTY unless otherwise specified.

Grid Location Expressions

Some grid location tags have attributes (e.g. startx) which take an expression as their argument.
An expression can be an integer constant, or simple mathematical formula evaluated when constructing the device grid.

Supported operators include: +, -, *, /, along with (and) to override the default evaluation order.
Expressions may contain numeric constants (e.g. 7) and the following special variables:

	W: The width of the device

	H: The height of the device

	w: The width of the current block type

	h: The height of the current block type

Warning

All expressions are evaluated as integers, so operations such as division may have their result truncated.

As an example consider the expression W/2 - w/2.
For a device width of 10 and a block type of width 3, this would be evaluated as [image: \lfloor \frac{W}{2} \rfloor - \lfloor \frac{w}{2} \rfloor = \lfloor \frac{10}{2} \rfloor - \lfloor \frac{3}{2} \rfloor = 5 - 1 = 4].

Grid Location Tags

	
<fill type="string" priority="int"/>

	
	Required Attributes:

	
	type – The name of the top-level complex block type (i.e. <pb_type>) being specified.

	priority – The priority of this layout specification.
Tags with higher priority override those with lower priority.

Fills the device grid with the specified block type.

Example:

<!-- Fill the device with CLB blocks -->
<fill type="CLB" priority="1"/>

[image: ../_images/fill_fpga_grid.svg]
Fig. 12 <fill> CLB example

	
<perimeter type="string" priority="int"/>

	
	Required Attributes:

	
	type – The name of the top-level complex block type (i.e. <pb_type>) being specified.

	priority – The priority of this layout specification.
Tags with higher priority override those with lower priority.

Sets the perimeter of the device (i.e. edges) to the specified block type.

Note

The perimeter includes the corners

Example:

<!-- Create io blocks around the device perimeter -->
<perimeter type="io" priority="10"/>

[image: ../_images/perimeter_fpga_grid.svg]
Fig. 13 <perimeter> io example

	
<corners type="string" priority="int"/>

	
	Required Attributes:

	
	type – The name of the top-level complex block type (i.e. <pb_type>) being specified.

	priority – The priority of this layout specification.
Tags with higher priority override those with lower priority.

Sets the corners of the device to the specified block type.

Example:

<!-- Create PLL blocks at all corners -->
<corners type="PLL" priority="20"/>

[image: ../_images/corners_fpga_grid.svg]
Fig. 14 <corners> PLL example

	
<single type="string" priority="int" x="expr" y="expr"/>

	
	Required Attributes:

	
	type – The name of the top-level complex block type (i.e. <pb_type>) being specified.

	priority – The priority of this layout specification.
Tags with higher priority override those with lower priority.

	x – The horizontal position of the block type instance.

	y – The vertical position of the block type instance.

Specifies a single instance of the block type at a single grid location.

Example:

<!-- Create a single instance of a PCIE block (width 3, height 5)
 at location (1,1)-->
<single type="PCIE" x="1" y="1" priority="20"/>

[image: ../_images/single_fpga_grid.svg]
Fig. 15 <single> PCIE example

	
<col type="string" priority="int" startx="expr" repeatx="expr" starty="expr" incry="expr"/>

	
	Required Attributes:

	
	type – The name of the top-level complex block type (i.e. <pb_type>) being specified.

	priority – The priority of this layout specification.
Tags with higher priority override those with lower priority.

	startx – An expression specifying the horizontal starting position of the column.

	Optional Attributes:

	
	repeatx – An expression specifying the horizontal repeat factor of the column.

	starty – An expression specifying the vertical starting offset of the column.

Default: 0

	incry – An expression specifying the vertical increment between block instantiations within the region.

Default: h

Creates a column of the specified block type at startx.

If repeatx is specified the column will be repeated wherever [image: x = startx + k \cdot repeatx], is satisfied for any positive integer [image: k].

A non-zero starty is typically used if a <perimeter> tag is specified to adjust the starting position of blocks with height > 1.

Example:

<!-- Create a column of RAMs starting at column 2, and
 repeating every 3 columns -->
<col type="RAM" startx="2" repeatx="3" priority="3"/>

[image: ../_images/col_fpga_grid.svg]
Fig. 16 <col> RAM example

Example:

<!-- Create IO's around the device perimeter -->
<perimeter type="io" priority=10"/>

<!-- Create a column of RAMs starting at column 2, and
 repeating every 3 columns. Note that a vertical offset
 of 1 is needed to avoid overlapping the IOs-->
<col type="RAM" startx="2" repeatx="3" starty="1" priority="3"/>

[image: ../_images/col_perim_fpga_grid.svg]
Fig. 17 <col> RAM and <perimeter> io example

	
<row type="string" priority="int" starty="expr" repeaty="expr" startx="expr"/>

	
	Required Attributes:

	
	type – The name of the top-level complex block type (i.e. <pb_type>) being specified.

	priority – The priority of this layout specification.
Tags with higher priority override those with lower priority.

	starty – An expression specifying the vertical starting position of the row.

	Optional Attributes:

	
	repeaty – An expression specifying the vertical repeat factor of the row.

	startx – An expression specifying the horizontal starting offset of the row.

Default: 0

	incrx – An expression specifying the horizontal increment between block instantiations within the region.

Default: w

Creates a row of the specified block type at starty.

If repeaty is specified the column will be repeated wherever [image: y = starty + k \cdot repeaty], is satisfied for any positive integer [image: k].

A non-zero startx is typically used if a <perimeter> tag is specified to adjust the starting position of blocks with width > 1.

Example:

<!-- Create a row of DSPs (width 1, height 3) at
 row 1 and repeating every 7th row -->
<row type="DSP" starty="1" repeaty="7" priority="3"/>

[image: ../_images/row_fpga_grid.svg]
Fig. 18 <row> DSP example

	
<region type="string" priority="int" startx="expr" endx="expr repeatx="expr" incrx="expr" starty="expr" endy="expr" repeaty="expr" incry="expr"/>

	
	Required Attributes:

	
	type – The name of the top-level complex block type (i.e. <pb_type>) being specified.

	priority – The priority of this layout specification.
Tags with higher priority override those with lower priority.

	Optional Attributes:

	
	startx – An expression specifying the horizontal starting position of the region (inclusive).

Default: 0

	endx – An expression specifying the horizontal ending position of the region (inclusive).

Default: W - 1

	repeatx – An expression specifying the horizontal repeat factor of the column.

	incrx – An expression specifying the horizontal increment between block instantiations within the region.

Default: w

	starty – An expression specifying the vertical starting position of the region (inclusive).

Default: 0

	endy – An expression specifying the vertical ending position of the region (inclusive).

Default: H - 1

	repeaty – An expression specifying the vertical repeat factor of the column.

	incry – An expression specifying the vertical increment between block instantiations within the region.

Default: h

Fills the rectangular region defined by (startx, starty) and (endx, endy) with the specified block type.

Note

endx and endy are included in the region

If repeatx is specified the region will be repeated wherever [image: x = startx + k_1*repeatx], is satisified for any positive integer [image: k_1].

If repeaty is specified the region will be repeated wherever [image: y = starty + k_2*repeaty], is satisified for any positive integer [image: k_2].

Example:

<!-- Fill RAMs withing the rectangular region bounded by (1,1) and (5,4) -->
<region type="RAM" startx="1" endx="5" starty="1" endy="4" priority="4"/>

[image: ../_images/region_single_fpga_grid.svg]
Fig. 19 <region> RAM example

Example:

<!-- Create RAMs every 2nd column withing the rectangular region bounded
 by (1,1) and (5,4) -->
<region type="RAM" startx="1" endx="5" starty="1" endy="4" incrx="2" priority="4"/>

[image: ../_images/region_incr_fpga_grid.svg]
Fig. 20 <region> RAM increment example

Example:

<!-- Fill RAMs within a rectangular 2x4 region and repeat every 3 horizontal
 and 5 vertical units -->
<region type="RAM" startx="1" endx="2" starty="1" endy="4" repeatx="3" repeaty="5" priority="4"/>

[image: ../_images/region_repeat_fpga_grid.svg]
Fig. 21 <region> RAM repeat example

Example:

<!-- Create a 3x3 mesh of NoC routers (width 2, height 2) whose relative positions
 will scale with the device dimensions -->
<region type="NoC" startx="W/4 - w/2" starty="W/4 - w/2" incrx="W/4" incry="W/4" priority="3"/>

[image: ../_images/region_incr_mesh_fpga_grid.svg]
Fig. 22 <region> NoC mesh example

Grid Layout Example

<layout>
 <!-- Specifies an auto-scaling square FPGA floorplan -->
 <auto_layout aspect_ratio="1.0">
 <!-- Create I/Os around the device perimeter -->
 <perimeter type="io" priority=10"/>

 <!-- Nothing in the corners -->
 <corners type="EMPTY" priority="100"/>

 <!-- Create a column of RAMs starting at column 2, and
 repeating every 3 columns. Note that a vertical offset (starty)
 of 1 is needed to avoid overlapping the IOs-->
 <col type="RAM" startx="2" repeatx="3" starty="1" priority="3"/>

 <!-- Create a single PCIE block along the bottom, overriding
 I/O and RAM slots -->
 <single type="PCIE" x="3" y="0" priority="20"/>

 <!-- Create an additional row of I/Os just above the PCIE,
 which will not override RAMs -->
 <row type="io" starty="5" priority="2"/>

 <!-- Fill remaining with CLBs -->
 <fill type="CLB" priority="1"/>
 </auto_layout>
</layout>

[image: ../_images/fpga_grid_example.svg]
Fig. 23 Example FPGA grid

FPGA Device Information

The tags within the <device> tag are:

	
<sizing R_minW_nmos="float" R_minW_pmos="float"/>

	
	Required Attributes:

	
	R_minW_nmos – The resistance of minimum-width nmos transistor.
This data is used only by the area model built into VPR.

	R_minW_pmos – The resistance of minimum-width pmos transistor.
This data is used only by the area model built into VPR.

	Required:

	Yes

Specifies parameters used by the area model built into VPR.

	
<connection_block input_switch_name="string"/>

	

[image: ../_images/ipin_diagram.png]

Fig. 24 Input Pin Diagram.

	Required Attributes:

	
	switch_name – Specifies the name of the <switch> in the <switchlist> used to connect routing tracks to block input pins (i.e. the input connection block switch).

	Required:

	Yes

	
<area grid_logic_tile_area="float"/>

	
	Required:

	Yes

Specifies the default area used by each 1x1 grid logic tile (in MWTAs), excluding routing.

Used for an area estimate of the amount of area taken by all the functional blocks.

Note

This value can be overriden for specific <pb_type>``s with the ``area attribute.

	
<switch_block type="{wilton | subset | universal | custom}" fs="int"/>

	
	Required Attributes:

	
	type – The type of switch block to use.

	fs – The value of [image: F_s]

	Required:

	Yes

This parameter controls the pattern of switches used to connect the (inter-cluster) routing segments. Three fairly simple patterns can be specified with a single keyword each, or more complex custom patterns can be specified.

Non-Custom Switch Blocks:

When using bidirectional segments, all the switch blocks have [image: F_s] = 3 [BFRV92].
That is, whenever horizontal and vertical channels intersect, each wire segment can connect to three other wire segments.
The exact topology of which wire segment connects to which can be one of three choices.
The subset switch box is the planar or domain-based switch box used in the Xilinx 4000 FPGAs – a wire segment in track 0 can only connect to other wire segments in track 0 and so on.
The wilton switch box is described in [Wil97], while the universal switch box is described in [CWW96].
To see the topology of a switch box, simply hit the “Toggle RR” button when a completed routing is on screen in VPR.
In general the wilton switch box is the best of these three topologies and leads to the most routable FPGAs.

When using unidirectional segments, one can specify an [image: F_s] that is any multiple of 3.
We use a modified wilton switch block pattern regardless of the specified switch_block_type.
For all segments that start/end at that switch block, we follow the wilton switch block pattern.
For segments that pass through the switch block that can also turn there, we cannot use the wilton pattern because a unidirectional segment cannot be driven at an intermediate point, so we assign connections to starting segments following a round robin scheme (to balance mux size).

Note

The round robin scheme is not tileable.

Custom Switch Blocks:

Specifying custom allows custom switch blocks to be described under the <switchblocklist> XML node, the format for which is described in Custom Switch Blocks.
If the switch block is specified as custom, the fs field does not have to be specified, and will be ignored if present.

	
<chan_width_distr>content</chan_width_distr>

	Content inside this tag is only used when VPR is in global routing mode.
The contents of this tag are described in Global Routing Information.

	
<default_fc in_type="{frac|abs}" in_val="{int|float}" out_type="{frac|abs}" out_val="{int|float}"/>

	This defines the default Fc specification, if it is not specified within a <fc> tag inside a top-level complex block.
The attributes have the same meaning as the <fc> tag attributes.

Switches

The tags within the <switchlist> tag specifies the switches used to connect wires and pins together.

	
<switch type="{mux|tristate|pass_gate|short|buffer}" name="string" R="float" Cin="float" Cout="float" Cinternal="float" Tdel="float" buf_size="{auto|float}" mux_trans_size="float", power_buf_size="int"/>

	Describes a switch in the routing architecture.

Example:

<switch type="mux" name="my_awesome_mux" R="551" Cin=".77e-15" Cout="4e-15" Cinternal="5e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>

	Required Attributes:

	
	type – The type of switch:

	mux: An isolating, configurable multiplexer

	tristate: An isolating, configurable tristate-able buffer

	pass_gate: A non-isolating, configurable pass gate

	short: A non-isolating, non-configurable electrical short (e.g. between two segments).

	buffer: An isolating, non-configurable non-tristate-able buffer (e.g. in-line along a segment).

Isolation

Isolating switches include a buffer which partition their input and output into separate DC-connected sub-circuits.
This helps reduce RC wire delays.

Non-isolating switch do not isolate their input and output, which can increase RC wire delays.

Configurablity

Configurable switches can be turned on/off at configuration time.

Non-configurable switches can not be controlled at configuration time.
These are typically used to model non-optional connections such as electrical shorts and in-line buffers.

	name – A unique name identifying the switch

	R – Resistance of the switch.

	Cin – Input capacitance of the switch.

	Cout – Output capacitance of the switch.

	Optional Attributes:

	
	Cinternal – Since multiplexers and tristate buffers are modeled as a
parallel stream of pass transistors feeding into a buffer,
we would expect an additional “internal capacitance” to arise when the
pass transistor is enabled and the signal must propogate to
the buffer. See diagram of one stream below:

Pass Transistor
 |

 ----- Buffer
 | | |\
 ------ -------| \--------
 | | | / |
 ===== ===== |/ =====
 ===== ===== =====
 | | |
 Input C Internal C Output C

Note

Only specify a value for multiplexers and/or tristate switches.

	Tdel – Intrinsic delay through the switch.
If this switch was driven by a zero resistance source, and drove a zero capacitance load, its delay would be: [image: T_{del} + R \cdot C_{out}].

The ‘switch’ includes both the mux and buffer mux type switches.

Note

Required if no <Tdel> tags are specified

Note

A <switch>’s resistance (R) and output capacitance (Cout) have no effect on delay when used for the input connection block, since VPR does not model the resistance/capacitance of block internal wires.

	buf_size – Specifies the buffer size in minimum-width transistor area (:term`MWTA`) units.

If set to auto, sized automatically from the R value.
This allows you to use timing models without R’s and C’s and still be able to measure area.

Note

Required for all isolating switch types.

Default: auto

	mux_trans_size – Specifies the size (in minimum width transistors) of each transistor in the two-level mux used by mux type switches.

Note

Valid only for mux type switches.

	power_buf_size – Used for power estimation. The size is the drive strength of the buffer, relative to a minimum-sized inverter.

	
<Tdel num_inputs="int" delay="float"/>

	Instead of specifying a single Tdel value, a list of Tdel values may be specified for different values of switch fan-in.
Delay is linearly extrapolated/interpolated for any unspecified fanins based on the two closest fanins.

	Required Attributes:

	
	num_inputs – The number of switch inputs (fan-in)

	delay – The intrinsic switch delay when the switch topology has the specified number of switch inputs

Example:

<switch type="mux" name="my_mux" R="522" Cin="3.1e-15" Cout="3e-15" Cinternal="5e-15" mux_trans_size="1.7" buf_size="23">
 <Tdel num_inputs="12" delay="8.00e-11"/>
 <Tdel num_inputs="15" delay="8.4e-11"/>
 <Tdel num_inputs="20" delay="9.4e-11"/>
</switch>

Global Routing Information

If global routing is to be performed, channels in different directions and in different parts of the FPGA can be set to different relative widths.
This is specified in the content within the <chan_width_distr> tag.

Note

If detailed routing is to be performed, only uniform distributions may be used

	
<x distr="{gaussian|uniform|pulse|delta}" peak="float" width=" float" xpeak=" float" dc=" float"/>

	
	Required Attributes:

	
	distr – The channel width distribution function

	peak – The peak value of the distribution

	Optional Attributes:

	
	width – The width of the distribution. Required for pulse and gaussian.

	xpeak – Peak location horizontally. Required for pulse, gaussian and delta.

	dc – The DC level of the distribution. Required for pulse, gaussian and delta.

Sets the distribution of tracks for the x-directed channels – the channels that run horizontally.

Most values are from 0 to 1.

If uniform is specified, you simply specify one argument, peak.
This value (by convention between 0 and 1) sets the width of the x-directed core channels relative to the y-directed channels and the channels between the pads and core.
Fig. 25 should clarify the specification of uniform (dashed line) and pulse (solid line) channel widths.
The gaussian keyword takes the same four parameters as the pulse keyword, and they are all interpreted in exactly the same manner except that in the gaussian case width is the standard deviation of the function.

[image: ../_images/channel_distribution.png]

Fig. 25 Channel Distribution

The delta function is used to specify a channel width distribution in which all the channels have the same width except one.
The syntax is chan_width_x delta peak xpeak dc.
Peak is the extra width of the single wide channel.
Xpeak is between 0 and 1 and specifies the location within the FPGA of the extra-wide channel – it is the fractional distance across the FPGA at which this extra-wide channel lies.
Finally, dc specifies the width of all the other channels.
For example, the statement chan_width_x delta 3 0.5 1 specifies that the horizontal channel in the middle of the FPGA is four times as wide as the other channels.

Examples:

<x distr="uniform" peak="1"/>
<x distr="gaussian" width="0.5" peak="0.8" xpeak="0.6" dc="0.2"/>

	
<y distr="{gaussian|uniform|pulse|delta}" peak=" float" width=" float" xpeak=" float" dc=" float"/>

	Sets the distribution of tracks for the y-directed channels.

See also

<x distr>

Physical Tiles

The content within the <tiles> describes the physical tiles available in the FPGA.
Each tile type is specified with the <tile> tag withing the <tiles> tag.

Tile

	
<tile name="string" capacity="int" width="int" height="int" area="float"/>

	A tile refers to a placeable element within an FPGA architecture and describes its physical compositions on the grid.
The following attributes are applicable to each tile.
The only required one is the name of the tile.

Attributes:

	Required Attributes:

	
	name – The name of this tile.

The name must be unique with respect to any other sibling <tile> tag.

	Optional Attributes:

	
	width – The width of the block type in grid tiles

Default: 1

	height – The height of the block type in grid tiles

Default: 1

	area – The logic area (in MWTA) of the block type

Default: from the <area> tag

The following tags are common to all <tile> tags:

	
<sub_tile name"string" capacity="{int}">

	
See also

For a tutorial on describing the usage of sub tiles for heterogeneous tiles (tiles which support multiple instances of the same or different Complex Blocks) definition see Heterogeneous tiles tutorial.

Describes one or many sub tiles corresponding to the physical tile.
Each sub tile is identifies a set of one or more stack location on a specific x, y grid location.

Attributes:

	Required Attributes:

	
	name – The name of this tile.

The name must be unique with respect to any other sibling <tile> tag.

	Optional Attributes:

	
	capacity – The number of instances of this block type at each grid location.

Default: 1

For example:

<sub_tile name="IO" capacity="2"/>
 ...
</sub_tile>

specifies there are two instances of the block type IO at each of its grid locations.

Note

It is mandatory to have at least one sub tile definition for each physical tile.

	
<input name="string" num_pins="int" equivalent="{none|full}" is_non_clock_global="{true|false}"/>

	Defines an input port.
Multple input ports are described using multiple <input> tags.

	Required Attributes:

	
	name – Name of the input port.

	num_pins – Number of pins the input port has.

	Optional Attributes:

	
	equivalent – Describes if the pins of the port are logically equivalent.
Input logical equivalence means that the pin order can be swapped without changing functionality.
For example, an AND gate has logically equivalent inputs because you can swap the order of the inputs and it’s still correct; an adder, on the otherhand, is not logically equivalent because if you swap the MSB with the LSB, the results are completely wrong.
LUTs are also considered logically equivalent since the logic function (LUT mask) can be rotated to account for pin swapping.

	none: No input pins are logically equivalent.

Input pins can not be swapped by the router. (Generates a unique SINK rr-node for each block input port pin.)

	full: All input pins are considered logically equivalent (e.g. due to logical equivalance or a full-crossbar within the cluster).

All input pins can be swapped without limitation by the router. (Generates a single SINK rr-node shared by each input port pin.)

default: none

	is_non_clock_global –
Note

Applies only to top-level pb_type.

Describes if this input pin is a global signal that is not a clock.
Very useful for signals such as FPGA-wide asynchronous resets.
These signals have their own dedicated routing channels and so should not use the general interconnect fabric on the FPGA.

	
<output name="string" num_pins="int" equivalent="{none|full|instance}"/>

	Defines an output port.
Multple output ports are described using multiple <output> tags

	Required Attributes:

	
	name – Name of the output port.

	num_pins – Number of pins the output port has.

	Optional Attributes:

	
	equivalent – Describes if the pins of the output port are logically equivalent:

	none: No output pins are logically equivalent.

Output pins can not be swapped by the router. (Generates a unique SRC rr-node for each block output port pin.)

	full: All output pins are considered logically equivalent.

All output pins can be swapped without limitation by the router. For example, this option would be appropriate to model an output port which has a full crossbar between it and the logic within the block that drives it. (Generates a single SRC rr-node shared by each output port pin.)

	instance: Models that sub-instances within a block (e.g. LUTs/BLEs) can be swapped to achieve a limited form of output pin logical equivalence.

Like full, this generates a single SRC rr-node shared by each output port pin. However, each net originating from this source can use only one output pin from the equivalence group. This can be useful in modeling more complex forms of equivalence in which you can swap which BLE implements which function to gain access to different inputs.

Warning

When using instance equivalence you must be careful to ensure output swapping would not make the cluster internal routing (previously computed by the clusterer) illegal; the tool does not update the cluster internal routing due to output pin swapping.

Default: none

	
<clock name="string" num_pins="int" equivalent="{none|full}"/>

	Describes a clock port.
Multple clock ports are described using multiple <clock> tags.
See above descriptions on inputs

	
<equivalent_sites>

	
See also

For a step-by-step walkthrough on describing equivalent sites see Equivalent Sites tutorial.

Describes the Complex Blocks that can be placed within a tile.
Each physical tile can comprehend a number from 1 to N of possible Complex Blocks, or sites.
A site corresponds to a top-level Complex Block that must be placeable in at least 1 physical tile locations.

	
<site pb_type="string" pin_mapping="string"/>

	

	Required Attributes:

	
	pb_type – Name of the corresponding pb_type.

	Optional Attributes:

	
	pin_mapping – Specifies whether the pin mapping between physical tile and logical pb_type:

	direct: the pin mapping does not need to be specified as the tile pin definition is equal to the corresponding pb_type one;

	custom: the pin mapping is user-defined.

Default: direct

Example: Equivalent Sites

<equivalent_sites>
 <site pb_type="MLAB_SITE" pin_mapping="direct"/>
</equivalent_sites>

	
<direct from="string" to="string">

	Desctibes the mapping of a physical tile’s port on the logical block’s (pb_type) port.
direct is an option sub-tag of site.

Note

This tag is needed only if the pin_mapping of the site is defined as custom

	Attributes:
	
	from is relative to the physical tile pins

	to is relative to the logical block pins

<direct from="MLAB_TILE.CX" to="MLAB_SITE.BX"/>

	
<fc in_type="{frac|abs}" in_val="{int|float}" out_type="{frac|abs}" out_val="{int|float}">

	
	Required Attributes:

	
	in_type – Indicates how the [image: F_c] values for input pins should be interpreted.

frac: The fraction of tracks of each wire/segment type.

abs: The absolute number of tracks of each wire/segment type.

	in_val – Fraction or absolute number of tracks to which each input pin is connected.

	out_type – Indicates how the [image: F_c] values for output pins should be interpreted.

frac: The fraction of tracks of each wire/segment type.

abs: The absolute number of tracks of each wire/segment type.

	out_val – Fraction or absolute number of wires/segments to which each output pin connects.

Sets the number of tracks/wires to which each logic block pin connects in each channel bordering the pin.

The [image: F_c] value [BFRV92] is interpreted as applying to each wire/segment type individually (see example).

When generating the FPGA routing architecture VPR will try to make ‘good’ choices about how pins and wires interconnect; for more details on the criteria and methods used see [BR00].

Note

If <fc> is not specified for a complex block, the architecture’s <default_fc> is used.

Note

For unidirection routing architectures absolute [image: F_c] values must be a multiple of 2.

Example:

Consider a routing architecture with 200 length 4 (L4) wires and 50 length 16 (L16) wires per channel, and the following Fc specification:

<fc in_type="frac" in_val="0.1" out_type="abs" out_val="25">

The above specifies that each:

	input pin connects to 20 L4 tracks (10% of the 200 L4s) and 5 L16 tracks (10% of the 50 L16s), and

	output pin connects to 25 L4 tracks and 25 L16 tracks.

Overriding Values:

	
<fc_override fc_type="{frac|abs}" fc_val="{int|float}", port_name="{string}" segment_name="{string}">

	Allows [image: F_c] values to be overriden on a port or wire/segment type basis.

	Required Attributes:

	
	fc_type – Indicates how the override [image: F_c] value should be interpreted.

frac: The fraction of tracks of each wire/segment type.

abs: The absolute number of tracks of each wire/segment type.

	fc_val – Fraction or absolute number of tracks in a channel.

	Optional Attributes:

	
	port_name – The name of the port to which this override applies.
If left unspecified this override applies to all ports.

	segment_name – The name of the segment (defined under <segmentlist>) to which this override applies.
If left unspecified this override applies to all segments.

Note

At least one of port_name or segment_name must be specified.

Port Override Example: Carry Chains

If you have complex block pins that do not connect to general interconnect (eg. carry chains), you would use the <fc_override> tag, within the <fc> tag, to specify them:

<fc_override fc_type="frac" fc_val="0" port_name="cin"/>
<fc_override fc_type="frac" fc_val="0" port_name="cout"/>

Where the attribute port_name is the name of the pin (cin and cout in this example).

Segment Override Example:

It is also possible to specify per <segment> (i.e. routing wire) overrides:

<fc_override fc_type="frac" fc_val="0.1" segment_name="L4"/>

Where the above would cause all pins (both inputs and outputs) to use a fractional [image: F_c] of 0.1 when connecting to segments of type L4.

Combined Port and Segment Override Example:

The port_name and segment_name attributes can be used together.
For example:

<fc_override fc_type="frac" fc_val="0.1" port_name="my_input" segment_name="L4"/>
<fc_override fc_type="frac" fc_val="0.2" port_name="my_output" segment_name="L4"/>

specifies that port my_input use a fractional [image: F_c] of 0.1 when connecting to segments of type L4, while the port my_output uses a fractional [image: F_c] of 0.2 when connecting to segments of type L4.
All other port/segment combinations would use the default [image: F_c] values.

	
<pinlocations pattern="{spread|perimeter|custom}">

	
	Required Attributes:

	
	pattern –
	spread denotes that the pins are to be spread evenly on all sides of the complex block.

Note

Includes internal sides of blocks with width > 1 and/or height > 1.

	perimeter denotes that the pins are to be spread evenly on perimeter sides of the complex block.

Note

Excludes the internal sides of blocks with width > 1 and/or height > 1.

	spread_inputs_perimeter_outputs denotes that inputs pins are to be spread on all sides of the complex block, but output pins are to be spread only on perimeter sides of the block.

Note

This is useful for ensuring outputs do not connect to wires which fly-over a width > 1 and height > 1 block (e.g. if using short or buffer connections instead of a fully configurable switch block within the block).

	custom allows the architect to specify specifically where the pins are to be placed using <loc> tags.

Describes the locations where the input, output, and clock pins are distributed in a complex logic block.

	
<loc side="{left|right|bottom|top}" xoffset="int" yoffset="int">name_of_complex_logic_block.port_name[int:int] ... </loc>

	
Note

... represents repeat as needed. Do not put ... in the architecture file.

	Required Attributes:

	
	side – Specifies which of the four sides of a grid location the pins in the contents are located.

	Optional Attributes:

	
	xoffset – Specifies the horizontal offset (in grid units) from block origin (bottom left corner).
The offset value must be less than the width of the block.

Default: 0

	yoffset – Specifies the vertical offset (in grid units) from block origin (bottom left corner).
The offset value must be less than the height of the block.

Default: 0

Physical equivalence for a pin is specified by listing a pin more than once for different locations.
For example, a LUT whose output can exit from the top and bottom of a block will have its output pin specified twice: once for the top and once for the bottom.

Note

If the <pinlocations> tag is missing, a spread pattern is assumed.

	
<switchblock_locations pattern="{external_full_internal_straight|all|external|internal|none|custom}" internal_switch="string">

	Describes where global routing switchblocks are created in relation to the complex block.

Note

If the <switchblock_locations> tag is left unspecified the default pattern is assumed.

	Optional Attributes:

	
	pattern –
	external_full_internal_straight: creates full switchblocks outside and straight switchblocks inside the complex block

	all: creates switchblocks wherever routing channels cross

	external: creates switchblocks wherever routing channels cross outside the complex block

	internal: creates switchblocks wherever routing channels cross inside the complex block

	none: denotes that no switchblocks are created for the complex block

	custom: allows the architect to specify custom switchblock locations and types using <sb_loc> tags

Default: external_full_internal_straight

[image: ../_images/sb_locations.svg]
Fig. 26 Switchblock Location Patterns for a width = 2, height = 3 complex block

	Optional Attributes:

	
	internal_switch – The name of a switch (from <switchlist>) which should be used for internal switch blocks.

Default: The default switch for the wire <segment>

Note

This is typically used to specify that internal wire segments are electrically shorted together using a short type <switch>.

Example: Electrically Shorted Internal Straight Connections

In some architectures there are no switch blocks located ‘within’ a block, and the wires crossing over the block are instead electrcially shorted to their ‘straight-through’ connections.

To model this we first define a special short type switch to electrically short such segments together:

<switchlist>
 <switch type="short" name="electrical_short" R="0" Cin="0" Tdel="0"/>
</switchlist>

Next, we use the pre-defined external_full_internal_straight pattern, and that such connections should use our electrical_short switch.

<switchblock_locations pattern="external_full_internal_straight" internal_switch="electrical_short"/>

	
<sb_loc type="{full|straight|turns|none}" xoffset="int" yoffset="int", switch_override="string">

	Specifies the type of switchblock to create at a particular location relative to a complex block for the custom switchblock location pattern.

	Required Attributes:

	
	type – Specifies the type of switchblock to be created at this location:

	full: denotes that a full switchblock will be created (i.e. both staight and turns)

	straight: denotes that a switchblock with only straight-through connections will be created (i.e. no turns)

	turns: denotes that a switchblock with only turning connections will be created (i.e. no straight)

	none: denotes that no switchblock will be created

Default: full

[image: ../_images/sb_types.svg]
Fig. 27 Switchblock Types

	Optional Attributes:

	
	xoffset – Specifies the horizontal offset (in grid units) from block origin (bottom left corner).
The offset value must be less than the width of the block.

Default: 0

	yoffset – Specifies the vertical offset (in grid units) from block origin (bottom left corner).
The offset value must be less than the height of the block.

Default: 0

	switch_override – The name of a switch (from <switchlist>) which should be used to construct the switch block at this location.

Default: The default switch for the wire <segment>

Note

The switchblock associated with a grid tile is located to the top-right of the grid tile

Example: Custom Description of Electrically Shorted Internal Straight Connections

If we assume a width=2, height=3 block (e.g. Fig. 26), we can use a custom pattern to specify an architecture equivalent to the ‘Electrically Shorted Internal Straight Connections’ example:

<switchblock_locations pattern="custom">
 <!-- Internal: using straight electrical shorts -->
 <sb_loc type="straight" xoffset="0" yoffset="0" switch_override="electrical_short">
 <sb_loc type="straight" xoffset="0" yoffset="1" switch_override="electrical_short">

 <!-- External: using default switches -->
 <sb_loc type="full" xoffset="0" yoffset="2"> <!-- Top edge -->
 <sb_loc type="full" xoffset="1" yoffset="0"> <!-- Right edge -->
 <sb_loc type="full" xoffset="1" yoffset="1"> <!-- Right edge -->
 <sb_loc type="full" xoffset="1" yoffset="2"> <!-- Top Right -->
<switchblock_locations/>

Complex Blocks

See also

For a step-by-step walkthrough on building a complex block see Architecture Modeling.

The content within the <complexblocklist> describes the complex blocks found within the FPGA.
Each type of complex block is specified with a top-level <pb_type> tag within the <complexblocklist> tag.

PB Type

	
<pb_type name="string" num_pb="int" blif_model="string"/>

	Specifies a top-level complex block, or a complex block’s internal components (sub-blocks).
Which attributes are applicable depends on where the <pb_type> tag falls within the hierarchy:

	Top Level: A child of the <complexblocklist>

	Intermediate: A child of another <pb_type>

	Primitive/Leaf: Contains no <pb_type> children

For example:

<complexblocklist>
 <pb_type name="CLB"/> <!-- Top level -->
 ...
 <pb_type name="ble"/> <!-- Intermediate -->
 ...
 <pb_type name="lut"/> <!-- Primitive -->
 ...
 </pb_type>
 <pb_type name="ff"/> <!-- Primitive -->
 ...
 </pb_type>
 ...
 </pb_type>
 ...
 </pb_type>
 ...
</complexblocklist>

General:

	Required Attributes:

	
	name – The name of this pb_type.

The name must be unique with respect to any parent, sibling, or child <pb_type>.

Top-level, Intermediate or Primitive:

	Optional Attributes:

	
	num_pb – The number of instances of this pb_type at the current hierarchy level.

Default: 1

For example:

<pb_type name="CLB">
 ...
 <pb_type name="ble" num_pb="10"/>
 ...
 </pb_type>
 ...
</pb_type>

would specify that the pb_type CLB contains 10 instances of the ble pb_type.

Primitive Only:

	Required Attributes:

	
	blif_model – Specifies the netlist primitive which can be implemented by this pb_type.

Accepted values:

	.input: A BLIF netlist input

	.output: A BLIF netlist output

	.names: A BLIF .names (LUT) primitive

	.latch: A BLIF .latch (DFF) primitive

	.subckt <custom_type>: A user defined black-box primitive.

For example:

<pb_type name="my_adder" blif_model=".subckt adder"/>
 ...
</pb_type>

would specify that the pb_type my_adder can implement a black-box BLIF primitive named adder.

Note

The input/output/clock ports for primitive pb_types must match the ports specified in the <models> section.

	Optional Attributes:

	
	class – Specifies that this primitive is of a specialized type which should be treated specially.

See also

Classes for more details.

The following tags are common to all <pb_type> tags:

	
<input name="string" num_pins="int" equivalent="{none|full}" is_non_clock_global="{true|false}"/>

	Defines an input port.
Multple input ports are described using multiple <input> tags.

	Required Attributes:

	
	name – Name of the input port.

	num_pins – Number of pins the input port has.

	Optional Attributes:

	
	equivalent –
Note

Applies only to top-level pb_type.

Describes if the pins of the port are logically equivalent.
Input logical equivalence means that the pin order can be swapped without changing functionality.
For example, an AND gate has logically equivalent inputs because you can swap the order of the inputs and it’s still correct; an adder, on the otherhand, is not logically equivalent because if you swap the MSB with the LSB, the results are completely wrong.
LUTs are also considered logically equivalent since the logic function (LUT mask) can be rotated to account for pin swapping.

	none: No input pins are logically equivalent.

Input pins can not be swapped by the router. (Generates a unique SINK rr-node for each block input port pin.)

	full: All input pins are considered logically equivalent (e.g. due to logical equivalance or a full-crossbar within the cluster).

All input pins can be swapped without limitation by the router. (Generates a single SINK rr-node shared by each input port pin.)

default: none

	is_non_clock_global –
Note

Applies only to top-level pb_type.

Describes if this input pin is a global signal that is not a clock.
Very useful for signals such as FPGA-wide asynchronous resets.
These signals have their own dedicated routing channels and so should not use the general interconnect fabric on the FPGA.

	
<output name="string" num_pins="int" equivalent="{none|full|instance}"/>

	Defines an output port.
Multple output ports are described using multiple <output> tags

	Required Attributes:

	
	name – Name of the output port.

	num_pins – Number of pins the output port has.

	Optional Attributes:

	
	equivalent –
Note

Applies only to top-level pb_type.

Describes if the pins of the output port are logically equivalent:

	none: No output pins are logically equivalent.

Output pins can not be swapped by the router. (Generates a unique SRC rr-node for each block output port pin.)

	full: All output pins are considered logically equivalent.

All output pins can be swapped without limitation by the router. For example, this option would be appropriate to model an output port which has a full crossbar between it and the logic within the block that drives it. (Generates a single SRC rr-node shared by each output port pin.)

	instance: Models that sub-instances within a block (e.g. LUTs/BLEs) can be swapped to achieve a limited form of output pin logical equivalence.

Like full, this generates a single SRC rr-node shared by each output port pin. However, each net originating from this source can use only one output pin from the equivalence group. This can be useful in modeling more complex forms of equivalence in which you can swap which BLE implements which function to gain access to different inputs.

Warning

When using instance equivalence you must be careful to ensure output swapping would not make the cluster internal routing (previously computed by the clusterer) illegal; the tool does not update the cluster internal routing due to output pin swapping.

Default: none

	
<clock name="string" num_pins="int" equivalent="{none|full}"/>

	Describes a clock port.
Multple clock ports are described using multiple <clock> tags.
See above descriptions on inputs

	
<mode name="string" disable_packing="bool">

	
	Required Attributes:

	
	name – Name for this mode.
Must be unique compared to other modes.

Specifies a mode of operation for the <pb_type>.
Each child mode tag denotes a different mode of operation for the <pb_type>.
Each mode tag may contains other <pb_type> and <interconnect> tags.

Note

Modes within the same parent <pb_type> are mutually exclusive.

Note

If a <pb_type> has only one mode of operation the mode tag can be omitted.

	Optional Attributes:

	
	disable_packing – Specify if a mode is disabled or not for VPR packer.
When a mode is defined to be disabled for packing (disable_packing="true"), packer will not map any logic to the mode.
This optional syntax aims to help debugging of multi-mode <pb_type> so that users can spot bugs in their XML definition quickly.
By default, it is set to false.

Note

When a mode is specified to be disabled for packing, its child <pb_type> and the <mode> of child <pb_type> will be considered as disabled for packing automatically. There is no need to specify disable_packing for every <mode> in the tree of <pb_type>.

Warning

This is a power-user debugging option. See Multi-mode Logic Block Tutorial for a detailed how-to-use.

For example:

<!--A fracturable 6-input LUT-->
<pb_type name="lut">
 ...
 <mode name="lut6">
 <!--Can be used as a single 6-LUT-->
 <pb_type name="lut6" num_pb="1">
 ...
 </pb_type>
 ...
 </mode>
 ...
 <mode name="lut5x2">
 <!--Or as two 5-LUTs-->
 <pb_type name="lut5" num_pb="2">
 ...
 </pb_type>
 ...
 </mode>
</pb_type>

specifies the lut pb_type can be used as either a single 6-input LUT, or as two 5-input LUTs (but not both).

Interconnect

As mentioned earlier, the mode tag contains <pb_type> tags and an <interconnect> tag.
The following describes the tags that are accepted in the <interconnect> tag.

	
<complete name="string" input="string" output="string"/>

	
	Required Attributes:

	
	name – Identifier for the interconnect.

	input – Pins that are inputs to this interconnect.

	output – Pins that are outputs of this interconnect.

Describes a fully connected crossbar.
Any pin in the inputs can connect to any pin at the output.

Example:

<complete input="Top.in" output="Child.in"/>

[image: ../_images/complete_example.png]

Fig. 28 Complete interconnect example.

	
<direct name="string" input="string" output="string"/>

	
	Required Attributes:

	
	name – Identifier for the interconnect.

	input – Pins that are inputs to this interconnect.

	output – Pins that are outputs of this interconnect.

Describes a 1-to-1 mapping between input pins and output pins.

Example:

<direct input="Top.in[2:1]" output="Child[1].in"/>

[image: ../_images/direct_example.png]

Fig. 29 Direct interconnect example.

	
<mux name="string" input="string" output="string"/>

	
	Required Attributes:

	
	name – Identifier for the interconnect.

	input – Pins that are inputs to this interconnect. Different data lines are separated by a space.

	output – Pins that are outputs of this interconnect.

Describes a bus-based multiplexer.

Note

Buses are not yet supported so all muxes must use one bit wide data only!

Example:

<mux input="Top.A Top.B" output="Child.in"/>

[image: ../_images/mux_example.png]

Fig. 30 Mux interconnect example.

A <complete>, <direct>, or <mux> tag may take an additional, optional, tag called <pack_pattern> that is used to describe molecules.
A pack pattern is a power user feature directing that the CAD tool should group certain netlist atoms (eg. LUTs, FFs, carry chains) together during the CAD flow.
This allows the architect to help the CAD tool recognize structures that have limited flexibility so that netlist atoms that fit those structures be kept together as though they are one unit.
This tag impacts the CAD tool only, there is no architectural impact from defining molecules.

	
<pack_pattern name="string" in_port="string" out_port="string"/>

	
Warning

This is a power user option. Unless you know why you need it, you probably shouldn’t specify it.

	Required Attributes:

	
	name – The name of the pattern.

	in_port – The input pins of the edges for this pattern.

	out_port – Which output pins of the edges for this pattern.

This tag gives a hint to the CAD tool that certain architectural structures should stay together during packing.
The tag labels interconnect edges with a pack pattern name.
All primitives connected by the same pack pattern name becomes a single pack pattern.
Any group of atoms in the user netlist that matches a pack pattern are grouped together by VPR to form a molecule.
Molecules are kept together as one unit in VPR.
This is useful because it allows the architect to help the CAD tool assign atoms to complex logic blocks that have interconnect with very limited flexibility.
Examples of architectural structures where pack patterns are appropriate include: optionally registered inputs/outputs, carry chains, multiply-add blocks, etc.

There is a priority order when VPR groups molecules.
Pack patterns with more primitives take priority over pack patterns with less primitives.
In the event that the number of primitives is the same, the pack pattern with less inputs takes priority over pack patterns with more inputs.

Special Case:

To specify carry chains, we use a special case of a pack pattern.
If a pack pattern has exactly one connection to a logic block input pin and exactly one connection to a logic block output pin, then that pack pattern takes on special properties.
The prepacker will assume that this pack pattern represents a structure that spans multiple logic blocks using the logic block input/output pins as connection points.
For example, lets assume that a logic block has two, 1-bit adders with a carry chain that links adjacent logic blocks.
The architect would specify those two adders as a pack pattern with links to the logic block cin and cout pins.
Lets assume the netlist has a group of 1-bit adder atoms chained together to form a 5-bit adder.
VPR will break that 5-bit adder into 3 molecules: two 2-bit adders and one 1-bit adder connected in order by a the carry links.

Example:

Consider a classic basic logic element (BLE) that consists of a LUT with an optionally registered flip-flop.
If a LUT is followed by a flip-flop in the netlist, the architect would want the flip-flop to be packed with the LUT in the same BLE in VPR.
To give VPR a hint that these blocks should be connected together, the architect would label the interconnect connecting the LUT and flip-flop pair as a pack_pattern:

<pack_pattern name="ble" in_port="lut.out" out_port="ff.D"/>

[image: ../_images/pack_pattern_example.png]

Fig. 31 Pack Pattern Example.

Classes

Using these structures, we believe that one can describe any digital complex logic block.
However, we believe that certain kinds of logic structures are common enough in FPGAs that special shortcuts should be available to make their specification easier.
These logic structures are: flip-flops, LUTs, and memories.
These structures are described using a class=string attribute in the <pb_type> primitive.
The classes we offer are:

	
class="lut"

	Describes a K-input lookup table.

The unique characteristic of a lookup table is that all inputs to the lookup table are logically equivalent.
When this class is used, the input port must have a port_class="lut_in" attribute and the output port must have a port_class="lut_out" attribute.

	
class="flipflop"

	Describes a flipflop.

Input port must have a port_class="D" attribute added.
Output port must have a port_class="Q" attribute added.
Clock port must have a port_class="clock" attribute added.

	
class="memory"

	Describes a memory.

Memories are unique in that a single memory physical primitive can hold multiple, smaller, logical memories as long as:

	The address, clock, and control inputs are identical and

	There exists sufficient physical data pins to satisfy the netlist memories when the different netlist memories are merged together into one physical memory.

Different types of memories require different attributes.

Single Port Memories Require:

	An input port with port_class="address" attribute

	An input port with port_class="data_in" attribute

	An input port with port_class="write_en" attribute

	An output port with port_class="data_out" attribute

	A clock port with port_class="clock" attribute

Dual Port Memories Require:

	An input port with port_class="address1" attribute

	An input port with port_class="data_in1" attribute

	An input port with port_class="write_en1" attribute

	An input port with port_class="address2" attribute

	An input port with port_class="data_in2" attribute

	An input port with port_class="write_en2" attribute

	An output port with port_class="data_out1" attribute

	An output port with port_class="data_out2" attribute

	A clock port with port_class="clock" attribute

Timing

See also

For examples of primitive timing modeling specifications see the Primitive Block Timing Modeling Tutorial

Timing is specified through tags contained with in pb_type, complete, direct, or mux tags as follows:

	
<delay_constant max="float" min="float" in_port="string" out_port="string"/>

	
	Optional Attributes:

	
	max – The maximum delay value.

	min – The minimum delay value.

	Required Attributes:

	
	in_port – The input port name.

	out_port – The output port name.

Specifies a maximum and/or minimum delay from in_port to out_port.

	If in_port and out_port are non-sequential (i.e combinational) inputs specifies the combinational path delay between them.

	If in_port and out_port are sequential (i.e. have T_setup and/or T_clock_to_Q tags) specifies the combinational delay between the primitive’s input and/or output registers.

Note

At least one of the max or min attributes must be specified

Note

If only one of max or min are specified the unspecified value is implicitly set to the same value

	
<delay_matrix type="{max | min}" in_port="string" out_port="string"> matrix </delay>

	
	Required Attributes:

	
	type – Specifies the delay type.

	in_port – The input port name.

	out_port – The output port name.

	matrix – The delay matrix.

Describe a timing matrix for all edges going from in_port to out_port.
Number of rows of matrix should equal the number of inputs, number of columns should equal the number of outputs.

	If in_port and out_port are non-sequential (i.e combinational) inputs specifies the combinational path delay between them.

	If in_port and out_port are sequential (i.e. have T_setup and/or T_clock_to_Q tags) specifies the combinational delay between the primitive’s input and/or output registers.

Example:
The following defines a delay matrix for a 4-bit input port in, and 3-bit output port out:

<delay_matrix type="max" in_port="in" out_port="out">
 1.2e-10 1.4e-10 3.2e-10
 4.6e-10 1.9e-10 2.2e-10
 4.5e-10 6.7e-10 3.5e-10
 7.1e-10 2.9e-10 8.7e-10
</delay>

Note

To specify both max and min delays two <delay_matrix> should be used.

	
<T_setup value="float" port="string" clock="string"/>

	
	Required Attributes:

	
	value – The setup time value.

	port – The port name the setup constraint applies to.

	clock – The port name of the clock the setup constraint is specified relative to.

Specifies a port’s setup constraint.

	If port is an input specifies the external setup time of the primitive’s input register (i.e. for paths terminating at the input register).

	If port is an output specifies the internal setup time of the primitive’s output register (i.e. for paths terminating at the output register) .

Note

Applies only to primitive <pb_type> tags

	
<T_hold value="float" port="string" clock="string"/>

	
	Required Attributes:

	
	value – The hold time value.

	port – The port name the setup constraint applies to.

	clock – The port name of the clock the setup constraint is specified relative to.

Specifies a port’s hold constraint.

	If port is an input specifies the external hold time of the primitive’s input register (i.e. for paths terminating at the input register).

	If port is an output specifies the internal hold time of the primitive’s output register (i.e. for paths terminating at the output register) .

Note

Applies only to primitive <pb_type> tags

	
<T_clock_to_Q max="float" min="float" port="string" clock="string"/>

	
	Optional Attributes:

	
	max – The maximum clock-to-Q delay value.

	min – The minimum clock-to-Q delay value.

	Required Attributes:

	
	port – The port name the delay value applies to.

	clock – The port name of the clock the clock-to-Q delay is specified relative to.

Specifies a port’s clock-to-Q delay.

	If port is an input specifies the internal clock-to-Q delay of the primitive’s input register (i.e. for paths starting at the input register).

	If port is an output specifies the external clock-to-Q delay of the primitive’s output register (i.e. for paths starting at the output register) .

Note

At least one of the max or min attributes must be specified

Note

If only one of max or min are specified the unspecified value is implicitly set to the same value

Note

Applies only to primitive <pb_type> tags

Modeling Sequential Primitive Internal Timing Paths

See also

For examples of primitive timing modeling specifications see the Primitive Block Timing Modeling Tutorial

By default, if only <T_setup> and <T_clock_to_Q> are specified on a primitive pb_type no internal timing paths are modeled.
However, such paths can be modeled by using <delay_constant> and/or <delay_matrix> can be used in conjunction with <T_setup> and <T_clock_to_Q>.
This is useful for modeling the speed-limiting path of an FPGA hard block like a RAM or DSP.

As an example, consider a sequential black-box primitive named seq_foo which has an input port in, output port out, and clock clk:

<pb_type name="seq_foo" blif_model=".subckt seq_foo" num_pb="1">
 <input name="in" num_pins="4"/>
 <output name="out" num_pins="1"/>
 <clock name="clk" num_pins="1"/>

 <!-- external -->
 <T_setup value="80e-12" port="seq_foo.in" clock="clk"/>
 <T_clock_to_Q max="20e-12" port="seq_foo.out" clock="clk"/>

 <!-- internal -->
 <T_clock_to_Q max="10e-12" port="seq_foo.in" clock="clk"/>
 <delay_constant max="0.9e-9" in_port="seq_foo.in" out_port="seq_foo.out"/>
 <T_setup value="90e-12" port="seq_foo.out" clock="clk"/>
</pb_type>

To model an internal critical path delay, we specify the internal clock-to-Q delay of the input register (10ps), the internal combinational delay (0.9ns) and the output register’s setup time (90ps). The sum of these delays corresponds to a 1ns critical path delay.

Note

Primitive timing paths with only one stage of registers can be modeled by specifying <T_setup> and <T_clock_to_Q> on only one of the ports.

Power

See also

Power Estimation, for the complete list of options, their descriptions, and required sub-fields.

	
<power method="string">contents</power>

	
	Optional Attributes:

	
	method – Indicates the method of power estimation used for the given pb_type.

Must be one of:

	specify-size

	auto-size

	pin-toggle

	C-internal

	absolute

	ignore

	sum-of-children

Default: auto-size.

See also

Power Architecture Modelling for a detailed description of the various power estimation methods.

The contents of the tag can consist of the following tags:

	<dynamic_power>

	<static_power>

	<pin>

	
<dynamic_power power_per_instance="float" C_internal="float"/>

	
	Optional Attributes:

	
	power_per_instance – Absolute power in Watts.

	C_internal – Block capacitance in Farads.

	
<static_power power_per_instance="float"/>

	
	Optional Attributes:

	
	power_per_instance – Absolute power in Watts.

	
<port name="string" energy_per_toggle="float" scaled_by_static_prob="string" scaled_by_static_prob_n="string"/>

	
	Required Attributes:

	
	name – Name of the port.

	energy_per_toggle – Energy consumed by a toggle on the port specified in name.

	Optional Attributes:

	
	scaled_by_static_prob – Port name by which to scale energy_per_toggle based on its logic high probability.

	scaled_by_static_prob_n – Port name by which to scale energy_per_toggle based on its logic low probability.

NoC Description

The <noc> tag is an optional tag and its contents allows designers to describe a NoC on an FPGA device.
The <noc> tag is the top level tag for the NoC description and its attributes define the overall properties
of the NoC; refer below for its contents.

	
<noc link_bandwidth="float" link_latency="float" router_latency="float" noc_router_tile_name="string">

	
	Required Attributes:

	
	link_bandwidth – Specifies the maximum bandwidth in bits-per-second (bps) that a link in the NoC can support

	link_latency – Specifies the delay in seconds seen by a flit as it travels from one physical NoC router to another using a NoC link.

	router_latency – Specifies the un-loaded delays in seconds as it travels through a physical router.

	noc_router_tile_name – Specifies a string which represents the name used to identify a NoC router tile (physical hard block) in the
corresponding FPGA architecture. This information is needed to create a model of the NoC.

The <noc> tag contains a single <topology> tag which describes the topology of the NoC.

NoC topology

As mentioned above the <topology> tag can be used to specify the topology or how the routers in the NoC
are connected to each other. The <topology> tag consists of a group ``<router>``tags.

Below is an example of how the <topology> tag is used.

<topology>
 <!--A number of <router> tags go here-->
</topology>

The <router> tag and its contents are described below.

	
<router id="int" positionx="float" positiony="float" connections="int int int int ...">

	This tag represents a single physical NoC router on the FPGA device and specifies how it is connected within the NoC.

	Required Attributes:

	
	id – Specifies a user identification (ID) number which is associate to the physical
router that this tag is identifying. This ID is used to report errors and
warnings to the user.

	positionx – Specifies the horizontal position of the physical router block that this
tag is identifying. This position does not have to be exact, it can
be an approximate value.

	positiony – Specifies the vertical position of the physical router block that this
tag is identifying. This position does not have to be exact, it can
be an approximate value.

	connections – Specifies a list of numbers seperated by spaces which are the user IDs supplied to other
<router> tags. This describes how the current physical Noc router
that this tag is identifying is connected to the other physical NoC routers on the device.

Below is an example of the <router> tag which identifies a physical router located near (0,0) with ID 0. This router
is also connected to two other routers identified by IDs 1 and 2.

<router id="0" positionx="0" positiony="0" connections="1 2"/>

NoC Description Example

Below is an example which describes a NoC architecture which has 4 physical routers that are connected to each other to form a
2x2 mesh topology.

<!-- Description of a 2x2 mesh NoC-->
<noc link_bandwidth="1.2e9" router_latency="1e-9" link_latency="1e-9" noc_router_tile_name="noc_router_adapter">
 <topology>
 <router id="0" positionx="0" positiony="0" connections="1 2"/>
 <router id="1" positionx="5" positiony="0" connections="0 3"/>
 <router id="2" positionx="0" positiony="5" connections="0 3"/>
 <router id="3" positionx="5" positiony="5" connections="1 2"/>
 </topology>
</noc>

Wire Segments

The content within the <segmentlist> tag consists of a group of <segment> tags.
The <segment> tag and its contents are described below.

	
<segment axis="{x|y}" name="unique_name" length="int" type="{bidir|unidir}" freq="float" Rmetal="float" Cmetal="float">content</segment>

	
	Optional Attributes:

	
	axis – Specifies if the given segment applies to either x or y channels only. If this tag is not given, it is assumed that the given segment
description applies to both x-directed and y-directed channels.

Note

It is required that both x and y segment axis details are given or that at least one segment within segmentlist
is specified without the axis tag (i.e. at least one segment applies to both x-directed and y-directed
chanels).

	Required Attributes:

	
	name – A unique alphanumeric name to identify this segment type.

	length – Either the number of logic blocks spanned by each segment, or the keyword longline.
Longline means segments of this type span the entire FPGA array.

Note

longline is only supported on with bidir routing

	freq – The supply of routing tracks composed of this type of segment.
VPR automatically determines the percentage of tracks for each segment type by taking the frequency for the type specified and dividing with the sum of all frequencies.
It is recommended that the sum of all segment frequencies be in the range 1 to 100.

	Rmetal – Resistance per unit length (in terms of logic blocks) of this wiring track, in Ohms.
For example, a segment of length 5 with Rmetal = 10 Ohms / logic block would have an end-to-end resistance of 50 Ohms.

	Cmetal – Capacitance per unit length (in terms of logic blocks) of this wiring track, in Farads.
For example, a segment of length 5 with Cmetal = 2e-14 F / logic block would have a total metal capacitance of 10e-13F.

	directionality – This is either unidirectional or bidirectional and indicates whether a segment has multiple drive points (bidirectional), or a single driver at one end of the wire segment (unidirectional).
All segments must have the same directionality value.
See [LLTY04] for a description of unidirectional single-driver wire segments.

	content – The switch names and the depopulation pattern as described below.

[image: ../_images/sb_pattern.png]

Fig. 32 Switch block and connection block pattern example with four tracks per channel

	
<sb type="pattern">int list</sb>

	This tag describes the switch block depopulation (as illustrated in Fig. 32) for this particular wire segment.
For example, the first length 6 wire in the figure below has an sb pattern of 1 0 1 0 1 0 1.
The second wire has a pattern of 0 1 0 1 0 1 0.
A 1 indicates the existence of a switch block and a 0 indicates that there is no switch box at that point.
Note that there a 7 entries in the integer list for a length 6 wire.
For a length L wire there must be L+1 entries separated by spaces.

Note

Can not be specified for longline segments (which assume full switch block population)

	
<cb type="pattern">int list</cb>

	This tag describes the connection block depopulation (as illustrated by the circles in Fig. 32) for this particular wire segment.
For example, the first length 6 wire in the figure below has an sb pattern of 1 1 1 1 1 1.
The third wire has a pattern of 1 0 0 1 1 0.
A 1 indicates the existence of a connection block and a 0 indicates that there is no connection box at that point.
Note that there a 6 entries in the integer list for a length 6 wire.
For a length L wire there must be L entries separated by spaces.

Note

Can not be specified for longline segments (which assume full connection block population)

	
<mux name="string"/>

	
	Required Attributes:

	
	name – Name of the mux switch type used to drive this type of segment.

Note

For UNIDIRECTIONAL only.

Tag must be included and name must be the same as the name you give in <switch type="mux" name="...

	
<wire_switch name="string"/>

	
	Required Attributes:

	
	name – Name of the switch type used by other wires to drive this type of segment.

Note

For BIDIRECTIONAL only.

Tag must be included and the name must be the same as the name you give in <switch type="tristate|pass_gate" name="... for the switch which represents the wire switch in your architecture.

	
<opin_switch name="string"/>

	
Note

For BIDIRECTIONAL only.

	Required Attributes:

	
	name – Name of the switch type used by block pins to drive this type of segment.

Tag must be included and name must be the same as the name you give in <switch type="tristate|pass_gate" name="... for the switch which represents the output pin switch in your architecture.

Note

In unidirectional segment mode, there is only a single buffer on the segment.
Its type is specified by assigning the same switch index to both wire_switch and opin_switch.
VPR will error out if these two are not the same.

Note

The switch used in unidirectional segment mode must be buffered.

Clocks

There are two options for describing clocks.
One method allows you to specify clocking purely for power estimation, see Specifing Clocking Purely for Power Estimation.
The other method allows you to specify a clock architecture that is used as part of the routing resources, see Specifing a Clock Architecture.
Both methods should not be used in tandem.

Specifing Clocking Purely for Power Estimation

The clocking configuration is specified with <clock> tags within the <clocks> section.

Note

Currently the information in the <clocks> section is only used for power estimation.

See also

Power Estimation for more details.

	
<clock C_wire="float" C_wire_per_m="float" buffer_size={"float"|"auto"}/>

	
	Optional Attributes:

	
	C_wire – The absolute capacitance, in Farads, of the wire between each clock buffer.

	C_wire_per_m – The wire capacitance, in Farads per Meter.

	buffer_size – The size of each clock buffer.

Specifing a Clock Architecture

The element <clocknetworks> contains three sub-elements that collectively describe the clock architecture: the wiring parameters <metal_layers>, the clock distribution <clock_network>, and the clock connectivity <clock_routing>.

Clock Architecture Example

The following example shows how a rib-spine (row/column) style clock architecture can be defined.

<clocknetworks>
 <metal_layers >
 <metal_layer name="global_spine" Rmetal="50.42" Cmetal="20.7e-15"/>
 <metal_layer name="global_rib" Rmetal="50.42" Cmetal="20.7e-15"/>
 </metal_layers >

 <!-- Full Device: Center Spine -->
 <clock_network name="spine1" num_inst="2">
 <spine metal_layer="global_spine" x="W/2" starty="0" endy="H">
 <switch_point type="drive" name="drive_point" yoffset="H/2" buffer="drive_buff"/>
 <switch_point type="tap" name="taps" yoffset="0" yincr="1"/>
 </spine>
 </clock_network>

 <!-- Full Device: Each Grid Row -->
 <clock_network name="rib1" num_inst="2">
 <rib metal_layer="global_rib" y="0" startx="0" endx="W" repeatx="W" repeaty="1">
 <switch_point type="drive" name="drive_point" xoffset="W/2" buffer="drive_buff"/>
 <switch_point type="tap" name="taps" xoffset="0" xincr="1"/>
 </rib>
 </clock_network>

 <clock_routing>
 <!-- connections from inter-block routing to central spine -->
 <tap from="ROUTING" to="spine1.drive_point" locationx="W/2" locationy="H/2" switch="general_routing_switch" fc_val="1.0"/>

 <!-- connections from spine to rib -->
 <tap from="spine1.taps" to="rib1.drive_point" switch="general_routing_switch" fc_val="0.5"/>

 <!-- connections from rib to clock pins -->
 <tap from="rib1.taps" to="CLOCK" switch="ipin_cblock" fc_val="1.0"/>
 </clock_routing >
</clocknetworks >

[image: ../_images/vertical_distribution.svg]
Fig. 33 <spine> “spine1” vertical clock wire example.
The two spines (num_inst="2") are located horizontally at W/2 (in the middle of the device), and spans the entire height of the device (0..H).
The drive points are located at H/2, with tap points located at unit increments along their length.
Buffers of drive_buff type (would be defined in <switches>) are used to drive the two halves of the spines.

[image: ../_images/horizontal_distribution.svg]
Fig. 34 <rib> “rib1” horizontal clock wire example.
Each rib spans the full width of the device (0..W), with the drive points located at the mid-point (W/2), and tap points in unit increments along each rib.
There are two ribs at each vertical location (num_inst="2"), and pairs of ribs are stamped out at each row of the device (repeaty="1").

Clock Architecture Tags

The <metal_layers> element describes the per unit length electrical parameters, resistance (Rmetal) and capacitance (Cmetel), used to implement the clock distribution wires.
Wires are modeled soley based on Rmetal and Cmetal parameters which are derived from the physical implementation of the metal layer width and spacing.
There can be one or more wiring implementation options (metal layer, width and spacing) that are used by the later clock network specification and each is described in a separate <metal_layer> sub-element.
The syntax of the wiring electrical information is:

	
<metal_layer name="string" Rmetal="float" Cmetal="float"/>

	
	Required Attributes:

	
	name – A unique string for reference.

	Rmetal – The resistance in Ohms of the wire per unit block in the FPGA architecture; a unit block usually corresponds to a logic cluster.

	Req_pram Cmetal:

	The capacitance in Farads of the wire per unit block.

The <clock_network> element contains sub-elements that describe the clock distribution wires for the clock architecture.
There could be more than one <clock_network> element to describe separate types of distribution wires.
The high-level start tag for a clock network is as follows:

	
<clock_network name="string" num_inst="integer">

	
	Required Attributes:

	
	name – A unique string for reference.

	num_inst – which describes the number of parallel instances of the clock distribution types described in the <clock_network> sub-elements.

Note

Many paramters used in the following clock architecture tags take an espression (expr) as an argument simular to Grid Location Expressions.
However, only a subset of special variables are suported: W (device width) and H (device height).

The supported clock distribution types are <spine> and <rib>.
Spines are used to describe vertical clock distribution wires.
Whereas, Ribs is used to describe a horizontal clock distribution wire.
See Clock Architecture Example and accompanying figures Fig. 33 and Fig. 34 for example use of <spine> and <rib> parameters.

	
<spine metal_layer="string" x="expr" starty="expr" endy="expr" repeatx="expr" repeaty="expr"/>

	
	Required Attributes:

	
	metal_layer – A referenced metal layer that sets the unit resistance and capacitance of the distribution wire over the length of the wire.

	starty – The start y grid location, of the wire which runs parallel to the y-axis from starty and ends at endy, inclusive.
Value can be relative to the device size.

	endy – The end of y grid location of the wire. Value can be relative to the device size.

	x – The location of the spine with respect to the x-axis. Value can be relative to the device size.

	Optional Attributes:

	
	repeatx – The horizontal repeat factor of the spine along the device. Value can be relative to the device size.

	repeaty – The vertical repeat factor of the spine along the device. Value can be relative to the device size.

The provided example clock network (Clock Architecture Example) defines two spines, and neither repeats as each spans the entire height of the device and is locally at the horizontal midpoint of the device.

	
<rib metal_layer="string" y="expr" startx="expr" endx="expr" repeatx="expr" repeaty="expr"/>

	
	Required Attributes:

	
	metal_layer – A referenced metal layer that sets the unit resistance and capacitance of the distribution wire over the length of the wire.

	startx – The start x grid location, of the wire which runs parallel to the x-axis from startx and ends at endx, inclusive.
Value can be relative to the device size.

	endx – The end of x grid location of the wire. Value can be relative to the device size.

	y – The location of the rib with respect to the y-axis. Value can be relative to the device size.

	Optional Attributes:

	
	repeatx – The horizontal repeat factor of the rib along the device. Value can be relative to the device size.

	repeaty – The vertical repeat factor of the rib along the device. Value can be relative to the device size.

Along each spine and rib is a group of switch points.
Switch points are used to describe drive or tap locations along the clock distribution wire, and are enclosed in the relevant <rib> or <spine> tags:

	
<switch_point type="{drive | tap}" name="string" yoffset="expr" xoffset="expr" xinc="expr" yinc="expr" buffer="string">

	
	Required Attributes:

	
	type –
	drive – Drive points are where the clock distribution wire can be driven by a routing switch or buffer.

	tap – Tap points are where it can drive a routing switch or buffer to send a signal to a different clock_network or logicblock.

	buffer – (Required only for drive points) A reference to a pre-defined routing switch; specfied by <switch> tag, see Section Switches.
This switch will be used at the drive point.
The clock architecture generator uses two of these buffers to drive the two portions of this clock_network wire when it is split at the drive point, see Figures Fig. 34 and Fig. 33.

	Optional Attributes:

	
	xoffset – (Only for rib network) Offset from the startx of a rib network.

	yoffset – (Only for spine network) Offset from the starty of a spine network.

	xinc – (Only for rib tap points) Descibes the repeat factor of a series of evenly spaced tap points.

	yinc – (Only for spine tap points) Descibes the repeat factor of a series of evenly spaced tap points.

Note

A single <switch_point> specification may define a set of tap points (type="tap", with either xincr or yincr), or a single drive point (type="drive")

Lastly the <clock_routing> element consists of a group of tap statements which separately describe the connectivity between clock-related routing resources (pin or wire).
The tap element and its attribute sare as follows:

	
<tap from="string" to="string" locationx="expr" locationy="expr" switch="string" fc_val="float">

	
	Required Attributes:

	
	from – The set of routing resources to make connections from.
This can be either:

	clock_name.tap_points_name: A set of clock network tap-type switchpoints. The format is clock network name, followed by the tap points name and delineated by a period (e.g. spine1.taps), or

	ROUTING: a special literal which references a connection from general inter-block routing (at a location specified by locationx and locationy parameters).

Examples can be see in Clock Architecture Example.

	to – The set of routing resources to make connections to.
Can be a unique name or special literal:

	clock_name.drive_point_name: A clock network drive-type switchpoint. The format is clock network name, followed by the drive point name and delineated by a period (e.g. rib1.drive_point).

	CLOCK: a special literal which describes connections from clock network tap points that supply the clock to clock pins on blocks at the tap locations; these are clock inputs are already specified on blocks (top-level <pb_type>/<tile>) in the VTR architecture file.

Examples can be see in Clock Architecture Example.

	switch – The routing switch (defined in <switches>) used for this connection.

	fc_val – A decimal value between 0 and 1 representing the connection block flexibility between the connecting routing resources; a value of 0.5 for example means that only 50% of the switches necessary to connect all the matching tap and drive points would be implemented.

	Optional Attributes:

	
	locationx – (Required when using the special literal "ROUTING")
The x grid location of inter-block routing.

	locationy – (Required when using the special literal "ROUTING")
The y grid location of inter-block routing.

Note

A single <tap> statement may create multiple connections if either the of the from or to correspond to multiple routing resources.
In such cases the fc_val can control how many connections are created.

Note

locationx and locationy describe an (x,y) grid loction where all the wires passing this location source the source the clock network connection depending on the fc_val

For more information you may wish to consult [Abb19] which introduces the clock modeling language.

Power

Additional power options are specified within the <architecture> level <power> section.

See also

See Power Estimation for full documentation on how to perform power estimation.

	
<local_interconnect C_wire="float" factor="float"/>

	
	Required Attributes:

	
	C_wire – The local interconnect capacitance in Farads/Meter.

	Optional Attributes:

	
	factor – The local interconnect scaling factor. Default: 0.5.

	
<buffers logical_effort_factor="float"/>

	
	Required Attributes:

	
	logical_effort_factor – Default: 4.

Direct Inter-block Connections

The content within the <directlist> tag consists of a group of <direct> tags.
The <direct> tag and its contents are described below.

	
<direct name="string" from_pin="string" to_pin="string" x_offset="int" y_offset="int" z_offset="int" switch_name="string"/>

	
	Required Attributes:

	
	name – is a unique alphanumeric string to name the connection.

	from_pin – pin of complex block that drives the connection.

	to_pin – pin of complex block that receives the connection.

	x_offset – The x location of the receiving CLB relative to the driving CLB.

	y_offset – The y location of the receiving CLB relative to the driving CLB.

	z_offset – The z location of the receiving CLB relative to the driving CLB.

	Optional Attributes:

	
	switch_name – [Optional, defaults to delay-less switch if not specified] The name of the <switch> from <switchlist> to be used for this direct connection.

	from_side – The associated from_pin’s block size (must be one of left, right, top, bottom or left unspecified)

	to_side – The associated to_pin’s block size (must be one of left, right, top, bottom or left unspecified)

Describes a dedicated connection between two complex block pins that skips general interconnect.
This is useful for describing structures such as carry chains as well as adjacent neighbour connections.

The from_side and to_side options can usually be left unspecified.
However they can be used to explicitly control how directs to physically equivalent pins (which may appear on multiple sides) are handled.

Example:
Consider a carry chain where the cout of each CLB drives the cin of the CLB immediately below it, using the delay-less switch one would enter the following:

<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_offset="-1" z_offset="0"/>

Custom Switch Blocks

The content under the <switchblocklist> tag consists of one or more <switchblock> tags that are used to specify connections between different segment types. An example is shown below:

<switchblocklist>
 <switchblock name="my_switchblock" type="unidir">
 <switchblock_location type="EVERYWHERE"/>
 <switchfuncs>
 <func type="lr" formula="t"/>
 <func type="lt" formula="W-t"/>
 <func type="lb" formula="W+t-1"/>
 <func type="rt" formula="W+t-1"/>
 <func type="br" formula="W-t-2"/>
 <func type="bt" formula="t"/>
 <func type="rl" formula="t"/>
 <func type="tl" formula="W-t"/>
 <func type="bl" formula="W+t-1"/>
 <func type="tr" formula="W+t-1"/>
 <func type="rb" formula="W-t-2"/>
 <func type="tb" formula="t"/>
 </switchfuncs>
 <wireconn from_type="l4" to_type="l4" from_switchpoint="0,1,2,3" to_switchpoint="0"/>
 <wireconn from_type="l8_global" to_type="l8_global" from_switchpoint="0,4"
 to_switchpoint="0"/>
 <wireconn from_type="l8_global" to_type="l4" from_switchpoint="0,4"
 to_switchpoint="0"/>
 </switchblock>

 <switchblock name="another_switch_block" type="unidir">
 ... another switch block description ...
 </switchblock>
</switchblocklist>

This switch block format allows a user to specify mathematical permutation functions that describe how different types of segments (defined in the architecture file under the <segmentlist> tag) will connect to each other at different switch points.
The concept of a switch point is illustrated below for a length-4 unidirectional wire heading in the “left” direction.
The switch point at the start of the wire is given an index of 0 and is incremented by 1 at each subsequent switch block until the last switch point.
The last switch point has an index of 0 because it is shared between the end of the current segment and the start of the next one (similarly to how switch point 3 is shared by the two wire subsegments on each side).

[image: ../_images/switch_point_diagram.png]

Fig. 35 Switch point diagram.

A collection of wire types and switch points defines a set of wires which will be connected to another set of wires with the specified permutation functions (the ‘sets’ of wires are defined using the <wireconn> tags).
This format allows for an abstract but very flexible way of specifying different switch block patterns.
For additional discussion on interconnect modeling see [Pet16].
The full format is documented below.

Overall Notes:

	The <sb type="pattern"> tag on a wire segment (described under <segmentlist>) is applied as a mask on the patterns created by this switch block format; anywhere along a wire’s length where a switch block has not been requested (set to 0 in this tag), no switches will be added.

	You can specify multiple switchblock tags, and the switches described by the union of all those switch blocks will be created.

	
<switchblock name="string" type="string">

	
	Required Attributes:

	
	name – A unique alphanumeric string

	type – unidir or bidir.
A bidirectional switch block will implicitly mirror the specified permutation functions – e.g. if a permutation function of type lr (function used to connect wires from the left to the right side of a switch block) has been specified, a reverse permutation function of type rl (right-to-left) is automatically assumed.
A unidirectional switch block makes no such implicit assumptions.
The type of switch block must match the directionality of the segments defined under the <segmentlist> node.

<switchblock> is the top-level XML node used to describe connections between different segment types.

	
<switchblock_location type="string"/>

	
	Required Attributes:

	
	type – Can be one of the following strings:

	EVERYWHERE – at each switch block of the FPGA

	PERIMETER – at each perimeter switch block (x-directed and/or y-directed channel segments may terminate here)

	CORNER – only at the corner switch blocks (both x and y-directed channels terminate here)

	FRINGE – same as PERIMETER but excludes corners

	CORE – everywhere but the perimeter

Sets the location on the FPGA where the connections described by this switch block will be instantiated.

	
<switchfuncs>

	The switchfuncs XML node contains one or more entries that specify the permutation functions with which different switch block sides should be connected, as described below.

	
<func type="string" formula="string"/>

	
	Required Attributes:

	
	type – Specifies which switch block sides this function should connect.
With the switch block sides being left, top, right and bottom, the allowed entries are one of {lt, lr, lb, tr, tb, tl, rb, rl, rt, bl, bt, br} where lt means that the specified permutation formula will be used to connect the left-top sides of the switch block.

Note

In a bidirectional architecture the reverse connection is implicit.

	formula – Specifies the mathematical permutation function that determines the pattern with which the source/destination sets of wires (defined using the <wireconn> entries) at the two switch block sides will be connected.
For example, W-t specifies a connection where the t’th wire in the source set will connect to the W-t wire in the destination set where W is the number of wires in the destination set and the formula is implicitly treated as modulo W.

Special characters that can be used in a formula are:

	t – the index of a wire in the source set

	W – the number of wires in the destination set (which is not necessarily the total number of wires in the channel)

The operators that can be used in the formula are:

	Addition (+)

	Subtraction (-)

	Multiplication (*)

	Division (/)

	Brackets (and) are allowed and spaces are ignored.

Defined under the <switchfuncs> XML node, one or more <func...> entries is used to specify permutation functions that connect different sides of a switch block.

	
<wireconn num_conns="expr" from_type="string, string, string, ..." to_type="string, string, string, ..." from_switchpoint="int, int, int, ..." to_switchpoint="int, int, int, ..." from_order="{fixed | shuffled}" to_order="{fixed | shuffled}" switch_override="string"/>

	
	Required Attributes:

	
	num_conns – Specifies how many connections should be created between the from_type/from_switchpoint set and the to_type/to_switchpoint set.
The value of this parameter is an expression which is evaluated when the switch block is constructed.

The expression can be a single number or formula using the variables:

	from – The number of switchblock edges equal to the ‘from’ set size.

This ensures that each element in the ‘from’ set is connected to an element of the ‘to’ set.
However it may leave some elements of the ‘to’ set either multiply-connected or disconnected.

[image: ../_images/wireconn_num_conns_type_from.svg]

	to – The number of switchblock edges equal to the ‘to’ set size size.

This ensures that each element of the ‘to’ set is connected to precisely one element of the ‘from’ set.
However it may leave some elements of the ‘from’ set either multiply-connected or disconnected.

[image: ../_images/wireconn_num_conns_type_to.svg]

Examples:

	min(from,to) – Creates number of switchblock edges equal to the minimum of the ‘from’ and ‘to’ set sizes.

This ensures no element of the ‘from’ or ‘to’ sets is connected to multiple elements in the opposing set.
However it may leave some elements in the larger set disconnected.

[image: ../_images/wireconn_num_conns_type_min.svg]

	max(from,to) – Creates number of switchblock edges equal to the maximum of the ‘from’ and ‘to’ set sizes.

This ensures all elements of the ‘from’ or ‘to’ sets are connected to at least one element in the opposing set.
However some elements in the smaller set may be multiply-connected.

[image: ../_images/wireconn_num_conns_type_max.svg]

	3*to – Creates number of switchblock edges equal to three times the ‘to’ set sizes.

	from_type – A comma-separated list segment names that defines which segment types will be a source of a connection.
The segment names specified must match the names of the segments defined under the <segmentlist> XML node.
Required if no <from> or <to> nodes are specified within the <wireconn>.

	to_type – A comma-separated list of segment names that defines which segment types will be the destination of the connections specified.
Each segment name must match an entry in the <segmentlist> XML node.
Required if no <from> or <to> nodes are specified within the <wireconn>.

	from_switchpoint – A comma-separated list of integers that defines which switchpoints will be a source of a connection.
Required if no <from> or <to> nodes are specified within the <wireconn>.

	to_switchpoint – A comma-separated list of integers that defines which switchpoints will be the destination of the connections specified.
Required if no <from> or <to> nodes are specified within the <wireconn>.

Note

In a unidirectional architecture wires can only be driven at their start point so to_switchpoint="0" is the only legal specification in this case.

	Optional Attributes:

	
	from_order – Specifies the order in which ``from_switchpoint``s are selected when creating edges.

	fixed – Switchpoints are selected in the order specified

This is useful to specify a preference for connecting to specific switchpoints.
For example,

<wireconn num_conns="1*to" from_type="L16" from_switchpoint="0,12,8,4" from_order="fixed" to_type="L4" to_switchpoint="0"/>

specifies L4 wires should be connected first to L16 at switchpoint 0, then at switchpoints 12, 8, and 4.
This is primarily useful when we want to ensure that some switchpoints are ‘used-up’ first.

	shuffled – Switchpoints are selected in a (randomly) shuffled order

This is useful to ensure a diverse set of switchpoints are used.
For example,

<wireconn num_conns="1*to" from_type="L4" from_switchpoint="0,1,2,3" from_order="shuffled" to_type="L4" to_switchpoint="0"/>

specifies L4 wires should be connected to other L4 wires at any of switchpoints 0, 1, 2, or 3.
Shuffling the switchpoints is useful if one of the sets (e.g. from L4’s) is much larger than the other (e.g. to L4’s), and we wish to ensure a variety of switchpoints from the larger set are used.

Default: shuffled

	to_order – Specifies the order in which ``to_switchpoint``s are selected when creating edges.

Note

See from_switchpoint_order for value descritpions.

	switch_override – Specifies the name of a switch to be used to override the wire_switch of the segments in the to set.
Can be used to create switch patterns where different switches are used for different types of connections.
By using a zero-delay and zero-resistance switch one can also create T and L shaped wire segments.

Default: If no override is specified, the usual wire_switch that drives the to wire will be used.

	
<from type="string" switchpoint="int, int, int, ..."/>

	
	Required Attributes:

	
	type – The name of a segment specified in the <segmentlist>.

	switchpoint – A comma-separated list of integers that defines switchpoints.

Note

In a unidirectional architecture wires can only be driven at their start point so to_switchpoint="0" is the only legal specification in this case.

Specifies a subset of source wire switchpoints.

This tag can be specified multiple times.
The surrounding <wireconn>’s source set is the union of all contained <from> tags.

	
<to type="string" switchpoint="int, int, int, ..."/>

	Specifies a subset of destination wire switchpoints.

This tag can be specified multiple times.
The surrounding <wireconn>’s destination set is the union of all contained <to> tags.

See also

<from> for attribute descriptions.

As an example, consider the following <wireconn> specification:

<wireconn num_conns_type="to"/>
 <from type="L4" switchpoint="0,1,2,3"/>
 <from type="L16" switchpoint="0,4,8,12"/>
 <to type="L4" switchpoint="0/>
</wireconn>

This specifies that the ‘from’ set is the union of L4 switchpoints 0, 1, 2 and 3; and L16 switchpoints 0, 4, 8 and 12.
The ‘to’ set is all L4 switchpoint 0’s.
Note that since different switchpoints are selected from different segment types it is not possible to specify this without using <from> sub-tags.

Architecture metadata

Architecture metadata enables tagging of architecture or routing graph
information that exists outside of the normal VPR flow (e.g. pack, place,
route, etc). For example this could be used to enable bitstream generation by
tagging routing edges and pb_type features.

The metadata will not be used by the vpr executable, but can be leveraged by
new tools using the libvpr library. These new tools can access the metadata
on the various VPR internal data structures.

To enable tagging of architecture structures with metadata, the <metadata>
tag can be inserted under the following XML tags:

	<pb_type>

	Any tag under <interconnect> (<direct>, <mux>, etc).

	<mode>

	Any grid location type (<perimeter>, <fill>, <corners>, <single>, <col>, <row>, <region>)

	
<metadata>

	

Specifies the root of a metadata block. Can have 0 or more <meta> Children.

	
<meta name="string" >

	
	Required Attributes:

	
	name – Key name of this metadata value.

Specifies a value within a metadata block. The name is a key
for looking up the value contained within the <meta> tag. Keys can be
repeated, and will be stored in a vector in order of occurrence.

The value of the <meta> is the text in the block. Both the name and
<meta> value will be stored as a string. XML children are not supported
in the <meta> tag.

Example of a metadata block with 2 keys:

<metadata>
 <meta name="some_key">Some value</meta>
 <meta name="other key!">Other value!</meta>
</metadata>

Example Architecture Specification

The listing below is for an FPGA with I/O pads, soft logic blocks (called CLB), configurable memory hard blocks, and fracturable multiplier hard blocks.

Notice that for the CLB, all the inputs are logically equivalent (line 157), and all the outputs are logically equivalent (line 158).
This is usually true for cluster-based logic blocks, as the local routing within the block usually provides full (or near full) connectivity.

However, for other logic blocks, the inputs and all the outputs are not logically equivalent.
For example, consider the memory block (lines 311-316).
Swapping inputs going into the data input port changes the logic of the block because the data output order no longer matches the data input.

 1<!-- VPR Architecture Specification File -->
 2<!-- Quick XML Primer:
 3 * Data is hierarchical and composed of tags (similar to HTML)
 4 * All tags must be of the form <foo>content</foo> OR <foo /> with the latter form indicating no content. Don't forget the slash at the end.
 5 * Inside a start tag you may specify attributes in the form key="value". Refer to manual for the valid attributes for each element.
 6 * Comments may be included anywhere in the document except inside a tag where it's attribute list is defined.
 7 * Comments may contain any characters except two dashes.
 8-->
 9<!-- Architecture based off Stratix IV
 10 Use closest ifar architecture: K06 N10 45nm fc 0.15 area-delay optimized, scale to 40 nm using linear scaling
 11 n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml
 12 * because documentation sparser for soft logic (delays not in QUIP), harder to track down, not worth our time considering the level of accuracy is approximate
 13 * delays multiplied by 40/45 to normalize for process difference between stratix 4 and 45 nm technology (called full scaling)
 14
 15 Use delay numbers off Altera device handbook:
 16
 17 http://www.altera.com/literature/hb/stratix-iv/stx4_5v1.pdf
 18 http://www.altera.com/literature/hb/stratix-iv/stx4_siv51004.pdf
 19 http://www.altera.com/literature/hb/stratix-iv/stx4_siv51003.pdf
 20 multipliers at 600 MHz, no detail on 9x9 vs 36x36
 21 * datasheets unclear
 22 * claims 4 18x18 independant multipliers, following test indicates that this is not the case:
 23 created 4 18x18 mulitpliers, logiclocked them to a single DSP block, compile
 24 result - 2 18x18 multipliers got packed together, the other 2 got ejected out of the logiclock region without error
 25 conclusion - just take the 600 MHz as is, and Quartus II logiclock hasn't fixed the bug that I've seen it do to registers when I worked at Altera (ie. eject without warning)
 26 -->
 27<architecture>
 28 <!-- ODIN II specific config -->
 29 <models>
 30 <model name="multiply">
 31 <input_ports>
 32 <port name="a" combinational_sink_ports="out"/>
 33 <port name="b" combinational_sink_ports="out"/>
 34 </input_ports>
 35 <output_ports>
 36 <port name="out"/>
 37 </output_ports>
 38 </model>
 39 <model name="single_port_ram">
 40 <input_ports>
 41 <port name="we" clock="clk"/>
 42 <!-- control -->
 43 <port name="addr" clock="clk"/>
 44 <!-- address lines -->
 45 <port name="data" clock="clk"/>
 46 <!-- data lines can be broken down into smaller bit widths minimum size 1 -->
 47 <port name="clk" is_clock="1"/>
 48 <!-- memories are often clocked -->
 49 </input_ports>
 50 <output_ports>
 51 <port name="out" clock="clk"/>
 52 <!-- output can be broken down into smaller bit widths minimum size 1 -->
 53 </output_ports>
 54 </model>
 55 <model name="dual_port_ram">
 56 <input_ports>
 57 <port name="we1" clock="clk"/>
 58 <!-- write enable -->
 59 <port name="we2" clock="clk"/>
 60 <!-- write enable -->
 61 <port name="addr1" clock="clk"/>
 62 <!-- address lines -->
 63 <port name="addr2" clock="clk"/>
 64 <!-- address lines -->
 65 <port name="data1" clock="clk"/>
 66 <!-- data lines can be broken down into smaller bit widths minimum size 1 -->
 67 <port name="data2" clock="clk"/>
 68 <!-- data lines can be broken down into smaller bit widths minimum size 1 -->
 69 <port name="clk" is_clock="1"/>
 70 <!-- memories are often clocked -->
 71 </input_ports>
 72 <output_ports>
 73 <port name="out1" clock="clk"/>
 74 <!-- output can be broken down into smaller bit widths minimum size 1 -->
 75 <port name="out2" clock="clk"/>
 76 <!-- output can be broken down into smaller bit widths minimum size 1 -->
 77 </output_ports>
 78 </model>
 79 </models>
 80 <tiles>
 81 <tile name="io" capacity="8">
 82 <equivalent_sites>
 83 <site pb_type="io" pin_mapping="direct"/>
 84 </equivalent_sites>
 85 <input name="outpad" num_pins="1"/>
 86 <output name="inpad" num_pins="1"/>
 87 <clock name="clock" num_pins="1"/>
 88 <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
 89 <pinlocations pattern="custom">
 90 <loc side="left">io.outpad io.inpad io.clock</loc>
 91 <loc side="top">io.outpad io.inpad io.clock</loc>
 92 <loc side="right">io.outpad io.inpad io.clock</loc>
 93 <loc side="bottom">io.outpad io.inpad io.clock</loc>
 94 </pinlocations>
 95 </tile>
 96 <tile name="clb">
 97 <equivalent_sites>
 98 <site pb_type="clb" pin_mapping="direct"/>
 99 </equivalent_sites>
100 <input name="I" num_pins="33" equivalent="full"/>
101 <output name="O" num_pins="10" equivalent="instance"/>
102 <clock name="clk" num_pins="1"/>
103 <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
104 <pinlocations pattern="spread"/>
105 </tile>
106 <tile name="mult_36" height="4">
107 <equivalent_sites>
108 <site pb_type="mult_36" pin_mapping="direct"/>
109 </equivalent_sites>
110 <input name="a" num_pins="36"/>
111 <input name="b" num_pins="36"/>
112 <output name="out" num_pins="72"/>
113 <pinlocations pattern="spread"/>
114 </tile>
115 <tile name="memory" height="6">
116 <equivalent_sites>
117 <site pb_type="memory" pin_mapping="direct"/>
118 </equivalent_sites>
119 <input name="addr1" num_pins="17"/>
120 <input name="addr2" num_pins="17"/>
121 <input name="data" num_pins="72"/>
122 <input name="we1" num_pins="1"/>
123 <input name="we2" num_pins="1"/>
124 <output name="out" num_pins="72"/>
125 <clock name="clk" num_pins="1"/>
126 <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
127 <pinlocations pattern="spread"/>
128 </tile>
129 </tiles>
130 <!-- ODIN II specific config ends -->
131 <!-- Physical descriptions begin (area optimized for N8-K6-L4 -->
132 <layout>
133 <auto_layout aspect_ratio="1.0">
134 <!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
135 <perimeter type="io" priority="100"/>
136 <corners type="EMPTY" priority="101"/>
137 <!--Fill with 'clb'-->
138 <fill type="clb" priority="10"/>
139 <!--Column of 'mult_36' with 'EMPTY' blocks wherever a 'mult_36' does not fit. Vertical offset by 1 for perimeter.-->
140 <col type="mult_36" startx="4" starty="1" repeatx="8" priority="20"/>
141 <col type="EMPTY" startx="4" repeatx="8" starty="1" priority="19"/>
142 <!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical offset by 1 for perimeter.-->
143 <col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
144 <col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
145 </auto_layout>
146 </layout>
147 <device>
148 <sizing R_minW_nmos="6065.520020" R_minW_pmos="18138.500000"/>
149 <area grid_logic_tile_area="14813.392"/>
150 <!--area is for soft logic only-->
151 <chan_width_distr>
152 <x distr="uniform" peak="1.000000"/>
153 <y distr="uniform" peak="1.000000"/>
154 </chan_width_distr>
155 <switch_block type="wilton" fs="3"/>
156 <connection_block input_switch_name="ipin_cblock"/>
157 </device>
158 <switchlist>
159 <switch type="mux" name="0" R="0.000000" Cin="0.000000e+00" Cout="0.000000e+00" Tdel="6.837e-11" mux_trans_size="2.630740" buf_size="27.645901"/>
160 <!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer-->
161 <switch type="mux" name="ipin_cblock" R="1516.380005" Cout="0." Cin="0.000000e+00" Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
162 </switchlist>
163 <segmentlist>
164 <segment freq="1.000000" length="4" type="unidir" Rmetal="0.000000" Cmetal="0.000000e+00">
165 <mux name="0"/>
166 <sb type="pattern">1 1 1 1 1</sb>
167 <cb type="pattern">1 1 1 1</cb>
168 </segment>
169 </segmentlist>
170 <complexblocklist>
171 <!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that can be placed at the same (X,Y) location on the FPGA -->
172 <pb_type name="io">
173 <input name="outpad" num_pins="1"/>
174 <output name="inpad" num_pins="1"/>
175 <clock name="clock" num_pins="1"/>
176 <!-- IOs can operate as either inputs or outputs -->
177 <mode name="inpad">
178 <pb_type name="inpad" blif_model=".input" num_pb="1">
179 <output name="inpad" num_pins="1"/>
180 </pb_type>
181 <interconnect>
182 <direct name="inpad" input="inpad.inpad" output="io.inpad">
183 <delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
184 </direct>
185 </interconnect>
186 </mode>
187 <mode name="outpad">
188 <pb_type name="outpad" blif_model=".output" num_pb="1">
189 <input name="outpad" num_pins="1"/>
190 </pb_type>
191 <interconnect>
192 <direct name="outpad" input="io.outpad" output="outpad.outpad">
193 <delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/>
194 </direct>
195 </interconnect>
196 </mode>
197 <!-- IOs go on the periphery of the FPGA, for consistency,
198 make it physically equivalent on all sides so that only one definition of I/Os is needed.
199 If I do not make a physically equivalent definition, then I need to define 4 different I/Os, one for each side of the FPGA
200 -->
201 </pb_type>
202 <pb_type name="clb">
203 <input name="I" num_pins="33" equivalent="full"/><!-- NOTE: Logically Equivalent -->
204 <output name="O" num_pins="10" equivalent="instance"/><!-- NOTE: Logically Equivalent -->
205 <clock name="clk" num_pins="1"/>
206 <!-- Describe basic logic element -->
207 <pb_type name="ble" num_pb="10">
208 <input name="in" num_pins="6"/>
209 <output name="out" num_pins="1"/>
210 <clock name="clk" num_pins="1"/>
211 <pb_type name="soft_logic" num_pb="1">
212 <input name="in" num_pins="6"/>
213 <output name="out" num_pins="1"/>
214 <mode name="n1_lut6">
215 <pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
216 <input name="in" num_pins="6" port_class="lut_in"/>
217 <output name="out" num_pins="1" port_class="lut_out"/>
218 <!-- LUT timing using delay matrix -->
219 <delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
220 2.690e-10
221 2.690e-10
222 2.690e-10
223 2.690e-10
224 2.690e-10
225 2.690e-10
226 </delay_matrix>
227 </pb_type>
228 <interconnect>
229 <direct name="direct1" input="soft_logic.in[5:0]" output="lut6[0:0].in[5:0]"/>
230 <direct name="direct2" input="lut6[0:0].out" output="soft_logic.out[0:0]"/>
231 </interconnect>
232 </mode>
233 </pb_type>
234 <pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
235 <input name="D" num_pins="1" port_class="D"/>
236 <output name="Q" num_pins="1" port_class="Q"/>
237 <clock name="clk" num_pins="1" port_class="clock"/>
238 <T_setup value="2.448e-10" port="ff.D" clock="clk"/>
239 <T_clock_to_Q max="7.732e-11" port="ff.Q" clock="clk"/>
240 </pb_type>
241 <interconnect>
242 <!-- Two ff, make ff available to only corresponding luts -->
243 <direct name="direct1" input="ble.in" output="soft_logic.in"/>
244 <direct name="direct2" input="soft_logic.out" output="ff.D"/>
245 <direct name="direct4" input="ble.clk" output="ff.clk"/>
246 <mux name="mux1" input="ff.Q soft_logic.out" output="ble.out"/>
247 </interconnect>
248 </pb_type>
249 <interconnect>
250 <complete name="crossbar" input="clb.I ble[9:0].out" output="ble[9:0].in">
251 <delay_constant max="8.044000e-11" in_port="clb.I" out_port="ble[9:0].in"/>
252 <delay_constant max="7.354000e-11" in_port="ble[9:0].out" out_port="ble[9:0].in"/>
253 </complete>
254 <complete name="clks" input="clb.clk" output="ble[9:0].clk"/>
255 <direct name="clbouts" input="ble[9:0].out" output="clb.O"/>
256 </interconnect>
257 </pb_type>
258 <!-- This is the 36*36 uniform mult -->
259 <pb_type name="mult_36">
260 <input name="a" num_pins="36"/>
261 <input name="b" num_pins="36"/>
262 <output name="out" num_pins="72"/>
263 <mode name="two_divisible_mult_18x18">
264 <pb_type name="divisible_mult_18x18" num_pb="2">
265 <input name="a" num_pins="18"/>
266 <input name="b" num_pins="18"/>
267 <output name="out" num_pins="36"/>
268 <mode name="two_mult_9x9">
269 <pb_type name="mult_9x9_slice" num_pb="2">
270 <input name="A_cfg" num_pins="9"/>
271 <input name="B_cfg" num_pins="9"/>
272 <output name="OUT_cfg" num_pins="18"/>
273 <pb_type name="mult_9x9" blif_model=".subckt multiply" num_pb="1">
274 <input name="a" num_pins="9"/>
275 <input name="b" num_pins="9"/>
276 <output name="out" num_pins="18"/>
277 <delay_constant max="1.667e-9" in_port="mult_9x9.a" out_port="mult_9x9.out"/>
278 <delay_constant max="1.667e-9" in_port="mult_9x9.b" out_port="mult_9x9.out"/>
279 </pb_type>
280 <interconnect>
281 <direct name="a2a" input="mult_9x9_slice.A_cfg" output="mult_9x9.a"/>
282 <direct name="b2b" input="mult_9x9_slice.B_cfg" output="mult_9x9.b"/>
283 <direct name="out2out" input="mult_9x9.out" output="mult_9x9_slice.OUT_cfg"/>
284 </interconnect>
285 </pb_type>
286 <interconnect>
287 <direct name="a2a" input="divisible_mult_18x18.a" output="mult_9x9_slice[1:0].A_cfg"/>
288 <direct name="b2b" input="divisible_mult_18x18.b" output="mult_9x9_slice[1:0].B_cfg"/>
289 <direct name="out2out" input="mult_9x9_slice[1:0].OUT_cfg" output="divisible_mult_18x18.out"/>
290 </interconnect>
291 </mode>
292 <mode name="mult_18x18">
293 <pb_type name="mult_18x18_slice" num_pb="1">
294 <input name="A_cfg" num_pins="18"/>
295 <input name="B_cfg" num_pins="18"/>
296 <output name="OUT_cfg" num_pins="36"/>
297 <pb_type name="mult_18x18" blif_model=".subckt multiply" num_pb="1">
298 <input name="a" num_pins="18"/>
299 <input name="b" num_pins="18"/>
300 <output name="out" num_pins="36"/>
301 <delay_constant max="1.667e-9" in_port="mult_18x18.a" out_port="mult_18x18.out"/>
302 <delay_constant max="1.667e-9" in_port="mult_18x18.b" out_port="mult_18x18.out"/>
303 </pb_type>
304 <interconnect>
305 <direct name="a2a" input="mult_18x18_slice.A_cfg" output="mult_18x18.a"/>
306 <direct name="b2b" input="mult_18x18_slice.B_cfg" output="mult_18x18.b"/>
307 <direct name="out2out" input="mult_18x18.out" output="mult_18x18_slice.OUT_cfg"/>
308 </interconnect>
309 </pb_type>
310 <interconnect>
311 <direct name="a2a" input="divisible_mult_18x18.a" output="mult_18x18_slice.A_cfg"/>
312 <direct name="b2b" input="divisible_mult_18x18.b" output="mult_18x18_slice.B_cfg"/>
313 <direct name="out2out" input="mult_18x18_slice.OUT_cfg" output="divisible_mult_18x18.out"/>
314 </interconnect>
315 </mode>
316 </pb_type>
317 <interconnect>
318 <direct name="a2a" input="mult_36.a" output="divisible_mult_18x18[1:0].a"/>
319 <direct name="b2b" input="mult_36.b" output="divisible_mult_18x18[1:0].b"/>
320 <direct name="out2out" input="divisible_mult_18x18[1:0].out" output="mult_36.out"/>
321 </interconnect>
322 </mode>
323 <mode name="mult_36x36">
324 <pb_type name="mult_36x36_slice" num_pb="1">
325 <input name="A_cfg" num_pins="36"/>
326 <input name="B_cfg" num_pins="36"/>
327 <output name="OUT_cfg" num_pins="72"/>
328 <pb_type name="mult_36x36" blif_model=".subckt multiply" num_pb="1">
329 <input name="a" num_pins="36"/>
330 <input name="b" num_pins="36"/>
331 <output name="out" num_pins="72"/>
332 <delay_constant max="1.667e-9" in_port="mult_36x36.a" out_port="mult_36x36.out"/>
333 <delay_constant max="1.667e-9" in_port="mult_36x36.b" out_port="mult_36x36.out"/>
334 </pb_type>
335 <interconnect>
336 <direct name="a2a" input="mult_36x36_slice.A_cfg" output="mult_36x36.a"/>
337 <direct name="b2b" input="mult_36x36_slice.B_cfg" output="mult_36x36.b"/>
338 <direct name="out2out" input="mult_36x36.out" output="mult_36x36_slice.OUT_cfg"/>
339 </interconnect>
340 </pb_type>
341 <interconnect>
342 <direct name="a2a" input="mult_36.a" output="mult_36x36_slice.A_cfg"/>
343 <direct name="b2b" input="mult_36.b" output="mult_36x36_slice.B_cfg"/>
344 <direct name="out2out" input="mult_36x36_slice.OUT_cfg" output="mult_36.out"/>
345 </interconnect>
346 </mode>
347 <fc_in type="frac">0.15</fc_in>
348 <fc_out type="frac">0.10</fc_out>
349 </pb_type>
350 <!-- Memory based off Stratix IV 144K memory. Setup time set to match flip-flop setup time at 45 nm. Clock to q based off 144K max MHz -->
351 <pb_type name="memory">
352 <input name="addr1" num_pins="17"/>
353 <input name="addr2" num_pins="17"/>
354 <input name="data" num_pins="72"/>
355 <input name="we1" num_pins="1"/>
356 <input name="we2" num_pins="1"/>
357 <output name="out" num_pins="72"/>
358 <clock name="clk" num_pins="1"/>
359 <mode name="mem_2048x72_sp">
360 <pb_type name="mem_2048x72_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1">
361 <input name="addr" num_pins="11" port_class="address"/>
362 <input name="data" num_pins="72" port_class="data_in"/>
363 <input name="we" num_pins="1" port_class="write_en"/>
364 <output name="out" num_pins="72" port_class="data_out"/>
365 <clock name="clk" num_pins="1" port_class="clock"/>
366 <T_setup value="2.448e-10" port="mem_2048x72_sp.addr" clock="clk"/>
367 <T_setup value="2.448e-10" port="mem_2048x72_sp.data" clock="clk"/>
368 <T_setup value="2.448e-10" port="mem_2048x72_sp.we" clock="clk"/>
369 <T_clock_to_Q max="1.852e-9" port="mem_2048x72_sp.out" clock="clk"/>
370 </pb_type>
371 <interconnect>
372 <direct name="address1" input="memory.addr1[10:0]" output="mem_2048x72_sp.addr"/>
373 <direct name="data1" input="memory.data[71:0]" output="mem_2048x72_sp.data"/>
374 <direct name="writeen1" input="memory.we1" output="mem_2048x72_sp.we"/>
375 <direct name="dataout1" input="mem_2048x72_sp.out" output="memory.out[71:0]"/>
376 <direct name="clk" input="memory.clk" output="mem_2048x72_sp.clk"/>
377 </interconnect>
378 </mode>
379 <mode name="mem_4096x36_dp">
380 <pb_type name="mem_4096x36_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
381 <input name="addr1" num_pins="12" port_class="address1"/>
382 <input name="addr2" num_pins="12" port_class="address2"/>
383 <input name="data1" num_pins="36" port_class="data_in1"/>
384 <input name="data2" num_pins="36" port_class="data_in2"/>
385 <input name="we1" num_pins="1" port_class="write_en1"/>
386 <input name="we2" num_pins="1" port_class="write_en2"/>
387 <output name="out1" num_pins="36" port_class="data_out1"/>
388 <output name="out2" num_pins="36" port_class="data_out2"/>
389 <clock name="clk" num_pins="1" port_class="clock"/>
390 <T_setup value="2.448e-10" port="mem_4096x36_dp.addr1" clock="clk"/>
391 <T_setup value="2.448e-10" port="mem_4096x36_dp.data1" clock="clk"/>
392 <T_setup value="2.448e-10" port="mem_4096x36_dp.we1" clock="clk"/>
393 <T_setup value="2.448e-10" port="mem_4096x36_dp.addr2" clock="clk"/>
394 <T_setup value="2.448e-10" port="mem_4096x36_dp.data2" clock="clk"/>
395 <T_setup value="2.448e-10" port="mem_4096x36_dp.we2" clock="clk"/>
396 <T_clock_to_Q max="1.852e-9" port="mem_4096x36_dp.out1" clock="clk"/>
397 <T_clock_to_Q max="1.852e-9" port="mem_4096x36_dp.out2" clock="clk"/>
398 </pb_type>
399 <interconnect>
400 <direct name="address1" input="memory.addr1[11:0]" output="mem_4096x36_dp.addr1"/>
401 <direct name="address2" input="memory.addr2[11:0]" output="mem_4096x36_dp.addr2"/>
402 <direct name="data1" input="memory.data[35:0]" output="mem_4096x36_dp.data1"/>
403 <direct name="data2" input="memory.data[71:36]" output="mem_4096x36_dp.data2"/>
404 <direct name="writeen1" input="memory.we1" output="mem_4096x36_dp.we1"/>
405 <direct name="writeen2" input="memory.we2" output="mem_4096x36_dp.we2"/>
406 <direct name="dataout1" input="mem_4096x36_dp.out1" output="memory.out[35:0]"/>
407 <direct name="dataout2" input="mem_4096x36_dp.out2" output="memory.out[71:36]"/>
408 <direct name="clk" input="memory.clk" output="mem_4096x36_dp.clk"/>
409 </interconnect>
410 </mode>
411 <mode name="mem_4096x36_sp">
412 <pb_type name="mem_4096x36_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1">
413 <input name="addr" num_pins="12" port_class="address"/>
414 <input name="data" num_pins="36" port_class="data_in"/>
415 <input name="we" num_pins="1" port_class="write_en"/>
416 <output name="out" num_pins="36" port_class="data_out"/>
417 <clock name="clk" num_pins="1" port_class="clock"/>
418 <T_setup value="2.448e-10" port="mem_4096x36_sp.addr" clock="clk"/>
419 <T_setup value="2.448e-10" port="mem_4096x36_sp.data" clock="clk"/>
420 <T_setup value="2.448e-10" port="mem_4096x36_sp.we" clock="clk"/>
421 <T_clock_to_Q max="1.852e-9" port="mem_4096x36_sp.out" clock="clk"/>
422 </pb_type>
423 <interconnect>
424 <direct name="address1" input="memory.addr1[11:0]" output="mem_4096x36_sp.addr"/>
425 <direct name="data1" input="memory.data[35:0]" output="mem_4096x36_sp.data"/>
426 <direct name="writeen1" input="memory.we1" output="mem_4096x36_sp.we"/>
427 <direct name="dataout1" input="mem_4096x36_sp.out" output="memory.out[35:0]"/>
428 <direct name="clk" input="memory.clk" output="mem_4096x36_sp.clk"/>
429 </interconnect>
430 </mode>
431 <mode name="mem_9182x18_dp">
432 <pb_type name="mem_9182x18_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
433 <input name="addr1" num_pins="13" port_class="address1"/>
434 <input name="addr2" num_pins="13" port_class="address2"/>
435 <input name="data1" num_pins="18" port_class="data_in1"/>
436 <input name="data2" num_pins="18" port_class="data_in2"/>
437 <input name="we1" num_pins="1" port_class="write_en1"/>
438 <input name="we2" num_pins="1" port_class="write_en2"/>
439 <output name="out1" num_pins="18" port_class="data_out1"/>
440 <output name="out2" num_pins="18" port_class="data_out2"/>
441 <clock name="clk" num_pins="1" port_class="clock"/>
442 <T_setup value="2.448e-10" port="mem_9182x18_dp.addr1" clock="clk"/>
443 <T_setup value="2.448e-10" port="mem_9182x18_dp.data1" clock="clk"/>
444 <T_setup value="2.448e-10" port="mem_9182x18_dp.we1" clock="clk"/>
445 <T_setup value="2.448e-10" port="mem_9182x18_dp.addr2" clock="clk"/>
446 <T_setup value="2.448e-10" port="mem_9182x18_dp.data2" clock="clk"/>
447 <T_setup value="2.448e-10" port="mem_9182x18_dp.we2" clock="clk"/>
448 <T_clock_to_Q max="1.852e-9" port="mem_9182x18_dp.out1" clock="clk"/>
449 <T_clock_to_Q max="1.852e-9" port="mem_9182x18_dp.out2" clock="clk"/>
450 </pb_type>
451 <interconnect>
452 <direct name="address1" input="memory.addr1[12:0]" output="mem_9182x18_dp.addr1"/>
453 <direct name="address2" input="memory.addr2[12:0]" output="mem_9182x18_dp.addr2"/>
454 <direct name="data1" input="memory.data[17:0]" output="mem_9182x18_dp.data1"/>
455 <direct name="data2" input="memory.data[35:18]" output="mem_9182x18_dp.data2"/>
456 <direct name="writeen1" input="memory.we1" output="mem_9182x18_dp.we1"/>
457 <direct name="writeen2" input="memory.we2" output="mem_9182x18_dp.we2"/>
458 <direct name="dataout1" input="mem_9182x18_dp.out1" output="memory.out[17:0]"/>
459 <direct name="dataout2" input="mem_9182x18_dp.out2" output="memory.out[35:18]"/>
460 <direct name="clk" input="memory.clk" output="mem_9182x18_dp.clk"/>
461 </interconnect>
462 </mode>
463 <mode name="mem_9182x18_sp">
464 <pb_type name="mem_9182x18_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1">
465 <input name="addr" num_pins="13" port_class="address"/>
466 <input name="data" num_pins="18" port_class="data_in"/>
467 <input name="we" num_pins="1" port_class="write_en"/>
468 <output name="out" num_pins="18" port_class="data_out"/>
469 <clock name="clk" num_pins="1" port_class="clock"/>
470 <T_setup value="2.448e-10" port="mem_9182x18_sp.addr" clock="clk"/>
471 <T_setup value="2.448e-10" port="mem_9182x18_sp.data" clock="clk"/>
472 <T_setup value="2.448e-10" port="mem_9182x18_sp.we" clock="clk"/>
473 <T_clock_to_Q max="1.852e-9" port="mem_9182x18_sp.out" clock="clk"/>
474 </pb_type>
475 <interconnect>
476 <direct name="address1" input="memory.addr1[12:0]" output="mem_9182x18_sp.addr"/>
477 <direct name="data1" input="memory.data[17:0]" output="mem_9182x18_sp.data"/>
478 <direct name="writeen1" input="memory.we1" output="mem_9182x18_sp.we"/>
479 <direct name="dataout1" input="mem_9182x18_sp.out" output="memory.out[17:0]"/>
480 <direct name="clk" input="memory.clk" output="mem_9182x18_sp.clk"/>
481 </interconnect>
482 </mode>
483 <mode name="mem_18194x9_dp">
484 <pb_type name="mem_18194x9_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1">
485 <input name="addr1" num_pins="14" port_class="address1"/>
486 <input name="addr2" num_pins="14" port_class="address2"/>
487 <input name="data1" num_pins="9" port_class="data_in1"/>
488 <input name="data2" num_pins="9" port_class="data_in2"/>
489 <input name="we1" num_pins="1" port_class="write_en1"/>
490 <input name="we2" num_pins="1" port_class="write_en2"/>
491 <output name="out1" num_pins="9" port_class="data_out1"/>
492 <output name="out2" num_pins="9" port_class="data_out2"/>
493 <clock name="clk" num_pins="1" port_class="clock"/>
494 <T_setup value="2.448e-10" port="mem_18194x9_dp.addr1" clock="clk"/>
495 <T_setup value="2.448e-10" port="mem_18194x9_dp.data1" clock="clk"/>
496 <T_setup value="2.448e-10" port="mem_18194x9_dp.we1" clock="clk"/>
497 <T_setup value="2.448e-10" port="mem_18194x9_dp.addr2" clock="clk"/>
498 <T_setup value="2.448e-10" port="mem_18194x9_dp.data2" clock="clk"/>
499 <T_setup value="2.448e-10" port="mem_18194x9_dp.we2" clock="clk"/>
500 <T_clock_to_Q max="1.852e-9" port="mem_18194x9_dp.out1" clock="clk"/>
501 <T_clock_to_Q max="1.852e-9" port="mem_18194x9_dp.out2" clock="clk"/>
502 </pb_type>
503 <interconnect>
504 <direct name="address1" input="memory.addr1[13:0]" output="mem_18194x9_dp.addr1"/>
505 <direct name="address2" input="memory.addr2[13:0]" output="mem_18194x9_dp.addr2"/>
506 <direct name="data1" input="memory.data[8:0]" output="mem_18194x9_dp.data1"/>
507 <direct name="data2" input="memory.data[17:9]" output="mem_18194x9_dp.data2"/>
508 <direct name="writeen1" input="memory.we1" output="mem_18194x9_dp.we1"/>
509 <direct name="writeen2" input="memory.we2" output="mem_18194x9_dp.we2"/>
510 <direct name="dataout1" input="mem_18194x9_dp.out1" output="memory.out[8:0]"/>
511 <direct name="dataout2" input="mem_18194x9_dp.out2" output="memory.out[17:9]"/>
512 <direct name="clk" input="memory.clk" output="mem_18194x9_dp.clk"/>
513 </interconnect>
514 </mode>
515 <mode name="mem_18194x9_sp">
516 <pb_type name="mem_18194x9_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1">
517 <input name="addr" num_pins="14" port_class="address"/>
518 <input name="data" num_pins="9" port_class="data_in"/>
519 <input name="we" num_pins="1" port_class="write_en"/>
520 <output name="out" num_pins="9" port_class="data_out"/>
521 <clock name="clk" num_pins="1" port_class="clock"/>
522 <T_setup value="2.448e-10" port="mem_18194x9_sp.addr" clock="clk"/>
523 <T_setup value="2.448e-10" port="mem_18194x9_sp.data" clock="clk"/>
524 <T_setup value="2.448e-10" port="mem_18194x9_sp.we" clock="clk"/>
525 <T_clock_to_Q max="1.852e-9" port="mem_18194x9_sp.out" clock="clk"/>
526 </pb_type>
527 <interconnect>
528 <direct name="address1" input="memory.addr1[13:0]" output="mem_18194x9_sp.addr"/>
529 <direct name="data1" input="memory.data[8:0]" output="mem_18194x9_sp.data"/>
530 <direct name="writeen1" input="memory.we1" output="mem_18194x9_sp.we"/>
531 <direct name="dataout1" input="mem_18194x9_sp.out" output="memory.out[8:0]"/>
532 <direct name="clk" input="memory.clk" output="mem_18194x9_sp.clk"/>
533 </interconnect>
534 </mode>
535 </pb_type>
536 </complexblocklist>
537</architecture>

VPR

VPR (Versatile Place and Route) is an open source academic CAD tool designed for the exploration of new FPGA architectures and CAD algorithms, at the packing, placement and routing phases of the CAD flow [BR97b, LKJ+09].
Since its public introduction, VPR has been used extensively in many academic projects partly because it is robust, well documented, easy-to-use, and can flexibly target a range of architectures.

VPR takes, as input, a description of an FPGA architecture along with a technology-mapped user circuit.
It then performs packing, placement, and routing to map the circuit onto the FPGA.
The output of VPR includes the FPGA configuration needed to implement the circuit and statistics about the final mapped design (eg. critical path delay, area, etc).

	[image: Placement]

Placement (carry chains highlighted)

	[image: Critical Path]

Critical Path

	[image: Wiring]

Logical Connections

	[image: Routing Usage]

Routing Utilization

Motivation

The study of FPGA CAD and architecture can be a challenging process partly because of the difficulty in conducting high quality experiments.
A quality CAD/architecture experiment requires realistic benchmarks, accurate architectural models, and robust CAD tools that can appropriately map the benchmark to the particular architecture in question.
This is a lot of work.
Fortunately, this work can be made easier if open source tools are available as a starting point.

The purpose of VPR is to make the packing, placement, and routing stages of the FPGA CAD flow robust and flexible so that it is easier for researchers to investigate future FPGAs.

	Basic flow
	Packing

	Placement

	Routing

	Analysis

	Command-line Options
	Basic Usage

	Detailed Command-line Options

	Command-line Auto Completion

	Graphics
	Enabling Graphics

	Navigation

	Visualizing Placement

	Visualizing Netlist Connectivity

	Visualizing the Critical Path

	Visualizing Routing Architecture

	Visualizing Routing Congestion

	Visualizing Routing Utilization

	Toggle Block Internal

	View Menu

	Button Description Table

	Manual Moves

	Timing Constraints
	Default Timing Constraints

	VPR Placement Constraints
	A Constraints File Example

	Constraints File Format

	Partitions, Atoms, and Regions

	SDC Commands
	create_clock

	set_clock_groups

	set_false_path

	set_max_delay/set_min_delay

	set_multicycle_path

	set_input_delay/set_output_delay

	set_clock_uncertainty

	set_clock_latency

	set_disable_timing

	Special Characters

	SDC Examples

	File Formats
	FPGA Architecture (.xml)

	BLIF Netlist (.blif)

	Extended BLIF (.eblif)

	Timing Constraints (.sdc)

	Packed Netlist Format (.net)

	Placement File Format (.place)

	Routing File Format (.route)

	Routing Resource Graph File Format (.xml)

	Network-on-Chip (NoC) Traffic Flows Format (.flows)

	Block types usage summary (.txt .xml or .json)

	Timing summary (.txt .xml or .json)

	Debugging Aids

	Placer and Router Debugger
	Overview

	Adding a breakpoint

	Enabling/Disabling a breakpoint

	Deleting a breakpoint

	Reaching a breakpoint

	Available Variables

	Available Operators

Basic flow

The Place and Route process in VPR consists of several steps:

	Packing (combinines primitives into complex blocks)

	Placement (places complex blocks within the FPGA grid)

	Routing (determines interconnections between blocks)

	Analysis (analyzes the implementation)

Each of these steps provides additional configuration options that can be used to customize the whole process.

Packing

The packing algorithm tries to combine primitive netlist blocks (e.g. LUTs, FFs) into groups, called Complex Blocks (as specified in the FPGA architecture file).
The results from the packing process are written into a .net file.
It contains a description of complex blocks with their inputs, outputs, used clocks and relations to other signals.
It can be useful in analyzing how VPR packs primitives together.

A detailed description of the .net file format can be found in the Packed Netlist Format (.net) section.

Placement

This step assigns a location to the Complex Blocks (produced by packing) with the FPGA grid, while optimizing for wirelength and timing.
The output from this step is written to the .place file, which contains the physical location of the blocks from the .net file.

The file has the following format:

block_name x y subblock_number

where x and y are positions in the VPR grid and block_name comes from the .net file.

Example of a placing file:

Netlist_File: top.net Netlist_ID: SHA256:ce5217d251e04301759ee5a8f55f67c642de435b6c573148b67c19c5e054c1f9
Array size: 149 x 158 logic blocks

#block name x y subblk block number
#---------- -- -- ------ ------------
$auto$alumacc.cc:474:replace_alu$24.slice[1].carry4_full 53 32 0 #0
$auto$alumacc.cc:474:replace_alu$24.slice[2].carry4_full 53 31 0 #1
$auto$alumacc.cc:474:replace_alu$24.slice[3].carry4_full 53 30 0 #2
$auto$alumacc.cc:474:replace_alu$24.slice[4].carry4_full 53 29 0 #3
$auto$alumacc.cc:474:replace_alu$24.slice[5].carry4_full 53 28 0 #4
$auto$alumacc.cc:474:replace_alu$24.slice[6].carry4_part 53 27 0 #5
$auto$alumacc.cc:474:replace_alu$24.slice[0].carry4_1st_full 53 33 0 #6
out:LD7 9 5 0 #7
clk 42 26 0 #8
$false 35 26 0 #9

A detailed description of the .place file format can be found in the Placement File Format (.place) section.

Routing

This step determines how to connect the placed Complex Blocks together, according to the netlist connectivity and the routing resources of the FPGA chip.
The router uses a Routing Resource (RR) Graph [BRM99] to represent the FPGA’s available routing resources.
The RR graph can be created in two ways:

	Automatically generated by VPR from the FPGA architecture description [BR00], or

	Loaded from an external RR graph file.

The output of routing is written into a .route file.
The file describes each connection from input to its output through different routing resources of the FPGA.
Each net starts with a SOURCE node and ends in a SINK node, potentially passing through complex block input/output pins (IPIN/OPIN nodes) and horizontal/vertical routing wires (CHANX/CHANY nodes).
The pair of numbers in round brackets provides information on the (x, y) resource location on the VPR grid.
The additional field provides information about the specific node.

An example routing file could look as follows:

 Placement_File: top.place Placement_ID: SHA256:88d45f0bf7999e3f9331cdfd3497d0028be58ffa324a019254c2ae7b4f5bfa7a
 Array size: 149 x 158 logic blocks.

 Routing:

 Net 0 (counter[4])

 Node: 203972 SOURCE (53,32) Class: 40 Switch: 0
 Node: 204095 OPIN (53,32) Pin: 40 BLK-TL-SLICEL.CQ[0] Switch: 189
 Node: 1027363 CHANY (52,32) Track: 165 Switch: 7
 Node: 601704 CHANY (52,32) Track: 240 Switch: 161
 Node: 955959 CHANY (52,32) to (52,33) Track: 90 Switch: 130
 Node: 955968 CHANY (52,32) Track: 238 Switch: 128
 Node: 955976 CHANY (52,32) Track: 230 Switch: 131
 Node: 601648 CHANY (52,32) Track: 268 Switch: 7
 Node: 1027319 CHANY (52,32) Track: 191 Switch: 183
 Node: 203982 IPIN (53,32) Pin: 1 BLK-TL-SLICEL.A2[0] Switch: 0
 Node: 203933 SINK (53,32) Class: 1 Switch: -1

Net 1 ($auto$alumacc.cc:474:replace_alu$24.O[6])
...

A detailed description of the .route file format can be found in the Routing File Format (.route) section.

Analysis

	This step analyzes the resulting implementation, producing information about:
	
	Resource usage (e.g. block types, wiring)

	Timing (e.g. critical path delays and timing paths)

	Power (e.g. total power used, power broken down by blocks)

Note that VPR’s analysis can be used independently of VPR’s optimization stages, so long as the appropriate .net/.place/.route files are available.

Command-line Options

	[image: Placement]

Placement

	[image: Critical Path]

Critical Path

	[image: Wiring]

Logical Connections

	[image: Routing Usage]

Routing Utilization

Basic Usage

At a minimum VPR requires two command-line arguments:

vpr architecture circuit

where:

	
architecture

	is an FPGA architecture description file

	
circuit

	is the technology mapped netlist in BLIF format to be implemented

VPR will then pack, place, and route the circuit onto the specified architecture.

By default VPR will perform a binary search routing to find the minimum channel width required to route the circuit.

Detailed Command-line Options

VPR has a lot of options. Running vpr --help will display all the available options and their usage information.

	
-h, --help

	Display help message then exit.

The options most people will be interested in are:

	--route_chan_width (route at a fixed channel width), and

	--disp (turn on/off graphics).

In general for the other options the defaults are fine, and only people looking at how different CAD algorithms perform will try many of them.
To understand what the more esoteric placer and router options actually do, see [BRM99] or download [BR96a, BR96b, BR97b, MBR00] from the author’s web page [http://www.eecg.toronto.edu/~vaughn].

In the following text, values in angle brackets e.g. <int> <float> <string> <file>, should be replaced by the appropriate number, string, or file path.
Values in curly braces separated by vertical bars, e.g. {on | off}, indicate all the permissible choices for an option.

Stage Options

VPR runs all stages of (pack, place, route, and analysis) if none of --pack, --place, --route or --analysis are specified.

	
--pack

	Run packing stage

Default: off

	
--place

	Run placement stage

Default: off

	
--route

	Run routing stage
This also implies –analysis if routing was successful.

Default: off

	
--analysis

	Run final analysis stage (e.g. timing, power).

Default: off

Graphics Options

	
--disp {on | off}

	Controls whether VPR’s interactive graphics are enabled.
Graphics are very useful for inspecting and debugging the FPGA architecture and/or circuit implementation.

Default: off

	
--auto <int>

	Can be 0, 1, or 2.
This sets how often you must click Proceed to continue execution after viewing the graphics.
The higher the number, the more infrequently the program will pause.

Default: 1

	
--save_graphics {on | off}

	If set to on, this option will save an image of the final placement and the final routing created by vpr to pdf files on disk, with no need for any user interaction. The files are named vpr_placement.pdf and vpr_routing.pdf.

Default: off

	
--graphics_commands <string>

	A set of semi-colon seperated graphics commands.
Graphics commands must be surrounded by quotation marks (e.g. –graphics_commands “save_graphics place.png;”)

	
	save_graphics <file>
	Saves graphics to the specified file (.png/.pdf/
.svg). If <file> contains {i}, it will be
replaced with an integer which increments
each time graphics is invoked.

	
	set_macros <int>
	Sets the placement macro drawing state

	
	set_nets <int>
	Sets the net drawing state

	
	set_cpd <int>
	Sets the criticla path delay drawing state

	
	set_routing_util <int>
	Sets the routing utilization drawing state

	
	set_clip_routing_util <int>
	Sets whether routing utilization values are clipped to [0., 1.]. Useful when a consistent scale is needed across images

	
	set_draw_block_outlines <int>
	Sets whether blocks have an outline drawn around them

	
	set_draw_block_text <int>
	Sets whether blocks have label text drawn on them

	
	set_draw_block_internals <int>
	Sets the level to which block internals are drawn

	
	set_draw_net_max_fanout <int>
	Sets the maximum fanout for nets to be drawn (if fanout is beyond this value the net will not be drawn)

	
	set_congestion <int>
	Sets the routing congestion drawing state

	
	exit <int>
	Exits VPR with specified exit code

Example:

"save_graphics place.png; \
set_nets 1; save_graphics nets1.png;\
set_nets 2; save_graphics nets2.png; set_nets 0;\
set_cpd 1; save_graphics cpd1.png; \
set_cpd 3; save_graphics cpd3.png; set_cpd 0; \
set_routing_util 5; save_graphics routing_util5.png; \
set_routing_util 0; \
set_congestion 1; save_graphics congestion1.png;"

The above toggles various graphics settings (e.g. drawing nets, drawing critical path) and then saves the results to .png files.

Note that drawing state is reset to its previous state after these commands are invoked.

Like the interactive graphics :option`<–disp>` option, the --auto option controls how often the commands specified with this option are invoked.

General Options

	
--version

	Display version information then exit.

	
--device <string>

	Specifies which device layout/floorplan to use from the architecture file.

auto uses the smallest device satisfying the circuit’s resource requirements.
Other values are assumed to be the names of device layouts defined in the FPGA Grid Layout section of the architecture file.

Note

If the architecture contains both <auto_layout> and <fixed_layout> specifications, specifying an auto device will use the <auto_layout>.

Default: auto

	
-j, --num_workers <int>

	Controls how many parallel workers VPR may use:

	1 implies VPR will execute serially,

	>1 implies VPR may execute in parallel with up to the specified concurency

	0 implies VPR may execute with up to the maximum concurrency supported by the host machine

If this option is not specified it may be set from the VPR_NUM_WORKERS environment variable; otherwise the default is used.

Note

To compile VPR to allow the usage of parallel workers, libtbb-dev must be installed in the system.

Default: 1

	
--timing_analysis {on | off}

	Turn VPR timing analysis off.
If it is off, you don’t have to specify the various timing analysis parameters in the architecture file.

Default: on

	
--echo_file {on | off}

	Generates echo files of key internal data structures.
These files are generally used for debugging vpr, and typically end in .echo

Default: off

	
--verify_file_digests {on | off}

	Checks that any intermediate files loaded (e.g. previous packing/placement/routing) are consistent with the current netlist/architecture.

If set to on will error if any files in the upstream dependancy have been modified.
If set to off will warn if any files in the upstream dependancy have been modified.

Default: on

	
--target_utilization <float>

	Sets the target device utilization.
This corresponds to the maximum target fraction of device grid-tiles to be used.
A value of 1.0 means the smallest device (which fits the circuit) will be used.

Default: 1.0

	
--constant_net_method {global | route}

	Specifies how constant nets (i.e. those driven to a constant value) are handled:

	global: Treat constant nets as globals (not routed)

	route: Treat constant nets as normal nets (routed)

Default: global

	
--clock_modeling {ideal | route | dedicated_network}

	Specifies how clock nets are handled:

	ideal: Treat clock pins as ideal (i.e. no routing delays on clocks)

	route: Treat clock nets as normal nets (i.e. routed using inter-block routing)

	dedicated_network: Use the architectures dedicated clock network (experimental)

Default: ideal

	
--two_stage_clock_routing {on | off}

	Routes clock nets in two stages using a dedicated clock network.

	First stage: From the net source (e.g. an I/O pin) to a dedicated clock network root (e.g. center of chip)

	Second stage: From the clock network root to net sinks.

Note this option only works when specifying a clock architecture, see Clock Architecture Format; it does not work when reading a routing resource graph (i.e. --read_rr_graph).

Default: off

	
--exit_before_pack {on | off}

	Causes VPR to exit before packing starts (useful for statistics collection).

Default: off

	
--strict_checks {on, off}

	Controls whether VPR enforces some consistency checks strictly (as errors) or treats them as warnings.

Usually these checks indicate an issue with either the targetted architecture, or consistency issues with VPR’s internal data structures/algorithms (possibly harming optimization quality).
In specific circumstances on specific architectures these checks may be too restrictive and can be turned off.

Warning

Exercise extreme caution when turning this option off – be sure you completely understand why the issue is being flagged, and why it is OK to treat as a warning instead of an error.

Default: on

	
--terminate_if_timing_fails {on, off}

	Controls whether VPR should terminate if timing is not met after routing.

Default: off

Filename Options

VPR by default appends .blif, .net, .place, and .route to the circuit name provided by the user, and looks for an SDC file in the working directory with the same name as the circuit.
Use the options below to override this default naming behaviour.

	
--circuit_file <file>

	Path to technology mapped user circuit in BLIF format.

Note

If specified the circuit positional argument is treated as the circuit name.

See also

--circuit_format

	
--circuit_format {auto | blif | eblif}

	File format of the input technology mapped user circuit.

	auto: File format inferred from file extension (e.g. .blif or .eblif)

	blif: Strict structural BLIF

	eblif: Structural BLIF with extensions

Default: auto

	
--net_file <file>

	Path to packed user circuit in net format.

Default: circuit.net

	
--place_file <file>

	Path to final placement file.

Default: circuit.place

	
--route_file <file>

	Path to final routing file.

Default: circuit.route

	
--sdc_file <file>

	Path to SDC timing constraints file.

If no SDC file is found default timing constraints will be used.

Default: circuit.sdc

	
--write_rr_graph <file>

	Writes out the routing resource graph generated at the last stage of VPR in the RR Graph file format. The output can be read into VPR using --read_rr_graph.

<file> describes the filename for the generated routing resource graph. Accepted extensions are .xml and .bin to write the graph in XML or binary (Cap’n Proto) format.

	
--read_rr_graph <file>

	Reads in the routing resource graph named <file> loads it for use during the placement and routing stages. Expects a file extension of either .xml or .bin.

The routing resource graph overthrows all the architecture definitions regarding switches, nodes, and edges. Other information such as grid information, block types, and segment information are matched with the architecture file to ensure accuracy.

The file can be obtained through --write_rr_graph.

See also

Routing Resource XML File.

	
--read_vpr_constraints <file>

	Reads the floorplanning constraints that packing and placement must respect from the specified XML file.

	
--write_vpr_constraints <file>

	Writes out new floorplanning constraints based on current placement to the specified XML file.

	
--read_router_lookahead <file>

	Reads the lookahead data from the specified file instead of computing it. Expects a file extension of either .capnp or .bin.

	
--write_router_lookahead <file>

	Writes the lookahead data to the specified file. Accepted file extensions are .capnp, .bin, and .csv.

	
--read_placement_delay_lookup <file>

	Reads the placement delay lookup from the specified file instead of computing it. Expects a file extension of either .capnp or .bin.

	
--write_placement_delay_lookup <file>

	Writes the placement delay lookup to the specified file. Expects a file extension of either .capnp or .bin.

	
--write_initial_place_file <file>

	Writes out the the placement chosen by the initial placement algorithm to the specified file.

	
--outfile_prefix <string>

	Prefix for output files

Netlist Options

By default VPR will remove buffer LUTs, and iteratively sweep the netlist to remove unused primary inputs/outputs, nets and blocks, until nothing else can be removed.

	
--absorb_buffer_luts {on | off}

	Controls whether LUTs programmed as wires (i.e. implementing logical identity) should be absorbed into the downstream logic.

Usually buffer LUTS are introduced in BLIF circuits by upstream tools in order to rename signals (like assign statements in Verilog).
Absorbing these buffers reduces the number of LUTs required to implement the circuit.

Ocassionally buffer LUTs are inserted for other purposes, and this option can be used to preserve them.
Disabling buffer absorption can also improve the matching between the input and post-synthesis netlist/SDF.

Default: on

	
--const_gen_inference {none | comb | comb_seq}

	Controls how constant generators are inferred/detected in the input circuit.
Constant generators and the signals they drive are not considered during timing analysis.

	none: No constant generator inference will occur. Any signals which are actually constants will be treated as non-constants.

	comb: VPR will infer constant generators from combinational blocks with no non-constant inputs (always safe).

	comb_seq: VPR will infer constant generators from combinational and sequential blocks with only constant inputs (usually safe).

Note

In rare circumstances comb_seq could incorrectly identify certain blocks as constant generators.
This would only occur if a sequential netlist primitive has an internal state which evolves completely independently of any data input (e.g. a hardened LFSR block, embedded thermal sensor).

Default: comb_seq

	
--sweep_dangling_primary_ios {on | off}

	Controls whether the circuits dangling primary inputs and outputs (i.e. those who do not drive, or are not driven by anything) are swept and removed from the netlist.

Disabling sweeping of primary inputs/outputs can improve the matching between the input and post-synthesis netlists.
This is often useful when performing formal verification.

See also

--sweep_constant_primary_outputs

Default: on

	
--sweep_dangling_nets {on | off}

	Controls whether dangling nets (i.e. those who do not drive, or are not driven by anything) are swept and removed from the netlist.

Default: on

	
--sweep_dangling_blocks {on | off}

	Controls whether dangling blocks (i.e. those who do not drive anything) are swept and removed from the netlist.

Default: on

	
--sweep_constant_primary_outputs {on | off}

	Controls whether primary outputs driven by constant values are swept and removed from the netlist.

See also

--sweep_dangling_primary_ios

Default: off

	
--netlist_verbosity <int>

	Controls the verbosity of netlist processing (constant generator detection, swept netlist components).
High values produce more detailed output.

Default: 1

Packing Options

AAPack is the packing algorithm built into VPR.
AAPack takes as input a technology-mapped blif netlist consisting of LUTs, flip-flops, memories, mulitpliers, etc and outputs a .net formatted netlist composed of more complex logic blocks.
The logic blocks available on the FPGA are specified through the FPGA architecture file.
For people not working on CAD, you can probably leave all the options to their default values.

	
--connection_driven_clustering {on | off}

	Controls whether or not AAPack prioritizes the absorption of nets with fewer connections into a complex logic block over nets with more connections.

Default: on

	
--allow_unrelated_clustering {on | off | auto}

	Controls whether primitives with no attraction to a cluster may be packed into it.

Unrelated clustering can increase packing density (decreasing the number of blocks required to implement the circuit), but can significantly impact routability.

When set to auto VPR automatically decides whether to enable unrelated clustring based on the targetted device and achieved packing density.

Default: auto

	
--alpha_clustering <float>

	A parameter that weights the optimization of timing vs area.

A value of 0 focuses solely on area, a value of 1 focuses entirely on timing.

Default: 0.75

	
--beta_clustering <float>

	A tradeoff parameter that controls the optimization of smaller net absorption vs. the optimization of signal sharing.

A value of 0 focuses solely on signal sharing, while a value of 1 focuses solely on absorbing smaller nets into a cluster.
This option is meaningful only when connection_driven_clustering is on.

Default: 0.9

	
--timing_driven_clustering {on|off}

	Controls whether or not to do timing driven clustering

Default: on

	
--cluster_seed_type {blend | timing | max_inputs}

	Controls how the packer chooses the first primitive to place in a new cluster.

timing means that the unclustered primitive with the most timing-critical connection is used as the seed.

max_inputs means the unclustered primitive that has the most connected inputs is used as the seed.

blend uses a weighted sum of timing criticality, the number of tightly coupled blocks connected to the primitive, and the number of its external inputs.

max_pins selects primitives with the most number of pins (which may be used, or unused).

max_input_pins selects primitives with the most number of input pins (which may be used, or unused).

blend2 An alternative blend formulation taking into account both used and unused pin counts, number of tightly coupled blocks and criticality.

Default: blend2 if timing_driven_clustering is on; max_inputs otherwise.

	
--clustering_pin_feasibility_filter {on | off}

	Controls whether the pin counting feasibility filter is used during clustering.
When enabled the clustering engine counts the number of available pins in groups/classes of mutually connected pins within a cluster.
These counts are used to quickly filter out candidate primitives/atoms/molecules for which the cluster has insufficient pins to route (without performing a full routing).
This reduces packing run-time.

Default: on

	
--balance_block_type_utilization {on, off, auto}

	Controls how the packer selects the block type to which a primitive will be mapped if it can potentially map to multiple block types.

	on : Try to balance block type utilization by picking the block type with the (currenty) lowest utilization.

	off : Do not try to balance block type utilization

	auto: Dynamically enabled/disabled (based on density)

Default: auto

	
--target_ext_pin_util { auto | <float> | <float>,<float> | <string>:<float> | <string>:<float>,<float> }

	Sets the external pin utilization target (fraction between 0.0 and 1.0) during clustering.
This determines how many pin the clustering engine will aim to use in a given cluster before closing it and opening a new cluster.

Setting this to 1.0 guides the packer to pack as densely as possible (i.e. it will keep adding molecules to the cluster until no more can fit).
Setting this to a lower value will guide the packer to pack less densely, and instead creating more clusters.
In the limit setting this to 0.0 will cause the packer to create a new cluster for each molecule.

Typically packing less densely improves routability, at the cost of using more clusters.

This option can take several different types of values:

	auto VPR will automatically determine appropriate target utilizations.

	<float> specifies the target input pin utilization for all block types.

For example:

	0.7 specifies that all blocks should aim for 70% input pin utilization.

	<float>,<float> specifies the target input and output pin utilizations respectively for all block types.

For example:

	0.7,0.9 specifies that all blocks should aim for 70% input pin utilization, and 90% output pin utilization.

	<string>:<float> and <string>:<float>,<float> specify the target pin utilizations for a specific block type (as above).

For example:

	clb:0.7 specifies that only clb type blocks should aim for 70% input pin utilization.

	clb:0.7,0.9 specifies that only clb type blocks should aim for 70% input pin utilization, and 90% output pin utilization.

Note

If a pin utilization target is unspecified it defaults to 1.0 (i.e. 100% utilization).

For example:

	0.7 leaves the output pin utilization unspecified, which is equivalent to 0.7,1.0.

	clb:0.7,0.9 leaves the pin utilizations for all other block types unspecified, so they will assume a default utilization of 1.0,1.0.

This option can also take multiple space-separated values.
For example:

--target_ext_pin_util clb:0.5 dsp:0.9,0.7 0.8

would specify that clb blocks use a target input pin utilization of 50%, dsp blocks use a targets of 90% and 70% for inputs and outputs respectively, and all other blocks use an input pin utilization target of 80%.

Note

This option is only a guideline.
If a molecule (e.g. a carry-chain with many inputs) would not otherwise fit into a cluster type at the specified target utilization the packer will fallback to using all pins (i.e. a target utilization of 1.0).

Note

This option requires --clustering_pin_feasibility_filter to be enabled.

Default: auto

	
--pack_prioritize_transitive_connectivity {on | off}

	Controls whether transitive connectivity is prioritized over high-fanout connectivity during packing.

Default: on

	
--pack_high_fanout_threshold {auto | <int> | <string>:<int>}

	Defines the threshold for high fanout nets within the packer.

This option can take several different types of values:

	auto VPR will automatically determine appropriate thresholds.

	<int> specifies the fanout threshold for all block types.

For example:

	64 specifies that a threshold of 64 should be used for all blocks.

	<string>:<float> specifies the the threshold for a specific block type.

For example:

	clb:16 specifies that clb type blocks should use a threshold of 16.

This option can also take multiple space-separated values.
For example:

--pack_high_fanout_threshold 128 clb:16

would specify that clb blocks use a threshold of 16, while all other blocks (e.g. DSPs/RAMs) would use a threshold of 128.

Default: auto

	
--pack_transitive_fanout_threshold <int>

	Packer transitive fanout threshold.

Default: 4

	
--pack_feasible_block_array_size <int>

	This value is used to determine the max size of the priority queue for candidates that pass the early filter legality test
but not the more detailed routing filter.

Default: 30

	
--pack_verbosity <int>

	Controls the verbosity of clustering output.
Larger values produce more detailed output, which may be useful for debugging architecture packing problems.

Default: 2

	
--write_block_usage <file>

	Writes out to the file under path <file> cluster-level block usage summary in machine
readable (JSON or XML) or human readable (TXT) format. Format is selected
based on the extension of <file>.

Placer Options

The placement engine in VPR places logic blocks using simulated annealing.
By default, the automatic annealing schedule is used [BR97b, BRM99].
This schedule gathers statistics as the placement progresses, and uses them to determine how to update the temperature, when to exit, etc.
This schedule is generally superior to any user-specified schedule.
If any of init_t, exit_t or alpha_t is specified, the user schedule, with a fixed initial temperature, final temperature and temperature update factor is used.

See also

Timing-Driven Placer Options

	
--seed <int>

	Sets the initial random seed used by the placer.

Default: 1

	
--enable_timing_computations {on | off}

	Controls whether or not the placement algorithm prints estimates of the circuit speed of the placement it generates.
This setting affects statistics output only, not optimization behaviour.

Default: on if timing-driven placement is specified, off otherwise.

	
--inner_num <float>

	The number of moves attempted at each temperature in placement can be calculated from inner_num scaled with circuit size or device-circuit size as specified in place_effort_scaling.

Changing inner_num is the best way to change the speed/quality tradeoff of the placer, as it leaves the highly-efficient automatic annealing schedule on and simply changes the number of moves per temperature.

Specifying -inner_num 10 will slow the placer by a factor of 10 while typically improving placement quality only by 10% or less (depends on the architecture).
Hence users more concerned with quality than CPU time may find this a more appropriate value of inner_num.

Default: 0.5

	
--place_effort_scaling {circuit | device_circuit}

	Controls how the number of placer moves level scales with circuit and device size:

	circuit: The number of moves attempted at each temperature is inner_num * num_blocks^(4/3) in the circuit.

	device_circuit: The number of moves attempted at each temperature is inner_num * grid_size^(2/3) * num_blocks^(4/3) in the circuit.

The number of blocks in a circuit is the number of pads plus the number of clbs.

Default: circuit

	
--init_t <float>

	The starting temperature of the anneal for the manual annealing schedule.

Default: 100.0

	
--exit_t <float>

	The manual anneal will terminate when the temperature drops below the exit temperature.

Default: 0.01

	
--alpha_t <float>

	The temperature is updated by multiplying the old temperature by alpha_t when the manual annealing schedule is enabled.

Default: 0.8

	
--fix_pins {free | random}

	Controls how the placer handles I/O pads during placement.

	free: The placer can move I/O locations to optimize the placement.

	random: Fixes I/O pads to arbitrary locations and does not allow the placer to move them during the anneal (models the effect of poor board-level I/O constraints).

Note: the fix_pins option also used to accept a third argument - a place file that specified where I/O pins should be placed. This argument is no longer accepted by fix_pins. Instead, the fix_clusters option can now be used to lock down I/O pins.

Default: free.

	
--fix_clusters {<file.place>}

	Controls how the placer handles blocks (of any type) during placement.

	<file.place>: A path to a file listing the desired location of blocks in the netlist.

This place location file is in the same format as a normal placement file, but does not require the first two lines which are normally at the top of a placement file that specify the netlist file, netlist ID, and array size.

Default: ````.

	
--place_algorithm {bounding_box | criticality_timing | slack_timing}

	Controls the algorithm used by the placer.

bounding_box Focuses purely on minimizing the bounding box wirelength of the circuit. Turns off timing analysis if specified.

criticality_timing Focuses on minimizing both the wirelength and the connection timing costs (criticality * delay).

slack_timing Focuses on improving the circuit slack values to reduce critical path delay.

Default: criticality_timing

	
--place_quench_algorithm {bounding_box | criticality_timing | slack_timing}

	Controls the algorithm used by the placer during placement quench.
The algorithm options have identical functionality as the ones used by the option --place_algorithm. If specified, it overrides the option --place_algorithm during placement quench.

Default: criticality_timing

	
--place_bounding_box_mode {auto_bb | cube_bb | per_layer_bb}

	Specifies the type of the wirelength estimator used during placement. For single layer architectures, cube_bb (a 3D bounding box) is always used (and is the same as per_layer_bb).
For 3D architectures, cube_bb is appropriate if you can cross between layers at switch blocks, while if you can only cross between layers at output pins per_layer_bb (one bouding box per layer) is more accurate and appropriate.

auto_bb: The bounding box type is determined automatically based on the cross-layer connections.

cube_bb: cube_bb bounding box is used to estimate the wirelength.

per_layer_bb: per_layer_bb bounding box is used to estimate the wirelength

Default: auto_bb

	
--place_chan_width <int>

	Tells VPR how many tracks a channel of relative width 1 is expected to need to complete routing of this circuit.
VPR will then place the circuit only once, and repeatedly try routing the circuit as usual.

Default: 100

	
--place_rlim_escape <float>

	The fraction of moves which are allowed to ignore the region limit.
For example, a value of 0.1 means 10% of moves are allowed to ignore the region limit.

Default: 0.0

Setting any of the following 5 options selects Dusty’s annealing schedule .

	
--alpha_min <float>

	The minimum (starting) update factor (alpha) used.
Ranges between 0 and alpha_max.

Default: 0.2

	
--alpha_max <float>

	The maximum (stopping) update factor (alpha) used after which simulated annealing will complete.
Ranges between alpha_min and 1.

Default: 0.9

	
--alpha_decay <float>

	The rate at which alpha will approach 1: alpha(n) = 1 - (1 - alpha(n-1)) * alpha_decay
Ranges between 0 and 1.

Default: 0.7

	
--anneal_success_min <float>

	The minimum success ratio after which the temperature will reset to maintain the target success ratio.
Ranges between 0 and anneal_success_target.

Default: 0.1

	
--anneal_success_target <float>

	The temperature after each reset is selected to keep this target success ratio.
Ranges between anneal_success_target and 1.

Default: 0.25

	
--place_cost_exp <float>

	Wiring cost is divided by the average channel width over a net’s bounding box
taken to this exponent. Only impacts devices with different channel widths in
different directions or regions.

Default: 1

	
--RL_agent_placement {on | off}

	Uses a Reinforcement Learning (RL) agent in choosing the appropiate move type in placement.
It activates the RL agent placement instead of using a fixed probability for each move type.

Default: on

	
--place_agent_multistate {on | off}

	Enable a multistate agent in the placement. A second state will be activated late in
the annealing and in the Quench that includes all the timing driven directed moves.

Default: on

	
--place_agent_algorithm {e_greedy | softmax}

	Controls which placement RL agent is used.

Default: softmax

	
--place_agent_epsilon <float>

	Placement RL agent’s epsilon for the epsilon-greedy agent. Epsilon represents
the percentage of exploration actions taken vs the exploitation ones.

Default: 0.3

	
--place_agent_gamma <float>

	Controls how quickly the agent’s memory decays. Values between [0., 1.] specify
the fraction of weight in the exponentially weighted reward average applied to moves
which occured greater than moves_per_temp moves ago. Values < 0 cause the
unweighted reward sample average to be used (all samples are weighted equally)

Default: 0.05

	
--place_reward_fun {basic | nonPenalizing_basic | runtime_aware | WLbiased_runtime_aware}

	The reward function used by the placement RL agent to learn the best action at each anneal stage.

Note

The latter two are only available for timing-driven placement.

Default: WLbiased_runtime_aware

	
--place_agent_space {move_type | move_block_type}

	The RL Agent exploration space can be either based on only move types or also consider different block types moved.

Default: move_block_type

	
--placer_debug_block <int>

	
Note

This option is likely only of interest to developers debugging the placement algorithm

Controls which block the placer produces detailed debug information for.

If the block being moved has the same ID as the number assigned to this parameter, the placer will print debugging information about it.

	For values >= 0, the value is the block ID for which detailed placer debug information should be produced.

	For value == -1, detailed placer debug information is produced for all blocks.

	For values < -1, no placer debug output is produced.

Warning

VPR must have been compiled with VTR_ENABLE_DEBUG_LOGGING on to get any debug output from this option.

Default: -2

	
--placer_debug_net <int>

	
Note

This option is likely only of interest to developers debugging the placement algorithm

Controls which net the placer produces detailed debug information for.

If a net with the same ID assigned to this parameter is connected to the block that is being moved, the placer will print debugging information about it.

	For values >= 0, the value is the net ID for which detailed placer debug information should be produced.

	For value == -1, detailed placer debug information is produced for all nets.

	For values < -1, no placer debug output is produced.

Warning

VPR must have been compiled with VTR_ENABLE_DEBUG_LOGGING on to get any debug output from this option.

Default: -2

Timing-Driven Placer Options

The following options are only valid when the placement engine is in timing-driven mode (timing-driven placement is used by default).

	
--timing_tradeoff <float>

	Controls the trade-off between bounding box minimization and delay minimization in the placer.

A value of 0 makes the placer focus completely on bounding box (wirelength) minimization, while a value of 1 makes the placer focus completely on timing optimization.

Default: 0.5

	
--recompute_crit_iter <int>

	Controls how many temperature updates occur before the placer performs a timing analysis to update its estimate of the criticality of each connection.

Default: 1

	
--inner_loop_recompute_divider <int>

	Controls how many times the placer performs a timing analysis to update its criticality estimates while at a single temperature.

Default: 0

	
--quench_recompute_divider <int>

	Controls how many times the placer performs a timing analysis to update its criticality estimates during a quench.
If unspecified, uses the value from –inner_loop_recompute_divider.

Default: 0

	
--td_place_exp_first <float>

	Controls how critical a connection is considered as a function of its slack, at the start of the anneal.

If this value is 0, all connections are considered equally critical.
If this value is large, connections with small slacks are considered much more critical than connections with small slacks.
As the anneal progresses, the exponent used in the criticality computation gradually changes from its starting value of td_place_exp_first to its final value of --td_place_exp_last.

Default: 1.0

	
--td_place_exp_last <float>

	Controls how critical a connection is considered as a function of its slack, at the end of the anneal.

See also

--td_place_exp_first

Default: 8.0

	
--place_delay_model {delta, delta_override}

	Controls how the timing-driven placer estimates delays.

	delta The router is used to profile delay from various locations in the grid for various differences in position

	delta_override Like delta but also includes special overrides to ensure effects of direct connects between blocks are accounted for.
This is potentially more accurate but is more complex and depending on the architecture (e.g. number of direct connects) may increase place run-time.

Default: delta

	
--place_delay_model_reducer {min, max, median, arithmean, geomean}

	When calculating delta delays for the placment delay model how are multiple values combined?

Default: min

	
--place_delay_offset <float>

	A constant offset (in seconds) applied to the placer’s delay model.

Default: 0.0

	
--place_delay_ramp_delta_threshold <float>

	The delta distance beyond which –place_delay_ramp is applied.
Negative values disable the placer delay ramp.

Default: -1

	
--place_delay_ramp_slope <float>

	The slope of the ramp (in seconds per grid tile) which is applied to the placer delay model for delta distance beyond --place_delay_ramp_delta_threshold.

Default: 0.0e-9

	
--place_tsu_rel_margin <float>

	Specifies the scaling factor for cell setup times used by the placer.
This effectively controls whether the placer should try to achieve extra margin on setup paths.
For example a value of 1.1 corresponds to requesting 10%% setup margin.

Default: 1.0

	
--place_tsu_abs_margin <float>

	Specifies an absolute offest added to cell setup times used by the placer.
This effectively controls whether the placer should try to achieve extra margin on setup paths.
For example a value of 500e-12 corresponds to requesting an extra 500ps of setup margin.

Default: 0.0

	
--post_place_timing_report <file>

	Name of the post-placement timing report file to generate (not generated if unspecfied).

NoC Options

The following options are only used when FPGA device and netlist contain a NoC router.

	
--noc {on | off}

	Enables a NoC-driven placer that optimizes the placement of routers on the NoC. Also, it enables an option in the graphical display that can be used to
display the NoC on the FPGA.

Default: off

	
--noc_flows_file <file>

	XML file containing the list of traffic flows within the NoC (communication between routers).

Note

noc_flows_file are required to specify if NoC optimization is turned on (–noc on).

	
--noc_routing_algorithm {xy_routing | bfs_routing}

	Controls the algorithm used by the NoC to route packets.

	xy_routing Uses the direction oriented routing algorithm. This is recommended to be used with mesh NoC topologies.

	bfs_routing Uses the breadth first search algorithm. The objective is to find a route that uses a minimum number of links. This can be used with any NoC topology.

Default: bfs_routing

	
--noc_placement_weighting <float>

	Controls the importance of the NoC placement parameters relative to timing and wirelength of the design.

	noc_placement_weighting = 0 means the placement is based solely on timing and wirelength.

	noc_placement_weighting = 1 means noc placement is considered equal to timing and wirelength.

	noc_placement_weighting > 1 means the placement is increasingly dominated by NoC parameters.

Default: 0.6

	
--noc_latency_constraints_weighting <float>

	Controls the importance of meeting all the NoC traffic flow latency constraints.

	latency_constraints = 0 means the latency constraints have no relevance to placement.

	0 < latency_constraints < 1 means the latency constraints are weighted equally to the sum of other placement cost components.

	latency_constraints > 1 means the placement is increasingly dominated by reducing the latency constraints of the traffic flows.

Default: 1

	
--noc_latency_weighting <float>

	Controls the importance of reducing the latencies of the NoC traffic flows.
This value can be >=0,

	latency = 0 means the latencies have no relevance to placement.

	0 < latency < 1 means the latencies are weighted equally to the sum of other placement cost components.

	latency > 1 means the placement is increasingly dominated by reducing the latencies of the traffic flows.

Default: 0.05

	
--noc_swap_percentage <float>

	Sets the minimum fraction of swaps attempted by the placer that are NoC blocks.
This value is an integer ranging from [0-100].

	0 means NoC blocks will be moved at the same rate as other blocks.

	100 means all swaps attempted by the placer are NoC router blocks.

Default: 40

	
--noc_placement_file_name <file>

	Name of the output file that contains the NoC placement information.

Default: vpr_noc_placement_output.txt

Router Options

VPR uses a negotiated congestion algorithm (based on Pathfinder) to perform routing.

Note

By default the router performs a binary search to find the minimum routable channel width. To route at a fixed channel width use --route_chan_width.

See also

Timing-Driven Router Options

	
--flat_routing {on | off}

	If this option is enabled, the run-flat router is used instead of the two-stage router.
This means that during the routing stage, all nets, both intra- and inter-cluster, are routed directly from one primitive pin to another primitive pin.
This increases routing time but can improve routing quality by re-arranging LUT inputs and exposing additional optimization opportunities in architectures with local intra-cluster routing that is not a full crossbar.

Default: ``OFF`

	
--max_router_iterations <int>

	The number of iterations of a Pathfinder-based router that will be executed before a circuit is declared unrouteable (if it hasn’t routed successfully yet) at a given channel width.

Speed-quality trade-off: reducing this number can speed up the binary search for minimum channel width, but at the cost of some increase in final track count.
This is most effective if -initial_pres_fac is simultaneously increased.
Increase this number to make the router try harder to route heavily congested designs.

Default: 50

	
--first_iter_pres_fac <float>

	Similar to --initial_pres_fac.
This sets the present overuse penalty factor for the very first routing iteration.
--initial_pres_fac sets it for the second iteration.

Note

A value of 0.0 causes congestion to be ignored on the first routing iteration.

Default: 0.0

	
--initial_pres_fac <float>

	Sets the starting value of the present overuse penalty factor.

Speed-quality trade-off: increasing this number speeds up the router, at the cost of some increase in final track count.
Values of 1000 or so are perfectly reasonable.

Default: 0.5

	
--pres_fac_mult <float>

	Sets the growth factor by which the present overuse penalty factor is multiplied after each router iteration.

Default: 1.3

	
--acc_fac <float>

	Specifies the accumulated overuse factor (historical congestion cost factor).

Default: 1

	
--bb_factor <int>

	Sets the distance (in channels) outside of the bounding box of its pins a route can go.
Larger numbers slow the router somewhat, but allow for a more exhaustive search of possible routes.

Default: 3

	
--base_cost_type {demand_only | delay_normalized | delay_normalized_length | delay_normalized_frequency | delay_normalized_length_frequency}

	Sets the basic cost of using a routing node (resource).

	demand_only sets the basic cost of a node according to how much demand is expected for that type of node.

	delay_normalized is similar to demand_only, but normalizes all these basic costs to be of the same magnitude as the typical delay through a routing resource.

	delay_normalized_length like delay_normalized, but scaled by routing resource length.

	delay_normalized_frequency like delay_normalized, but scaled inversely by routing resource frequency.

	delay_normalized_length_frequency like delay_normalized, but scaled by routing resource length and scaled inversely by routing resource frequency.

Default: delay_normalized_length

	
--bend_cost <float>

	The cost of a bend.
Larger numbers will lead to routes with fewer bends, at the cost of some increase in track count.
If only global routing is being performed, routes with fewer bends will be easier for a detailed router to subsequently route onto a segmented routing architecture.

Default: 1 if global routing is being performed, 0 if combined global/detailed routing is being performed.

	
--route_type {global | detailed}

	Specifies whether global routing or combined global and detailed routing should be performed.

Default: detailed (i.e. combined global and detailed routing)

	
--route_chan_width <int>

	Tells VPR to route the circuit at the specified channel width.

Note

If the channel width is >= 0, no binary search on channel capacity will be performed to find the minimum number of tracks required for routing. VPR simply reports whether or not the circuit will route at this channel width.

Default: -1 (perform binary search for minimum routable channel width)

	
--min_route_chan_width_hint <int>

	Hint to the router what the minimum routable channel width is.

The value provided is used to initialize the binary search for minimum channel width.
A good hint may speed-up the binary search by avoiding time spent at congested channel widths which are not routable.

The algorithm is robust to incorrect hints (i.e. it continues to binary search), so the hint does not need to be precise.

This option may ocassionally produce a different minimum channel width due to the different initialization.

See also

--verify_binary_search

	
--verify_binary_search {on | off}

	Force the router to check that the channel width determined by binary search is the minimum.

The binary search ocassionally may not find the minimum channel width (e.g. due to router sub-optimality, or routing pattern issues at a particular channel width).

This option attempts to verify the minimum by routing at successively lower channel widths until two consecutive routing failures are observed.

	
--router_algorithm {parallel | timing_driven}

	Selects which router algorithm to use.

Warning

The parallel router is experimental. (TODO: more explanation)

Default: timing_driven

	
--min_incremental_reroute_fanout <int>

	Incrementally re-route nets with fanout above the specified threshold.

This attempts to re-use the legal (i.e. non-congested) parts of the routing tree for high fanout nets, with the aim of reducing router execution time.

To disable, set value to a value higher than the largest fanout of any net.

Default: 16

	
--max_logged_overused_rr_nodes <int>

	Prints the information on overused RR nodes to the VPR log file after the each failed routing attempt.

If the number of overused nodes is above the given threshold N, then only the first N entries are printed to the logfile.

Default: 20

	
--generate_rr_node_overuse_report {on | off}

	Generates a detailed report on the overused RR nodes’ information: report_overused_nodes.rpt.

This report is generated only when the final routing attempt fails (i.e. the whole routing process has failed).

In addition to the information that can be seen via --max_logged_overused_rr_nodes, this report prints out all the net ids that are associated with each overused RR node. Also, this report does not place a threshold upon the number of RR nodes printed.

Default: off

	
--write_timing_summary <file>

	Writes out to the file under path <file> final timing summary in machine
readable (JSON or XML) or human readable (TXT) format. Format is selected
based on the extension of <file>. The summary consists of parameters:

	cpd - Final critical path delay (least slack) [ns]

	fmax - Maximal frequency of the implemented circuit [MHz]

	swns - setup Worst Negative Slack (sWNS) [ns]

	stns - Setup Total Negative Slack (sTNS) [ns]

Timing-Driven Router Options

The following options are only valid when the router is in timing-driven mode (the default).

	
--astar_fac <float>

	Sets how aggressive the directed search used by the timing-driven router is.

Values between 1 and 2 are reasonable, with higher values trading some quality for reduced CPU time.

Default: 1.2

	
--router_profiler_astar_fac <float>

	Controls the directedness of the timing-driven router’s exploration when doing router delay profiling of an architecture.
The router delay profiling step is currently used to calculate the place delay matrix lookup.
Values between 1 and 2 are resonable; higher values trade some quality for reduced run-time.

Default: 1.2

	
--max_criticality <float>

	Sets the maximum fraction of routing cost that can come from delay (vs. coming from routability) for any net.

A value of 0 means no attention is paid to delay; a value of 1 means nets on the critical path pay no attention to congestion.

Default: 0.99

	
--criticality_exp <float>

	Controls the delay - routability tradeoff for nets as a function of their slack.

If this value is 0, all nets are treated the same, regardless of their slack.
If it is very large, only nets on the critical path will be routed with attention paid to delay. Other values produce more moderate tradeoffs.

Default: 1.0

	
--router_init_wirelength_abort_threshold <float>

	The first routing iteration wirelength abort threshold.
If the first routing iteration uses more than this fraction of available wirelength routing is aborted.

Default: 0.85

	
--incremental_reroute_delay_ripup {on | off | auto}

	Controls whether incremental net routing will rip-up (and re-route) a critical connection for delay, even if the routing is legal.
auto enables delay-based rip-up unless routability becomes a concern.

Default: auto

	
--routing_failure_predictor {safe | aggressive | off}

	Controls how aggressive the router is at predicting when it will not be able to route successfully, and giving up early.
Using this option can significantly reduce the runtime of a binary search for the minimum channel width.

safe only declares failure when it is extremely unlikely a routing will succeed, given the amount of congestion existing in the design.

aggressive can further reduce the CPU time for a binary search for the minimum channel width but can increase the minimum channel width by giving up on some routings that would succeed.

off disables this feature, which can be useful if you suspect the predictor is declaring routing failure too quickly on your architecture.

See also

--verify_binary_search

Default: safe

	
--routing_budgets_algorithm { disable | minimax | scale_delay }

	
Warning

Experimental

Controls how the routing budgets are created. Routing budgets are used to guid VPR’s routing algorithm to consider both short path and long path timing constraints [FBC08].

disable is used to disable the budget feature. This uses the default VPR and ignores hold time constraints.

minimax sets the minimum and maximum budgets by distributing the long path and short path slacks depending on the the current delay values. This uses the routing cost valleys and Minimax-PERT algorithm [FBC08, YLS92].

scale_delay has the minimum budgets set to 0 and the maximum budgets is set to the delay of a net scaled by the pin criticality (net delay/pin criticality).

Default: disable

	
--save_routing_per_iteration {on | off}

	Controls whether VPR saves the current routing to a file after each routing iteration.
May be helpful for debugging.

Default: off

	
--congested_routing_iteration_threshold CONGESTED_ROUTING_ITERATION_THRESHOLD

	Controls when the router enters a high effort mode to resolve lingering routing congestion.
Value is the fraction of max_router_iterations beyond which the routing is deemed congested.

Default: 1.0 (never)

	
--route_bb_update {static, dynamic}

	Controls how the router’s net bounding boxes are updated:

	static : bounding boxes are never updated

	dynamic: bounding boxes are updated dynamically as routing progresses (may improve routability of congested designs)

Default: dynamic

	
--router_high_fanout_threshold ROUTER_HIGH_FANOUT_THRESHOLD

	Specifies the net fanout beyond which a net is considered high fanout.
Values less than zero disable special behaviour for high fanout nets.

Default: 64

	
--router_lookahead {classic, map}

	Controls what lookahead the router uses to calculate cost of completing a connection.

	classic: The classic VPR lookahead

	map: A more advanced lookahead which accounts for diverse wire types and their connectivity

Default: map

	
--router_max_convergence_count <float>

	Controls how many times the router is allowed to converge to a legal routing before halting.
If multiple legal solutions are found the best quality implementation is used.

Default: 1

	
--router_reconvergence_cpd_threshold <float>

	Specifies the minimum potential CPD improvement for which the router will continue to attempt re-convergent routing.

For example, a value of 0.99 means the router will not give up on reconvergent routing if it thinks a > 1% CPD reduction is possible.

Default: 0.99

	
--router_initial_timing {all_critical | lookahead}

	Controls how criticality is determined at the start of the first routing iteration.

	all_critical: All connections are considered timing critical.

	lookahead: Connection criticalities are determined from timing analysis assuming (best-case) connection delays as estimated by the router’s lookahead.

Default: all_critical for the classic --router_lookahead, otherwise lookahead

	
--router_update_lower_bound_delays {on | off}

	Controls whether the router updates lower bound connection delays after the 1st routing iteration.

Default: on

	
--router_first_iter_timing_report <file>

	Name of the timing report file to generate after the first routing iteration completes (not generated if unspecfied).

	
--router_debug_net <int>

	
Note

This option is likely only of interest to developers debugging the routing algorithm

Controls which net the router produces detailed debug information for.

	For values >= 0, the value is the net ID for which detailed router debug information should be produced.

	For value == -1, detailed router debug information is produced for all nets.

	For values < -1, no router debug output is produced.

Warning

VPR must have been compiled with VTR_ENABLE_DEBUG_LOGGING on to get any debug output from this option.

Default: -2

	
--router_debug_sink_rr ROUTER_DEBUG_SINK_RR

	
Note

This option is likely only of interest to developers debugging the routing algorithm

Controls when router debugging is enabled for the specified sink RR.

	For values >= 0, the value is taken as the sink RR Node ID for which to enable router debug output.

	For values < 0, sink-based router debug output is disabled.

Warning

VPR must have been compiled with VTR_ENABLE_DEBUG_LOGGING on to get any debug output from this option.

Default: -2

Analysis Options

	
--full_stats

	Print out some extra statistics about the circuit and its routing useful for wireability analysis.

Default: off

	
--gen_post_synthesis_netlist { on | off }

	Generates the Verilog and SDF files for the post-synthesized circuit.
The Verilog file can be used to perform functional simulation and the SDF file enables timing simulation of the post-synthesized circuit.

The Verilog file contains instantiated modules of the primitives in the circuit.
Currently VPR can generate Verilog files for circuits that only contain LUTs, Flip Flops, IOs, Multipliers, and BRAMs.
The Verilog description of these primitives are in the primitives.v file.
To simulate the post-synthesized circuit, one must include the generated Verilog file and also the primitives.v Verilog file, in the simulation directory.

See also

Post-Implementation Timing Simulation

If one wants to generate the post-synthesized Verilog file of a circuit that contains a primitive other than those mentioned above, he/she should contact the VTR team to have the source code updated.
Furthermore to perform simulation on that circuit the Verilog description of that new primitive must be appended to the primitives.v file as a separate module.

Default: off

	
--gen_post_implementation_merged_netlist { on | off }

	This option is based on --gen_post_synthesis_netlist.
The difference is that --gen_post_implementation_merged_netlist generates a single verilog file with merged top module multi-bit ports of the implemented circuit.
The name of the file is <basename>_merged_post_implementation.v

Default: off

	
--post_synth_netlist_unconn_inputs { unconnected | nets | gnd | vcc }

	Controls how unconnected input cell ports are handled in the post-synthesis netlist

	unconnected: leave unconnected

	nets: connect each unconnected input pin to its own separate undriven net named: __vpr__unconn<ID>, where <ID> is index assigned to this occurrence of unconnected port in design

	gnd: tie all to ground (1'b0)

	vcc: tie all to VCC (1'b1)

Default: unconnected

	
--post_synth_netlist_unconn_outputs { unconnected | nets }

	Controls how unconnected output cell ports are handled in the post-synthesis netlist

	unconnected: leave unconnected

	nets: connect each unconnected output pin to its own separate undriven net named: __vpr__unconn<ID>, where <ID> is index assigned to this occurrence of unconnected port in design

Default: unconnected

	
--timing_report_npaths <int>

	Controls how many timing paths are reported.

Note

The number of paths reported may be less than the specified value, if the circuit has fewer paths.

Default: 100

	
--timing_report_detail { netlist | aggregated | detailed }

	Controls the level of detail included in generated timing reports.

We obtained the following results using the k6_frac_N10_frac_chain_mem32K_40nm.xml architecture and multiclock.blif circuit.

	netlist: Timing reports show only netlist primitive pins.

For example:

#Path 2
Startpoint: FFC.Q[0] (.latch clocked by clk)
Endpoint : out:out1.outpad[0] (.output clocked by virtual_io_clock)
Path Type : setup

Point Incr Path
--
clock clk (rise edge) 0.000 0.000
clock source latency 0.000 0.000
clk.inpad[0] (.input) 0.000 0.000
FFC.clk[0] (.latch) 0.042 0.042
FFC.Q[0] (.latch) [clock-to-output] 0.124 0.166
out:out1.outpad[0] (.output) 0.550 0.717
data arrival time 0.717

clock virtual_io_clock (rise edge) 0.000 0.000
clock source latency 0.000 0.000
clock uncertainty 0.000 0.000
output external delay 0.000 0.000
data required time 0.000
--
data required time 0.000
data arrival time -0.717
--
slack (VIOLATED) -0.717

	aggregated: Timing reports show netlist pins, and an aggregated summary of intra-block and inter-block routing delays.

For example:

#Path 2
Startpoint: FFC.Q[0] (.latch at (3,3) clocked by clk)
Endpoint : out:out1.outpad[0] (.output at (3,4) clocked by virtual_io_clock)
Path Type : setup

Point Incr Path
--
clock clk (rise edge) 0.000 0.000
clock source latency 0.000 0.000
clk.inpad[0] (.input at (4,2)) 0.000 0.000
| (intra 'io' routing) 0.042 0.042
| (inter-block routing) 0.000 0.042
| (intra 'clb' routing) 0.000 0.042
FFC.clk[0] (.latch at (3,3)) 0.000 0.042
| (primitive '.latch' Tcq_max) 0.124 0.166
FFC.Q[0] (.latch at (3,3)) [clock-to-output] 0.000 0.166
| (intra 'clb' routing) 0.045 0.211
| (inter-block routing) 0.491 0.703
| (intra 'io' routing) 0.014 0.717
out:out1.outpad[0] (.output at (3,4)) 0.000 0.717
data arrival time 0.717

clock virtual_io_clock (rise edge) 0.000 0.000
clock source latency 0.000 0.000
clock uncertainty 0.000 0.000
output external delay 0.000 0.000
data required time 0.000
--
data required time 0.000
data arrival time -0.717
--
slack (VIOLATED) -0.717

where each line prefixed with | (pipe character) represent a sub-delay of an edge within the timing graph.

For instance:

FFC.Q[0] (.latch at (3,3)) [clock-to-output] 0.000 0.166
| (intra 'clb' routing) 0.045 0.211
| (inter-block routing) 0.491 0.703
| (intra 'io' routing) 0.014 0.717
out:out1.outpad[0] (.output at (3,4)) 0.000 0.717

indicates that between the netlist pins FFC.Q[0] and out:out1.outpad[0] there are delays of:

	45 ps from the .latch output pin to an output pin of a clb block,

	491 ps through the general inter-block routing fabric, and

	14 ps from the input pin of a io block to .output.

Also note that a connection between two pins can be contained within the same clb block, and does not use the general inter-block routing network. As an example from a completely different circuit-architecture pair:

n1168.out[0] (.names) 0.000 0.902
| (intra 'clb' routing) 0.000 0.902
top^finish_FF_NODE.D[0] (.latch) 0.000 0.902

	detailed: Like aggregated, the timing reports show netlist pins, and an aggregated summary of intra-block. In addition, it includes a detailed breakdown of the inter-block routing delays.

It is important to note that detailed timing report can only list the components of a non-global
net, otherwise, it reports inter-block routing as well as an incremental delay of 0, just as in the
aggregated and netlist reports.

For example:

#Path 2
Startpoint: FFC.Q[0] (.latch at (3,3) clocked by clk)
Endpoint : out:out1.outpad[0] (.output at (3,4) clocked by virtual_io_clock)
Path Type : setup

Point Incr Path
--
clock clk (rise edge) 0.000 0.000
clock source latency 0.000 0.000
clk.inpad[0] (.input at (4,2)) 0.000 0.000
| (intra 'io' routing) 0.042 0.042
| (inter-block routing:global net) 0.000 0.042
| (intra 'clb' routing) 0.000 0.042
FFC.clk[0] (.latch at (3,3)) 0.000 0.042
| (primitive '.latch' Tcq_max) 0.124 0.166
FFC.Q[0] (.latch at (3,3)) [clock-to-output] 0.000 0.166
| (intra 'clb' routing) 0.045 0.211
| (OPIN:1479 side:TOP (3,3)) 0.000 0.211
| (CHANX:2073 unnamed_segment_0 length:1 (3,3)->(2,3)) 0.095 0.306
| (CHANY:2139 unnamed_segment_0 length:0 (1,3)->(1,3)) 0.075 0.382
| (CHANX:2040 unnamed_segment_0 length:1 (2,2)->(3,2)) 0.095 0.476
| (CHANY:2166 unnamed_segment_0 length:0 (2,3)->(2,3)) 0.076 0.552
| (CHANX:2076 unnamed_segment_0 length:0 (3,3)->(3,3)) 0.078 0.630
| (IPIN:1532 side:BOTTOM (3,4)) 0.072 0.703
| (intra 'io' routing) 0.014 0.717
out:out1.outpad[0] (.output at (3,4)) 0.000 0.717
data arrival time 0.717

clock virtual_io_clock (rise edge) 0.000 0.000
clock source latency 0.000 0.000
clock uncertainty 0.000 0.000
output external delay 0.000 0.000
data required time 0.000
--
data required time 0.000
data arrival time -0.717
--
slack (VIOLATED) -0.717

where each line prefixed with | (pipe character) represent a sub-delay of an edge within the timing graph.
In the detailed mode, the inter-block routing has now been replaced by the net components.

For OPINS and IPINS, this is the format of the name:
| (ROUTING_RESOURCE_NODE_TYPE:ROUTING_RESOURCE_NODE_ID side:SIDE (START_COORDINATES)->(END_COORDINATES))

For CHANX and CHANY, this is the format of the name:
| (ROUTING_RESOURCE_NODE_TYPE:ROUTING_RESOURCE_NODE_ID SEGMENT_NAME length:LENGTH (START_COORDINATES)->(END_COORDINATES))

Here is an example of the breakdown:

FFC.Q[0] (.latch at (3,3)) [clock-to-output] 0.000 0.166
| (intra 'clb' routing) 0.045 0.211
| (OPIN:1479 side:TOP (3,3)) 0.000 0.211
| (CHANX:2073 unnamed_segment_0 length:1 (3,3)->(2,3)) 0.095 0.306
| (CHANY:2139 unnamed_segment_0 length:0 (1,3)->(1,3)) 0.075 0.382
| (CHANX:2040 unnamed_segment_0 length:1 (2,2)->(3,2)) 0.095 0.476
| (CHANY:2166 unnamed_segment_0 length:0 (2,3)->(2,3)) 0.076 0.552
| (CHANX:2076 unnamed_segment_0 length:0 (3,3)->(3,3)) 0.078 0.630
| (IPIN:1532 side:BOTTOM (3,4)) 0.072 0.703
| (intra 'io' routing) 0.014 0.717
out:out1.outpad[0] (.output at (3,4)) 0.000 0.717

indicates that between the netlist pins FFC.Q[0] and out:out1.outpad[0] there are delays of:

	45 ps from the .latch output pin to an output pin of a clb block,

	0 ps from the clb output pin to the CHANX:2073 wire,

	95 ps from the CHANX:2073 to the CHANY:2139 wire,

	75 ps from the CHANY:2139 to the CHANX:2040 wore,

	95 ps from the CHANX:2040 to the CHANY:2166 wire,

	76 ps from the CHANY:2166 to the CHANX:2076 wire,

	78 ps from the CHANX:2076 to the input pin of a io block,

	14 ps input pin of a io block to .output.

In the initial description we referred to the existence of global nets, which also occur in this net:

clk.inpad[0] (.input at (4,2)) 0.000 0.000
| (intra 'io' routing) 0.042 0.042
| (inter-block routing:global net) 0.000 0.042
| (intra 'clb' routing) 0.000 0.042
FFC.clk[0] (.latch at (3,3)) 0.000 0.042

Global nets are unrouted nets, and their route trees happen to be null.

Finally, is interesting to note that the consecutive channel components may not seem to connect. There are two types of occurences:

	The preceding channel’s ending coordinates extend past the following channel’s starting coordinates (example from a different path):

| (chany:2113 unnamed_segment_0 length:2 (1, 3) -> (1, 1)) 0.116 0.405
| (chanx:2027 unnamed_segment_0 length:0 (1, 2) -> (1, 2)) 0.078 0.482

It is possible that by opening a switch between (1,2) to (1,1), CHANY:2113 actually only extends from (1,3) to (1,2).

	The preceding channel’s ending coordinates have no relation to the following channel’s starting coordinates.
There is no logical contradiction, but for clarification, it is best to see an explanation of the VPR coordinate system.
The path can also be visualized by VPR graphics, as an illustration of this point:

[image: ../_images/path_2.png]

Fig. 36 Illustration of Path #2 with insight into the coordinate system.

Fig. 36 shows the routing resources used in Path #2 and their locations on the FPGA.

	The signal emerges from near the top-right corner of the block to_FFC (OPIN:1479) and joins the topmost horizontal segment of length 1 (CHANX:2073).

	The signal proceeds to the left, then connects to the outermost, blue vertical segment of length 0 (CHANY:2139).

	The signal continues downward and attaches to the horizontal segment of length 1 (CHANX:2040).

	Of the aforementioned horizontal segment, after travelling one linear unit to the right, the signal jumps on a vertical segment of length 0 (CHANY:2166).

	The signal travels upward and promptly connects to a horizontal segment of length 0 (CHANX:2076).

	This segment connects to the green destination io (3,4).

	debug: Like detailed, but includes additional VPR internal debug information such as timing graph node IDs (tnode) and routing SOURCE/SINK nodes.

Default: netlist

	
--echo_dot_timing_graph_node { string | int }

	Controls what subset of the timing graph is echoed to a GraphViz DOT file when vpr --echo_file is enabled.

Value can be a string (corresponding to a VPR atom netlist pin name), or an integer representing a timing graph node ID.
Negative values mean the entire timing graph is dumped to the DOT file.

Default: -1

	
--timing_report_skew { on | off }

	Controls whether clock skew timing reports are generated.

Default: off

Power Estimation Options

The following options are used to enable power estimation in VPR.

See also

Power Estimation for more details.

	
--power

	Enable power estimation

Default: off

	
--tech_properties <file>

	XML File containing properties of the CMOS technology (transistor capacitances, leakage currents, etc).
These can be found at $VTR_ROOT/vtr_flow/tech/, or can be created for a user-provided SPICE technology (see Power Estimation).

	
--activity_file <file>

	File containing signal activites for all of the nets in the circuit. The file must be in the format:

<net name1> <signal probability> <transition density>
<net name2> <signal probability> <transition density>
...

Instructions on generating this file are provided in Power Estimation.

Command-line Auto Completion

To simplify using VPR on the command-line you can use the dev/vpr_bash_completion.sh script, which will enable TAB completion for VPR commandline arguments (based on the output of vpr -h).

Simply add:

source $VTR_ROOT/dev/vpr_bash_completion.sh

to your .bashrc. $VTR_ROOT refers to the root of the VTR source tree on your system.

Graphics

VPR includes easy-to-use graphics for visualizing both the targetted FPGA architecture, and the circuit VPR has implemented on the architecture.

[image: ../_images/des90_routing_util.gif]

Enabling Graphics

Compiling with Graphics Support

The build system will attempt to build VPR with graphics support by default.

If all the required libraries are found the build system will report:

-- EZGL: graphics enabled

If the required libraries are not found cmake will report:

-- EZGL: graphics disabled

and list the missing libraries:

-- EZGL: Failed to find required X11 library (on debian/ubuntu try 'sudo apt-get install libx11-dev' to install)
-- EZGL: Failed to find required Xft library (on debian/ubuntu try 'sudo apt-get install libxft-dev' to install)
-- EZGL: Failed to find required fontconfig library (on debian/ubuntu try 'sudo apt-get install fontconfig' to install)
-- EZGL: Failed to find required cairo library (on debian/ubuntu try 'sudo apt-get install libcairo2-dev' to install)

Enabling Graphics at Run-time

When running VPR provide vpr --disp on to enable graphics.

Saving Graphics at Run-time

When running VPR provide vpr --save_graphics on to save an image of the final placement and the final routing created by vpr to pdf files on disk. The files are named vpr_placement.pdf and vpr_routing.pdf.

A graphical window will now pop up when you run VPR.

Navigation

	Click on the Zoom-Fit button to get an over-encompassing view of the FPGA architecture.

	Click and drag with the left mouse button to pan the view, or scroll the mouse wheel to zoom in and out.

	Click on the Window button, then on the diagonally opposite corners of a box, to zoom in on a particular area.

	Click on Save under the Misc. tab to save the image on screen to PDF, PNG, or SVG file.

	Done tells VPR to continue with the next step in placing and routing the circuit.

Note

Menu buttons will be greyed out when they are not selectable (e.g. VPR is working).

Visualizing Placement

By default VPR’s graphics displays the FPGA floorplan (block grid) and current placement.

[image: ../_images/Overall_view.png]

Fig. 37 FPGA floorplan (block grid)

If the Placement Macros drop down is set, any placement macros (e.g. carry chains, which require specific relative placements between some blocks) will be highlighted.

[image: ../_images/neuron_placement_macros.gif]

Fig. 38 Placement with macros (carry chains) highlighted

Visualizing Netlist Connectivity

The Toggle Nets drop-down list under the Net Settings tab toggles the nets in the circuit to be visible/invisible. Options include Cluster Nets and Primitive Nets.

[image: ../_images/Net_Settings.png]

Fig. 39 Toggle Nets drop-down under Net Settings tab

When a placement is being displayed, routing information is not yet known so nets are simply drawn as a “star;” that is, a straight line is drawn from the net source to each of its sinks.
Click on any clb in the display, and it will be highlighted in green, while its fanin and fanout are highlighted in blue and red, respectively.
Once a circuit has been routed the true path of each net will be shown.

[image: ../_images/des90_nets.gif]

Fig. 40 Logical net connectivity during placement

If the nets routing are shown, click on a clb or pad to highlight its fanins and fanouts, or click on a pin or channel wire to highlight a whole net in magenta.
Multiple nets can be highlighted by pressing ctrl + mouse click.

Visualizing the Critical Path

During placement and routing you can click on the Crit. Path drop-down menu under the Misc. tab to visualize the critical path.
Each stage between primitive pins is shown in a different colour.

[image: ../_images/crit_path.png]

Fig. 41 Crit. Path drop-down list under the Misc. tab

The Crit. Path drop-down will toggle through the various visualizations:

	During placement the critical path is shown only as flylines.

	During routing the critical path can be shown as both flylines and routed net connections.

[image: ../_images/des90_cpd.gif]

Fig. 42 Critical Path flylines during placement and routing

Visualizing Routing Architecture

When a routing is on screen, the Routing Options tab provides various options to gain more visual information.

[image: ../_images/Routing_Options.png]

Fig. 43 Routing Options

Clicking on Toggle RR lets you to choose between various views of the routing resources available in the FPGA.

[image: ../_images/routing_arch.gif]

Fig. 44 Routing Architecture Views

The routing resource view can be very useful in ensuring that you have correctly described your FPGA in the architecture description file – if you see switches where they shouldn’t be or pins on the wrong side of a clb, your architecture description needs to be revised.

Wiring segments are drawn in black, input pins are drawn in sky blue, and output pins are drawn in pink.
Sinks are drawn in dark slate blue, and sources in plum.
Direct connections between output and input pins are shown in medium purple.
Connections from wiring segments to input pins are shown in sky blue, connections from output pins to wiring segments are shown in pink, and connections between wiring segments are shown in green.
The points at which wiring segments connect to clb pins (connection box switches) are marked with an x.

Switch box connections will have buffers (triangles) or pass transistors (circles) drawn on top of them, depending on the type of switch each connection uses.
Clicking on a clb or pad will overlay the routing of all nets connected to that block on top of the drawing of the FPGA routing resources, and will label each of the pins on that block with its pin number.
Clicking on a routing resource will highlight it in magenta, and its fanouts will be highlighted in red and fanins in blue.
Multiple routing resources can be highlighted by pressing ctrl + mouse click.

Visualizing Routing Congestion

When a routing is shown on-screen, clicking on the Congestion drop-down menu under the Routing Options tab will show a heat map of any overused routing resources (wires or pins).
Lighter colours (e.g. yellow) correspond to highly overused resources, while darker colours (e.g. blue) correspond to lower overuse.
The overuse range shown at the bottom of the window.

[image: ../_images/bitcoin_congestion.gif]

Fig. 45 Routing Congestion during placement and routing

Visualizing Routing Utilization

When a routing is shown on-screen, clicking on the Routing Util drop-down menu will show a heat map of routing wire utilization (i.e. fraction of wires used in each channel).
Lighter colours (e.g. yellow) correspond to highly utilized channels, while darker colours (e.g. blue) correspond to lower utilization.

[image: ../_images/bitcoin_routing_util.gif]

Fig. 46 Routing Utilization during placement and routing

Toggle Block Internal

During placement and routing you can adjust the level of block detail you visualize by using the Toggle Block Internal option under the Block Settings tab.

[image: ../_images/Block_Settings.png]

Fig. 47 Block Settings

Each block can contain a number of flip flops (ff), look up tables (lut), and other primitives. The higher the number, the deeper into the hierarchy within the cluster level block you see.

[image: ../_images/ToggleBlockInternal.gif]

Fig. 48 Visualizing Block Internals

View Menu

[image: ../_images/view_menu.png]

Fig. 49 Items under view menu

The view menu is displayed when vpr is targeting a stacked multi-die architecture (more than 1 layer).
Layers are drawn in ascending order for many drawing features (e.g. blocks); that is layer 0 is drawn first, and (if visible), layer 1 is drawn on top of it etc.
The visibility and transparency of a layer can be changed, which will affect blocks, nets, routing, and critical path.
Cross-layer connections refer to connections that are in different layers.

Button Description Table

	Buttons

	Stages

	Functionalities

	Detailed Descriptions

	Blk Internal

	Placement/Routing

	Controls depth of sub-blocks
shown

	Click multiple times to show
more details; Click to reset
when reached maximum level
of detail

	Toggle Block
Internal

	Placement/Routing

	Adjusts the level of
visualized block detail

	Click multiple times to
go deeper into the
hierarchy within the cluster
level block

	Blk Pin Util

	Placement/Routing

	Visualizes block pin
utilization

	Click multiple times to
visualize all block pin
utilization, input block pin
utilization, or output block
pin utilization

	Cong. Cost

	Routing

	Visualizes the congestion
costs of routing resouces

	

	Congestion

	Routing

	Visualizes a heat map of
overused routing resources

	

	Crit. Path

	Placement/Routing

	Visualizes the critical path
of the circuit

	

	Draw Partitions

	Placement/Routing

	Visualizes placement
constraints

	

	Place Macros

	Placement/Routing

	Visualizes placement macros

	

	Route BB

	Routing

	Visualizes net bounding
boxes one by one

	Click multiple times to
sequence through the net
being shown

	Router Cost

	Routing

	Visualizes the router costs
of different routing
resources

	

	Routing Util

	Routing

	Visualizes routing channel
utilization with colors
indicating the fraction of
wires used within a channel

	

	Toggle Nets

	Placement/Routing

	Visualizes the nets in the
circuit

	Click multiple times to
set the nets to be visible /
invisible

	Toggle RR

	Placement/Routing

	Visualizes different views
of the routing resources

	Click multiple times to
switch between routing
resources available in the
FPGA

Manual Moves

The manual moves feature allows the user to specify the next move in placement. If the move is legal, blocks are swapped and the new move is shown on the architecture.

[image: ../_images/manual_move.png]

Fig. 50 Misc. Tab

To enable the feature, activate the Manual Move toggle button under the Misc. tab and press Done. Alternatively, the user can activate the Manual Move toggle button and click on the block to be moved.

[image: ../_images/draw_manual_moves_window.png]

On the manual move window, the user can specify the Block ID/Block name of the block to move and the To location, with the x position, y position and subtile position. For the manual move to be valid:

	The To location requested by the user should be within the grid’s dimensions.

	The block to be moved is found, valid and not fixed.

	The blocks to be swapped are compatible.

	The location choosen by the user is different from the block’s current location.

If the manual move is legal, the cost summary window will display the delta cost, delta timing, delta bounding box cost and the placer’s annealing decision that would result from this move.

[image: ../_images/manual_move_cost_dialog.png]

The user can Accept or Reject the manual move based on the values provided. If accepted the block’s new location is shown.

Timing Constraints

VPR supports setting timing constraints using Synopsys Design Constraints (SDC), an industry-standard format for specifying timing constraints.

VPR’s default timing constraints are explained in Default Timing Constraints.
The subset of SDC supported by VPR is described in SDC Commands.
Additional SDC examples are shown in SDC Examples.

See also

The Primitive Timing Modelling Tutorial which covers how to describe the timing characteristics of architecture primitives.

Default Timing Constraints

If no timing constriants are specified, VPR assumes default constraints based on the type of circuit being analyzed.

Combinational Circuits

Constrain all I/Os on a virtual clock virtual_io_clock, and optimize this clock to run as fast as possible.

Equivalent SDC File:

create_clock -period 0 -name virtual_io_clock
set_input_delay -clock virtual_io_clock -max 0 [get_ports {*}]
set_output_delay -clock virtual_io_clock -max 0 [get_ports {*}]

Single-Clock Circuits

Constrain all I/Os on the netlist clock, and optimize this clock to run as fast as possible.

Equivalent SDC File:

create_clock -period 0 *
set_input_delay -clock * -max 0 [get_ports {*}]
set_output_delay -clock * -max 0 [get_ports {*}]

Multi-Clock Circuits

Constrain all I/Os a virtual clock virtual_io_clock.
Does not analyse paths between netlist clock domains, but analyses all paths from I/Os to any netlist domain.
Optimizes all clocks, including I/O clocks, to run as fast as possible.

Warning

By default VPR does not analyze paths between netlist clock domains.

Equivalent SDC File:

create_clock -period 0 *
create_clock -period 0 -name virtual_io_clock
set_clock_groups -exclusive -group {clk} -group {clk2}
set_input_delay -clock virtual_io_clock -max 0 [get_ports {*}]
set_output_delay -clock virtual_io_clock -max 0 [get_ports {*}]

Where clk and clk2 are the netlist clocks in the design.
This is similarily extended if there are more than two netlist clocks.

VPR Placement Constraints

VPR supports running flows with placement constraints. Placement constraints are set on primitives to lock them down to specified regions on the FPGA chip. For example, a user may use placement constraints to lock down pins to specific locations on the chip. Also, groups of primitives may be locked down to regions on the chip in CAD flows that use floorplanning or modular design, or to hand-place a timing critical piece.

The placement constraints should be specified by the user using an XML constraints file format, as described in the section below. When VPR is run with placement constraints, both the packing and placement flows are performed in such a way that the constraints are respected. The packing stage does not pack any primitives together that have conflicting floorplan constraints. The placement stage considers the floorplan constraints when choosing a location for each clustered block during initial placement, and does not move any block outside of its constraint boundaries during place moves.

A Constraints File Example

Listing 6 An example of a placement constraints file in XML format.

 1<vpr_constraints tool_name="vpr">
 2 <partition_list>
 3 <partition name="Part0">
 4 <add_atom name_pattern="li354"/>
 5 <add_atom name_pattern="alu*"/> <!-- Regular expressions can be used to provide name patterns of the primitives to be added -->
 6 <add_atom name_pattern="n877"/>
 7 <add_region x_low="3" y_low="1" x_high="7" y_high="2"/> <!-- Two rectangular regions are specified, together describing an L-shaped region -->
 8 <add_region x_low="7" y_low="3" x_high="7" y_high="6"/>
 9 </partition>
10 <partition name="Part1">
11 <add_region x_low="3" y_low="3" x_high="7" y_high="7" subtile="0"/> <!-- One specific location is specified -->
12 <add_atom name_pattern="n4917"/>
13 <add_atom name_pattern="n6010"/>
14 </partition>
15 </partition_list>
16</vpr_constraints>

Constraints File Format

VPR has a specific XML format which must be used when creating a placement constraints file. The purpose of this constraints file is to specify

	Which primitives are to have placement constraints

	The regions on the FPGA chip to which those primitives must be constrained

The file is passed as an input to VPR when running with placement constraints. When the file is read in, its information is used during the packing and placement stages of VPR. The hierarchy of the file is set up as follows.

Note

Use the VPR option --read_vpr_constraints to specify the VPR placement constraints file that is to be loaded.

The top level tag is the <vpr_constraints> tag. This tag contains one <partition_list> tag. The <partition_list> tag can be made up of an unbounded number of <partition> tags. The <partition> tags contains all of the detailed information of the placement constraints, and is described in detail below.

Partitions, Atoms, and Regions

Partition

A partition is made up of two components - a group of primitives (a.k.a. atoms) that must be constrained to the same area on the chip, and a set of one or more regions specifying where those primitives must be constrained. The information for each partition is contained within a <partition> tag, and the number of partition tags that the partition_list tag can contain is unbounded.

	req_param name:

	A name for the partition.

	req_param add_atom:

	A tag used for adding an atom primitive to the partition.

	req_param add_region:

	A tag used for specifying a region for the partition.

Atom

An <add_atom> tag is used to add an atom that must be constrained to the partition. Each partition can contain any number of atoms from the circuit. The <add_atom> tag has the following attribute:

	req_param name_pattern:

	The name of the atom.

The name_pattern can be the exact name of the atom from the input atom netlist that was passed to VPR. It can also be a regular expression, in which case VPR will add all atoms from the netlist which have a portion of their name matching the regular expression to the partition. For example, if a module contains primitives named in the pattern of “alu[0]”, “alu[1]”, and “alu[2]”, the regular expression “alu*” would add all of the primitives from that module.

Region

An <add_region> tag is used to add a region to the partition. A region is a rectangular area on the chip. A partition can contain any number of independent regions - the regions within one partition must not overlap with each other (in order to ease processing when loading in the file). An <add_region> tag has the following attributes.

	req_param x_low:

	The x value of the lower left point of the rectangle.

	req_param y_low:

	The y value of the lower left point of the rectangle.

	req_param x_high:

	The x value of the upper right point of the rectangle.

	req_param y_high:

	The y value of the upper right point of the rectangle.

	opt_param subtile:

	Each x, y location on the grid may contain multiple locations known as subtiles. This paramter is an optional value specifying the subtile location that the atom(s) of the partition shall be constrained to.

The optional subtile attribute is commonly used when constraining an atom to a specific location on the chip (e.g. an exact I/O location). It is legal to use with larger regions, but uncommon.

If a user would like to specify an area on the chip with an unusual shape (e.g. L-shaped or T-shaped), they can simply add multiple <add_region> tags to cover the area specified.

SDC Commands

The following subset of SDC syntax is supported by VPR.

create_clock

Creates a netlist or virtual clock.

Assigns a desired period (in nanoseconds) and waveform to one or more clocks in the netlist (if the –name option is omitted) or to a single virtual clock (used to constrain input and outputs to a clock external to the design).
Netlist clocks can be referred to using regular expressions, while the virtual clock name is taken as-is.

Example Usage:

#Create a netlist clock
create_clock -period <float> <netlist clock list or regexes>

#Create a virtual clock
create_clock -period <float> -name <virtual clock name>

#Create a netlist clock with custom waveform/duty-cycle
create_clock -period <float> -waveform {rising_edge falling_edge} <netlist clock list or regexes>

Omitting the waveform creates a clock with a rising edge at 0 and a falling edge at the half period, and is equivalent to using -waveform {0 <period/2>}.
Non-50% duty cycles are supported but behave no differently than 50% duty cycles, since falling edges are not used in analysis.
If a virtual clock is assigned using a create_clock command, it must be referenced elsewhere in a set_input_delay or set_output_delay constraint.

	
create_clock

	
	
-period <float>

	Specifies the clock period.

Required: Yes

	
-waveform {<float> <float>}

	Overrides the default clock waveform.

The first value indicates the time the clock rises, the second the time the clock falls.

Required: No

Default: 50% duty cycle (i.e. -waveform {0 <period/2>}).

	
-name <string>

	Creates a virtual clock with the specified name.

Required: No

	
<netlist clock list or regexes>

	Creates a netlist clock

Required: No

Note

One of -name or <netlist clock list or regexes> must be specified.

Warning

If a netlist clock is not specified with a create_clock command, paths to and from that clock domain will not be analysed.

set_clock_groups

Specifies the relationship between groups of clocks.
May be used with netlist or virtual clocks in any combination.

Since VPR supports only the -exclusive option, a set_clock_groups constraint is equivalent to a set_false_path constraint (see below) between each clock in one group and each clock in another.

For example, the following sets of commands are equivalent:

#Do not analyze any timing paths between clk and clk2, or between
#clk and clk3
set_clock_groups -exclusive -group {clk} -group {clk2 clk3}

and

set_false_path -from [get_clocks {clk}] -to [get_clocks {clk2 clk3}]
set_false_path -from [get_clocks {clk2 clk3}] -to [get_clocks {clk}]

	
set_clock_groups

	
	
-exclusive

	Indicates that paths between clock groups should not be analyzed.

Required: Yes

Note

VPR currently only supports exclusive clock groups

	
-group {<clock list or regexes>}

	Specifies a group of clocks.

Note

At least 2 groups must be specified.

Required: Yes

set_false_path

Cuts timing paths unidirectionally from each clock in -from to each clock in –to.
Otherwise equivalent to set_clock_groups.

Example Usage:

#Do not analyze paths launched from clk and captured by clk2 or clk3
set_false_path -from [get_clocks {clk}] -to [get_clocks {clk2 clk3}]

#Do not analyze paths launched from clk2 or clk3 and captured by clk
set_false_path -from [get_clocks {clk2 clk3}] -to [get_clocks {clk}]

Note

False paths are supported between entire clock domains, but not between individual registers.

	
set_false_path

	
	
-from [get_clocks <clock list or regexes>]

	Specifies the source clock domain(s).

Required: No

Default: All clocks

	
-to [get_clocks <clock list or regexes>]

	Specifies the sink clock domain(s).

Required: No

Default: All clocks

set_max_delay/set_min_delay

Overrides the default setup (max) or hold (min) timing constraint calculated using the information from create_clock with a user-specified delay.

Example Usage:

#Specify a maximum delay of 17 from input_clk to output_clk
set_max_delay 17 -from [get_clocks {input_clk}] -to [get_clocks {output_clk}]

#Specify a minimum delay of 2 from input_clk to output_clk
set_min_delay 2 -from [get_clocks {input_clk}] -to [get_clocks {output_clk}]

Note

Max/Min delays are supported between entire clock domains, but not between individual netlist elements.

	
set_max_delay/set_min_delay

	
	
<delay>

	The delay value to apply.

Required: Yes

	
-from [get_clocks <clock list or regexes>]

	Specifies the source clock domain(s).

Required: No

Default: All clocks

	
-to [get_clocks <clock list or regexes>]

	Specifies the sink clock domain(s).

Required: No

Default: All clocks

set_multicycle_path

Sets how many clock cycles elapse between the launch and capture edges for setup and hold checks.

The default the setup mutlicycle value is 1 (i.e. the capture setup check is performed against the edge one cycle after the launch edge).

The default hold multicycle is one less than the setup multicycle path (e.g. the capture hold check occurs in the same cycle as the launch edge for the default setup multicycle).

Example Usage:

#Create a 4 cycle setup check, and 0 cycle hold check from clkA to clkB
set_multicycle_path -from [get_clocks {clkA}] -to [get_clocks {clkB}] 4

#Create a 3 cycle setup check from clk to clk2
Note that this moves the default hold check to be 2 cycles
set_multicycle_path -setup -from [get_clocks {clk}] -to [get_clocks {clk2}] 3

#Create a 0 cycle hold check from clk to clk2
Note that this moves the default hold check back to it's original
position before the previous setup setup_multicycle_path was applied
set_multicycle_path -hold -from [get_clocks {clk}] -to [get_clocks {clk2}] 2

#Create a multicycle to a specific pin
set_multicycle_path -to [get_pins {my_inst.in\[0\]}] 2

Note

Multicycles are supported between entire clock domains, and ending at specific registers.

	
set_multicycle_path

	
	
-setup

	Indicates that the multicycle-path applies to setup analysis.

Required: No

	
-hold

	Indicates that the multicycle-path applies to hold analysis.

Required: No

	
-from [get_clocks <clock list or regexes>]

	Specifies the source clock domain(s).

Required: No

Default: All clocks

	
-to [get_clocks <clock list or regexes>]

	Specifies the sink clock domain(s).

Required: No

Default: All clocks

	
-to [get_pins <pin list or regexes>]

	Specifies the sink/capture netlist pins to which the multicycle is applied.

See also

VPR’s pin naming convention.

Required: No

	
<path_multiplier>

	The number of cycles that apply to the specified path(s).

Required: Yes

Note

If neither -setup nor -hold the setup multicycle is set to path_multiplier and the hold multicycle offset to 0.

Note

Only a single -to option can be specified (either clocks or pins, but not both).

set_input_delay/set_output_delay

Use set_input_delay if you want timing paths from input I/Os analyzed, and set_output_delay if you want timing paths to output I/Os analyzed.

Note

If these commands are not specified in your SDC, paths from and to I/Os will not be timing analyzed.

These commands constrain each I/O pad specified after get_ports to be timing-equivalent to a register clocked on the clock specified after -clock.
This can be either a clock signal in your design or a virtual clock that does not exist in the design but which is used only to specify the timing of I/Os.

The specified delays are added to I/O timing paths and can be used to model board level delays.

For single-clock circuits, -clock can be wildcarded using * to refer to the single netlist clock, although this is not supported in standard SDC.
This allows a single SDC command to constrain I/Os in all single-clock circuits.

Example Usage:

#Set a maximum input delay of 0.5 (relative to input_clk) on
#ports in1, in2 and in3
set_input_delay -clock input_clk -max 0.5 [get_ports {in1 in2 in3}]

#Set a minimum output delay of 1.0 (relative to output_clk) on
#all ports matching starting with 'out*'
set_output_delay -clock output_clk -min 1 [get_ports {out*}]

#Set both the maximum and minimum output delay to 0.3 for all I/Os
#in the design
set_output_delay -clock clk2 0.3 [get_ports {*}]

	
set_input_delay/set_output_delay

	
	
-clock <virtual or netlist clock>

	Specifies the virtual or netlist clock the delay is relative to.

Required: Yes

	
-max

	Specifies that the delay value should be treated as the maximum delay.

Required: No

	
-min

	Specifies that the delay value should be treated as the minimum delay.

Required: No

	
<delay>

	Specifies the delay value to be applied

Required: Yes

	
[get_ports {<I/O list or regexes>}]

	Specifies the port names or port name regex.

Required: Yes

Note

If neither -min nor -max are specified the delay value is applied to both.

set_clock_uncertainty

Sets the clock uncertainty between clock domains.
This is typically used to model uncertainty in the clock arrival times due to clock jitter.

Example Usage:

#Sets the clock uncertainty between all clock domain pairs to 0.025
set_clock_uncertainty 0.025

#Sets the clock uncertainty from 'clk' to all other clock domains to 0.05
set_clock_uncertainty -from [get_clocks {clk}] 0.05

#Sets the clock uncertainty from 'clk' to 'clk2' to 0.75
set_clock_uncertainty -from [get_clocks {clk}] -to [get_clocks {clk2}] 0.75

	
set_clock_uncertainty

	
	
-from [get_clocks <clock list or regexes>]

	Specifies the source clock domain(s).

Required: No

Default: All clocks

	
-to [get_clocks <clock list or regexes>]

	Specifies the sink clock domain(s).

Required: No

Default: All clocks

	
-setup

	Specifies the clock uncertainty for setup analysis.

Required: No

	
-hold

	Specifies the clock uncertainty for hold analysis.

Required: No

	
<uncertainty>

	The clock uncertainty value between the from and to clocks.

Required: Yes

Note

If neither -setup nor -hold are specified the uncertainty value is applied to both.

set_clock_latency

Sets the latency of a clock.
VPR automatically calculates on-chip clock network delay, and so only source latency is supported.

Source clock latency corresponds to the delay from the true clock source (e.g. off-chip clock generator) to the on-chip clock definition point.

#Sets the source clock latency of 'clk' to 1.0
set_clock_latency -source 1.0 [get_clocks {clk}]

	
set_clock_latency

	
	
-source

	Specifies that the latency is the source latency.

Required: Yes

	
-early

	Specifies that the latency applies to early paths.

Required: No

	
-late

	Specifies that the latency applies to late paths.

Required: No

	
<latency>

	The clock’s latency.

Required: Yes

	
[get_clocks <clock list or regexes>]

	Specifies the clock domain(s).

Required: Yes

Note

If neither -early nor -late are specified the latency value is applied to both.

set_disable_timing

Disables timing between a pair of connected pins in the netlist.
This is typically used to manually break combinational loops.

#Disables the timing edge between the pins 'FFA.Q[0]' and 'to_FFD.in[0]' on
set_disable_timing -from [get_pins {FFA.Q\\[0\\]}] -to [get_pins {to_FFD.in\\[0\\]}]

	
set_disable_timing

	
	
-from [get_pins <pin list or regexes>]

	Specifies the source netlist pins.

See also

VPR’s pin naming convention.

Required: Yes

	
-to [get_pins <pin list or regexes>]

	Specifies the sink netlist pins.

See also

VPR’s pin naming convention.

Required: Yes

Note

Make sure to escape the characters in the regexes.

Special Characters

	
(comment), \\ (line continued), * (wildcard), {} (string escape)

	# starts a comment – everything remaining on this line will be ignored.

\ at the end of a line indicates that a command wraps to the next line.

* is used in a get_clocks/get_ports command or at the end of create_clock to match all netlist clocks.
Partial wildcarding (e.g. clk* to match clk and clk2) is also supported.
As mentioned above, * can be used in set_input_delay and set_output delay to refer to the netlist clock for single-clock circuits only, although this is not supported in standard SDC.

{} escapes strings, e.g. {top^clk} matches a clock called top^clk, while top^clk without braces gives an error because of the special ^ character.

SDC Examples

The following are sample SDC files for common non-default cases (assuming netlist clock domains clk and clk2).

A

Cut I/Os and analyse only register-to-register paths, including paths between clock domains; optimize to run as fast as possible.

create_clock -period 0 *

B

Same as A, but with paths between clock domains cut. Separate target frequencies are specified.

create_clock -period 2 clk
create_clock -period 3 clk2
set_clock_groups -exclusive -group {clk} -group {clk2}

C

Same as B, but with paths to and from I/Os now analyzed.
This is the same as the multi-clock default, but with custom period constraints.

create_clock -period 2 clk
create_clock -period 3 clk2
create_clock -period 3.5 -name virtual_io_clock
set_clock_groups -exclusive -group {clk} -group {clk2}
set_input_delay -clock virtual_io_clock -max 0 [get_ports {*}]
set_output_delay -clock virtual_io_clock -max 0 [get_ports {*}]

D

Changing the phase between clocks, and accounting for delay through I/Os with set_input/output delay constraints.

#Custom waveform rising edge at 1.25, falling at 2.75
create_clock -period 3 -waveform {1.25 2.75} clk
create_clock -period 2 clk2
create_clock -period 2.5 -name virtual_io_clock
set_input_delay -clock virtual_io_clock -max 1 [get_ports {*}]
set_output_delay -clock virtual_io_clock -max 0.5 [get_ports {*}]

E

Sample using many supported SDC commands. Inputs and outputs are constrained on separate virtual clocks.

create_clock -period 3 -waveform {1.25 2.75} clk
create_clock -period 2 clk2
create_clock -period 1 -name input_clk
create_clock -period 0 -name output_clk
set_clock_groups -exclusive -group input_clk -group clk2
set_false_path -from [get_clocks {clk}] -to [get_clocks {output_clk}]
set_max_delay 17 -from [get_clocks {input_clk}] -to [get_clocks {output_clk}]
set_multicycle_path -setup -from [get_clocks {clk}] -to [get_clocks {clk2}] 3
set_input_delay -clock input_clk -max 0.5 [get_ports {in1 in2 in3}]
set_output_delay -clock output_clk -max 1 [get_ports {out*}]

F

Sample using all remaining SDC commands.

create_clock -period 3 -waveform {1.25 2.75} clk
create_clock -period 2 clk2
create_clock -period 1 -name input_clk
create_clock -period 0 -name output_clk
set_clock_latency -source 1.0 [get_clocks{clk}]
#if neither early nor late is specified then the latency applies to early paths
set_clock_groups -exclusive -group input_clk -group clk2
set_false_path -from [get_clocks{clk}] -to [get_clocks{output_clk}]
set_input_delay -clock input_clk -max 0.5 [get_ports{in1 in2 in3}]
set_output_delay -clock output_clk -min 1 [get_ports{out*}]
set_max_delay 17 -from [get_clocks{input_clk}] -to [get_clocks{output_clk}]
set_min_delay 2 -from [get_clocks{input_clk}] -to [get_clocks{output_clk}]
set_multicycle_path -setup -from [get_clocks{clk}] -to [get_clocks{clk2}] 3
#For multicycle_path, if setup is specified then hold is also implicity specified
set_clock_uncertainty -from [get_clocks{clk}] -to [get_clocks{clk2}] 0.75
#For set_clock_uncertainty, if neither setup nor hold is unspecified then uncertainty is applied to both
set_disable_timing -from [get_pins {FFA.Q\\[0\\]}] -to [get_pins {to_FFD.in\\[0\\]}]

File Formats

VPR consumes and produces several files representing the packing, placement, and routing results.

FPGA Architecture (.xml)

The target FPGA architecture is specified as an architecture file.
For details of this file format see FPGA Architecture Description.

BLIF Netlist (.blif)

The technology mapped circuit to be implement on the target FPGA is specified as a Berkely Logic Interchange Format (BLIF) netlist.
The netlist must be flattened and consist of only primitives (e.g. .names, .latch, .subckt).

For a detailed description of the BLIF file format see the BLIF Format Description.

Note that VPR supports only the structural subset of BLIF, and does not support the following BLIF features:

	Subfile References (.search).

	Finite State Machine Descriptions (.start_kiss, .end_kiss etc.).

	Clock Constraints (.cycle, .clock_event).

	Delay Constraints (.delay etc.).

Clock and delay constraints can be specified with an SDC File.

Note

By default VPR assumes file with .blif are in structural BLIF format. The format can be controlled with vpr --circuit_format.

Black Box Primitives

Black-box architectural primitives (RAMs, Multipliers etc.) should be instantiated in the netlist using BLIF’s .subckt directive.
The BLIF file should also contain a black-box .model definition which defines the input and outputs of each .subckt type.

VPR will check that blackbox .models are consistent with the <models> section of the architecture file.

Unconnected Primitive Pins

Unconnected primitive pins can be specified through several methods.

	The unconn net (input pins only).

VPR treats any input pin connected to a net named unconn as disconnected.

For example:

.names unconn out
0 1

specifies an inverter with no connected input.

Note

unconn should only be used for input pins. It may cause name conflicts and create multi-driven nets if used with output pins.

	Implicitly disconnected .subckt pins.

For .subckt instantiations VPR treats unlisted primitive pins as implicitly disconnected.
This works for both input and output pins.

For example the following .subckt instantiations are equivalent:

.subckt single_port_ram \
 clk=top^clk \
 data=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~546 \
 addr[0]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~541 \
 addr[1]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~542 \
 addr[2]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~543 \
 addr[3]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~544 \
 addr[4]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~545 \
 addr[5]=unconn \
 addr[6]=unconn \
 addr[7]=unconn \
 addr[8]=unconn \
 addr[9]=unconn \
 addr[10]=unconn \
 addr[11]=unconn \
 addr[12]=unconn \
 addr[13]=unconn \
 addr[14]=unconn \
 we=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~554 \
 out=top.memory_controller+memtroll.single_port_ram+str^out~0

.subckt single_port_ram \
 clk=top^clk \
 data=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~546 \
 addr[0]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~541 \
 addr[1]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~542 \
 addr[2]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~543 \
 addr[3]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~544 \
 addr[4]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~545 \
 we=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~554 \
 out=top.memory_controller+memtroll.single_port_ram+str^out~0

	Dummy nets with no sinks (output pins only)

By default VPR sweeps away nets with no sinks (see vpr --sweep_dangling_nets). As a result output pins can be left ‘disconnected’ by connecting them to dummy nets.

For example:

.names in dummy_net1
0 1

specifies an inverter with no connected output (provided dummy_net1 is connected to no other pins).

Note

This method requires that every disconnected output pin should be connected to a uniquely named dummy net.

BLIF File Format Example

The following is an example BLIF file. It implements a 4-bit ripple-carry adder and some simple logic.

The main .model is named top, and its input and output pins are listed using the .inputs and .outputs directives.

The 4-bit ripple-cary adder is built of 1-bit adder primitives which are instantiated using the .subckt directive.
Note that the adder primitive is defined as its own .model (which describes its pins), and is marked as .blackbox to indicate it is an architectural primitive.

The signal all_sum_high_comb is computed using combinational logic (.names) which ANDs all the sum bits together.

The .latch directive instantiates a rising-edge (re) latch (i.e. an edge-triggered Flip-Flop) clocked by clk.
It takes in the combinational signal all_sum_high_comb and drives the primary output all_sum_high_reg.

Also note that the last .subckt adder has it’s cout output left implicitly disconnected.

.model top
.inputs clk a[0] a[1] a[2] a[3] b[0] b[1] b[2] b[3]
.outputs sum[0] sum[1] sum[2] sum[3] cout all_sum_high_reg

.names gnd
 0

.subckt adder a=a[0] b=b[0] cin=gnd cout=cin[1] sumout=sum[0]
.subckt adder a=a[1] b=b[1] cin=cin[1] cout=cin[2] sumout=sum[1]
.subckt adder a=a[2] b=b[2] cin=cin[2] cout=cin[3] sumout=sum[2]
.subckt adder a=a[3] b=b[3] cin=cin[3] sumout=sum[3]

.names sum[0] sum[1] sum[2] sum[3] all_sum_high_comb
1111 1

.latch all_sum_high_comb all_sum_high_reg re clk 0

.end

.model adder
.inputs a b cin
.outputs cout sumout
.blackbox
.end

BLIF Naming Convention

VPR follows a naming convention to refer to primitives and pins in the BLIF netlist.
These names appear in the VPR GUI, in log and error messages, and in can be used elsewhere (e.g. in SDC constraints).

Net Names

The BLIF format uses explicit names to refer to nets.
These names are used directly as is by VPR (although some nets may be merged/removed by netlist cleaning).

For example, the following netlist:

.model top
.inputs a b
.outputs c

.names a b c
11 1

.end

contains nets named:

	a

	b

	c

Primitive Names

The standard BLIF format has no mechanism for specifying the names of primitives (e.g. .names/.latch/.subckt).
As a result, tools processing BLIF follow a naming convention which generates unique names for each netlist primitive.

The VPR primitive naming convention is as follows:

	Primitive

	Drives at least one net?

	Primitive Name

	
	.input

	.names

	.latch

	.subckt

	Yes

	Name of first
driven net

	No

	Arbitrarily
generated (e.g.
unamed_instances_K)

	
	.output

	N/A

	.output name
prefixed with
out:

which ensures each netlist primitive is given a unique name.

For example, in the following:

.model top
.inputs a b x y z clk
.outputs c c_reg cout[0] sum[0]

.names a b c
11 1

.latch c c_reg re clk 0

.subckt adder a=x b=y cin=z cout=cout[0] sumout=sum[0]

.end

.model adder
.inputs a b cin
.outputs cout sumout
.blackbox
.end

	The circuit primary inputs (.inputs) are named: a, b, x, y, z, clk,

	The 2-LUT (.names) is named c,

	The FF (.latch) is named c_reg,

	The adder (.subckt) is named cout[0] (the name of the first net it drives), and

	The circuit primary outputs (.outputs) are named: out:c, out:c_reg, out:cout[0], out:sum[0].

See also

EBLIF’s .cname extension, which allows explicit primitive names to be specified.

Pin Names

It is useful to be able to refer to particular pins in the netlist.
VPR uses the convention: <primitive_instance_name>.<pin_name>.
Where <primitive_instance_name> is replaced with the netlist primitive name, and <pin_name> is the name of the relevant pin.

For example, the following adder:

.subckt adder a=x b=y cin=z cout=cout[0] sumout=sum[0]

which has pin names:

	cout[0].a[0] (driven by net x)

	cout[0].b[0] (driven by net y)

	cout[0].cin[0] (driven by net z)

	cout[0].cout[0] (drives net cout[0])

	cout[0].sumout[0] (drives net sum[0])

Since the primitive instance itself is named cout[0] by convention.

Built-in Primitive Pin Names

The built-in primitives in BLIF (.names, .latch) do not explicitly list the names of their input/output pins.
VPR uses the following convention:

	Primitive

	Port

	Name

	.names

	input

	in

	output

	out

	.latch

	input

	D

	output

	Q

	control

	clk

Consider the following:

.names a b c d e f
11111 1

.latch g h re clk 0

The .names’ pin names are:

	f.in[0] (driven by net a)

	f.in[1] (driven by net b)

	f.in[2] (driven by net c)

	f.in[3] (driven by net d)

	f.in[4] (driven by net e)

	f.out[0] (drives net f)

and the .latch pin names are:

	h.D[0] (driven by net g)

	h.Q[0] (drives net h)

	h.clk[0] (driven by net clk)

since the .names and .latch primitives are named f and h by convention.

Note

To support pins within multi-bit ports unambiguously, the bit index of the pin within its associated port is included in the pin name (for single-bit ports this will always be [0]).

Extended BLIF (.eblif)

VPR also supports several extentions to structural BLIF to address some of its limitations.

Note

By default VPR assumes file with .eblif are in extneded BLIF format. The format can be controlled with vpr --circuit_format.

.conn

The .conn statement allows direct connections between two wires.

For example:

.model top
.input a
.output b

#Direct connection
.conn a b

.end

specifies that ‘a’ and ‘b’ are direct connected together.
This is analogous to Verilog’s assign b = a;.

This avoids the insertion of a .names buffer which is required in standard BLIF, for example:

.model top
.input a
.output b

#Buffer LUT required in standard BLIF
.names a b
1 1

.end

.cname

The .cname statement allows names to be specified for BLIF primitives (e.g. .latch, .names, .subckt).

Note

.cname statements apply to the previous primitive instantiation.

For example:

.names a b c
11 1
.cname my_and_gate

Would name of the above .names instance my_and_gate.

.param

The .param statement allows parameters (e.g. primitive modes) to be tagged on BLIF primitives.

Note

.param statements apply to the previous primitive instantiation.

Parameters can have one of the three available types. Type is inferred from the format in which a parameter is provided.

	
	string
	Whenever a parameter value is quoted it is considered to be a string. BLIF parser does not allow escaped characters hence those are illegal and will cause syntax errors.

	
	binary word
	Binary words are specified using strings of characters 0 and 1. No other characters are allowed. Number of characters denotes the word length.

	
	real number
	Real numbers are stored as decimals where the dot . character separates the integer and fractional part. Presence of the dot character implies that the value is to be treated as a real number.

For example:

.subckt pll clk_in=gclk clk_out=pclk
.param feedback "internal"
.param multiplier 0.50
.param power 001101

Would set the parameters feedback, multiplier and power of the above pll .subckt to "internal", 0.50 and 001101 respectively.

Warning

Integers in notation other than binary (e.g. decimal, hexadecimal) are not supported. Occurrence of params with digits other than 1 and 0 for binary words, not quoted (strings) or not separated with dot . (real numbers) are considered to be illegal.

Interpretation of parameter values is out of scope of the BLIF format extension.

.param statements propagate to <parameter> elements in the packed netlist.

Paramerer values propagate also to the post-route Verilog netlist, if it is generated. Strings and real numbers are passed directly while binary words are prepended with the <N>'b prefix where N denotes a binary word length.

.attr

The .attr statement allows attributes (e.g. source file/line) to be tagged on BLIF primitives.

Note

.attr statements apply to the previous primitive instantiation.

For example:

.latch a_and_b dff_q re clk 0
.attr src my_design.v:42

Would set the attribute src of the above .latch to my_design.v:42.

.attr statements propagate to <attribute> elements in the packed netlist.

Extended BLIF File Format Example

.model top
.inputs a b clk
.outputs o_dff

.names a b a_and_b
11 1
.cname lut_a_and_b
.param test_names_param "test_names_param_value"
.attr test_names_attrib "test_names_param_attrib"

.latch a_and_b dff_q re clk 0
.cname my_dff
.param test_latch_param "test_latch_param_value"
.attr test_latch_attrib "test_latch_param_attrib"

.conn dff_q o_dff

.end

Timing Constraints (.sdc)

Timing constraints are specified using SDC syntax.
For a description of VPR’s SDC support see SDC Commands.

Note

Use vpr --sdc_file to specify the SDC file used by VPR.

Timing Constraints File Format Example

See SDC Examples.

Packed Netlist Format (.net)

The circuit .net file is an xml file that describes a post-packed user circuit.
It represents the user netlist in terms of the complex logic blocks of the target architecture.
This file is generated from the packing stage and used as input to the placement stage in VPR.

The .net file is constructed hierarchically using block tags.
The top level block tag contains the I/Os and complex logic blocks used in the user circuit.
Each child block tag of this top level tag represents a single complex logic block inside the FPGA.
The block tags within a complex logic block tag describes, hierarchically, the clusters/modes/primitives used internally within that logic block.

A block tag has the following attributes:

	
	name
	A name to identify this component of the FPGA.
This name can be completely arbitrary except in two situations.
First, if this is a primitive (leaf) block that implements an atom in the input technology-mapped netlist (eg. LUT, FF, memory slice, etc), then the name of this block must match exactly with the name of the atom in that netlist so that one can later identify that mapping.
Second, if this block is not used, then it should be named with the keyword open.
In all other situations, the name is arbitrary.

	
	instance
	The phyiscal block in the FPGA architecture that the current block represents.
Should be of format: architecture_instance_name[instance #].
For example, the 5th index BLE in a CLB should have instance="ble[5]"

	
	mode
	The mode the block is operating in.

A block connects to other blocks via pins which are organized based on a hierarchy.
All block tags contains the children tags: inputs, outputs, clocks.
Each of these tags in turn contain port tags.
Each port tag has an attribute name that matches with the name of a corresponding port in the FPGA architecture.
Within each port tag is a list of named connections where the first name corresponds to pin 0, the next to pin 1, and so forth.
The names of these connections use the following format:

	Unused pins are identified with the keyword open.

	The name of an input pin to a complex logic block is the same as the name of the net using that pin.

	The name of an output pin of a primitve (leaf block) is the same as the name of the net using that pin.

	The names of all other pins are specified by describing their immediate drivers. This format is [name_of_immediate_driver_block].[port_name][pin#]->interconnect_name.

For primitives with equivalent inputs VPR may rotate the input pins.
The resulting rotation is specified with the <port_rotation_map> tag.
For example, consider a netlist contains a 2-input LUT named c, which is implemented in a 5-LUT:

Listing 7 Example of <port_rotation_map> tag.

 1...
 2<block name="c" instance="lut[0]">
 3 <inputs>
 4 <port name="in">open open lut5.in[2]->direct:lut5 open lut5.in[4]->direct:lut5 </port>
 5 <port_rotation_map name="in">open open 1 open 0 </port_rotation_map>
 6 </inputs>
 7 <outputs>
 8 <port name="out">c </port>
 9 </outputs>
10 <clocks>
11 </clocks>
12</block>
13...

In the original netlist the two LUT inputs were connected to pins at indicies 0 and 1 (the only input pins).
However during clustering the inputs were rotated, and those nets now connect to the pins at indicies 2 and 4 (line 4).
The <port_rotation_map> tag specified the port name it applies to (name attribute), and its contents lists the pin indicies each pin in the port list is associated with in the original netlist (i.e. the pins lut5.in[2]->direct:lut5 and lut5.in[4]->direct:lut5 respectively correspond to indicies 1 and 0 in the original netlist).

Note

Use vpr --net_file to override the default net file name.

Packing File Format Example

The following is an example of what a .net file would look like.
In this circuit there are 3 inputs (pa, pb, pc) and 4 outputs (out:pd, out:pe, out:pf, out:pg).
The io pad is set to inpad mode and is driven by the inpad:

Listing 8 Example packed netlist file (trimmed for brevity).

 1<block name="b1.net" instance="FPGA_packed_netlist[0]">
 2 <inputs>
 3 pa pb pc
 4 </inputs>
 5
 6 <outputs>
 7 out:pd out:pe out:pf out:pg
 8 </outputs>
 9
10 <clocks>
11 </clocks>
12
13 <block name="pa" instance="io[0]" mode="inpad">
14 <inputs>
15 <port name="outpad">open </port>
16 </inputs>
17
18 <outputs>
19 <port name="inpad">inpad[0].inpad[0]->inpad </port>
20 </outputs>
21
22 <clocks>
23 <port name="clock">open </port>
24 </clocks>
25
26 <block name="pa" instance="inpad[0]">
27 <inputs>
28 </inputs>
29
30 <outputs>
31 <port name="inpad">pa </port>
32 </outputs>
33
34 <clocks>
35 </clocks>
36
37 <attributes>
38 <attribute name="vccio">3.3</attribute>
39 </attributes>
40
41 <parameters>
42 <parameter name="iostandard">LVCMOS33</parameter>
43 </parameters>
44 </block>
45 </block>
46...

Note

.net files may be outputted at two stages:
- After packing is completed, the packing results will be outputted. The .net file can be loaded as an input for placer, router and analyzer. Note that the file may not represent the final packing results as the analyzer will apply synchronization between packing and routing results.
- After analysis is completed, updated packing results will be outputted. This is due to that VPR router may swap pin mapping in packing results for optimizations. In such cases, packing results are synchronized with routing results. The outputted .net file will have a postfix of .post_routing as compared to the original packing results. It could happen that VPR router does not apply any pin swapping and the two .net files are the same. In both cases, the post-analysis .net file should be considered to be the final packing results for downstream tools, e.g., bitstream generator. Users may load the post-routing .net file in VPR’s analysis flow to sign-off the final results.

Warning

Currently, the packing result synchronization is only applicable to input pins which may be remapped to different nets during routing optimization. If your architecture defines link_instance_pin_xml_syntax_ equivalence for output pins, the packing results still mismatch the routing results!

Placement File Format (.place)

The first line of the placement file lists the netlist (.net) and architecture (.xml) files used to create this placement.
This information is used to ensure you are warned if you accidentally route this placement with a different architecture or netlist file later.
The second line of the file gives the size of the logic block array used by this placement.
All the following lines have the format:

block_name x y subtile_number

The block_name is the name of this block, as given in the input .net formatted netlist.
x and y are the row and column in which the block is placed, respectively.

Note

The blocks in a placement file can be listed in any order.

Since we can have more than one block in a row or column when the block capacity is set to be greater than 1 in the architecture file, the subtile number specifies which of the several possible subtile locations in row x and column y contains this block.
Note that the subtile number used should be in the range 0 to (grid[i][j].capacity - 1). The subtile numbers for a particular x,y location do not have to be used in order.

The placement files output by VPR also include (as a comment) a fifth field: the block number.
This is the internal index used by VPR to identify a block – it may be useful to know this index if you are modifying VPR and trying to debug something.

[image: ../_images/fpga_coordinate_system.png]

Fig. 51 FPGA co-ordinate system.

Fig. 51 shows the coordinate system used by VPR for a small 2 x 2 CLB FPGA.
The number of CLBs in the x and y directions are denoted by nx and ny, respectively.
CLBs all go in the area with x between 1 and nx and y between 1 and ny, inclusive.
All pads either have x equal to 0 or nx + 1 or y equal to 0 or ny + 1.

Note

Use vpr --place_file to override the default place file name.

Placement File Format Example

An example placement file is:

Listing 9 Example placement file.

 1Netlist file: xor5.net Architecture file: sample.xml
 2Array size: 2 x 2 logic blocks
 3
 4#block name x y subblk block number
 5#---------- -- -- ------- -----------
 6a 0 1 0 #0 -- NB: block number is a comment.
 7b 1 0 0 #1
 8c 0 2 1 #2
 9d 1 3 0 #3
10e 1 3 1 #4
11out:xor5 0 2 0 #5
12xor5 1 2 0 #6
13[1] 1 1 0 #7

Routing File Format (.route)

The first line of the routing file gives the array size, nx x ny.
The remainder of the routing file lists the global or the detailed routing for each net, one by one.
Each routing begins with the word net, followed by the net index used internally by VPR to identify the net and, in brackets, the name of the net given in the netlist file.
The following lines define the routing of the net.
Each begins with a keyword that identifies a type of routing segment.
The possible keywords are SOURCE (the source of a certain output pin class), SINK (the sink of a certain input pin class), OPIN (output pin), IPIN (input pin), CHANX (horizontal channel), and CHANY (vertical channel).
Each routing begins on a SOURCE and ends on a SINK.
In brackets after the keyword is the (x, y) location of this routing resource.
Finally, the pad number (if the SOURCE, SINK, IPIN or OPIN was on an I/O pad), pin number (if the IPIN or OPIN was on a clb), class number (if the SOURCE or SINK was on a clb) or track number (for CHANX or CHANY) is listed – whichever one is appropriate.
The meaning of these numbers should be fairly obvious in each case.
If we are attaching to a pad, the pad number given for a resource is the subblock number defining to which pad at location (x, y) we are attached.
See Fig. 51 for a diagram of the coordinate system used by VPR.
In a horizontal channel (CHANX) track 0 is the bottommost track, while in a vertical channel (CHANY) track 0 is the leftmost track.
Note that if only global routing was performed the track number for each of the CHANX and CHANY resources listed in the routing will be 0, as global routing does not assign tracks to the various nets.

For an N-pin net, we need N-1 distinct wiring “paths” to connect all the pins.
The first wiring path will always go from a SOURCE to a SINK.
The routing segment listed immediately after the SINK is the part of the existing routing to which the new path attaches.

Note

It is important to realize that the first pin after a SINK is the connection into the already specified routing tree; when computing routing statistics be sure that you do not count the same segment several times by ignoring this fact.

Note

Use vpr --route_file to override the default route file name.

Routing File Format Examples

An example routing for one net is listed below:

Listing 10 Example routing for a non-global net.

 1Net 5 (xor5)
 2
 3Node: 1 SOURCE (1,2) Class: 1 Switch: 1 # Source for pins of class 1.
 4Node: 2 OPIN (1,2) Pin: 4 clb.O[12] Switch:0 #Output pin the O port of clb block, pin number 12
 5Node: 4 CHANX (1,1) to (4,1) Track: 1 Switch: 1
 6Node: 6 CHANX (4,1) to (7,1) Track: 1 Switch: 1
 7Node: 8 IPIN (7,1) Pin: 0 clb.I[0] Switch: 2
 8Node: 9 SINK (7,1) Class: 0 Switch: -1 # Sink for pins of class 0 on a clb.
 9Node: 4 CHANX (7,1) to (10,1) Track: 1 Switch: 1 # Note: Connection to existing routing!
10Node: 5 CHANY (10,1) to (10,4) Track: 1 Switch: 0
11Node: 4 CHANX (10,4) to (13,4) Track: 1 Switch: 1
12Node: 10 CHANX (13,4) to (16,4) Track: 1 Switch: 1
13Node: 11 IPIN (16,4) Pad: 1 clb.I[1] Switch: 2
14Node: 12 SINK (16,4) Pad: 1 Switch: -1 # This sink is an output pad at (16,4), subblock 1.

Nets which are specified to be global in the netlist file (generally clocks) are not routed.
Instead, a list of the blocks (name and internal index) which this net must connect is printed out.
The location of each block and the class of the pin to which the net must connect at each block is also printed.
For clbs, the class is simply whatever class was specified for that pin in the architecture input file.
For pads the pinclass is always -1; since pads do not have logically-equivalent pins, pin classes are not needed.
An example listing for a global net is given below.

Listing 11 Example routing for a global net.

1Net 146 (pclk): global net connecting:
2Block pclk (#146) at (1,0), pinclass -1
3Block pksi_17_ (#431) at (3,26), pinclass 2
4Block pksi_185_ (#432) at (5,48), pinclass 2
5Block n_n2879 (#433) at (49,23), pinclass 2

Routing Resource Graph File Format (.xml)

The routing resource graph (rr graph) file is an XML file that describes the routing resources within the FPGA.
VPR can generate a rr graph that matches your architecture specifications (from the architecture xml file), or it can read in an externally generated rr graph.
When this file is written by VPR, the rr graph written out is the rr graph generated before routing with a final channel width
(even if multiple routings at different channel widths are performed during a binary search for the minimum channel width).
When reading in rr graph from an external file, the rr graph is used during both the placement and routing phases of VPR.
The file is constructed using tags. The top level is the rr_graph tag.
This tag contains all the channel, switches, segments, block, grid, node, and edge information of the FPGA.
It is important to keep all the values as high precision as possible. Sensitive values include capacitance and Tdel. As default, these values are printed out with a precision of 30 digits.
Each of these sections are separated into separate tags as described below.

Note

Use vpr --read_rr_graph to specify an RR graph file to be loaded.

Note

Use vpr --write_rr_graph to specify where the RR graph should be written.

Top Level Tags

The first tag in all rr graph files is the <rr_graph> tag that contains detailed subtags for each catagory in the rr graph.
Each tag has their subsequent subtags that describes one entity. For example, <segments> includes all the segments in the graph where each <segment> tag outlines one type of segment.

The rr_graph tag contains the following tags:

	
	<channels>
	
	<channel>``content``</channel>

	
	<switches>
	
	<switch>``content``</switch>

	
	<segments>
	
	<segment>``content``</segment>

	
	<block_types>
	
	<block_type>``content``</block_type>

	
	<grid>
	
	<grid_loc>``content``</grid_loc>

	
	<rr_nodes>
	
	<node>``content``</node>

	
	<rr_edges>
	
	<edge>``content``</edge>

Note

The rr graph is based on the architecture, so more detailed description of each section of the rr graph can be found at FPGA architecture description

Detailed Tag Information

Channel

The channel information is contained within the channels subtag. This describes the minimum and maximum channel width within the architecture. Each channels tag has the following subtags:

	
<channel chan_width_max="int" x_min="int" y_min="int" x_max="int" y_max="int"/>

	This is a required subtag that contains information about the general channel width information. This stores the channel width between x or y directed channels.

	Required Attributes:

	
	chan_width_max – Stores the maximum channel width value of x or y channels.

	x_min y_min x_max y_max – Stores the minimum and maximum value of x and y coordinate within the lists.

	
<x_list index="int" info="int"/> <y_list index="int" info="int"/>

	
These are a required subtags that lists the contents of an x_list and y_list array which stores the width of each channel. The x_list array size as large as the size of the y dimension of the FPGA itself while the y_list has the size of the x_dimension. This x_list tag is repeated for each index within the array.

	Required Attributes:

	
	index – Describes the index within the array.

	info – The width of each channel. The minimum is one track per channel.
The input and output channels are io_rat * maximum in interior tracks wide.
The channel distributions read from the architecture file are scaled by a constant factor.

Switches

A switches tag contains all the switches and its information within the FPGA. It should be noted that for values such as capacitance, Tdel, and sizing info all have high precision. This ensures a more accurate calculation when reading in the routing resource graph. Each switch tag has a switch subtag.

	
<switch id="int" name="unique_identifier" type="{mux|tristate|pass_gate|short|buffer}">

	
	Required Attributes:

	
	id – A unique identifier for that type of switch.

	name – An optional general identifier for the switch.

	type – See architecture switch description.

	
<timing R="float" cin="float" Cout="float" Tdel="float/>

	
This optional subtag contains information used for timing analysis. Without it, the program assums all subtags to contain a value of 0.

	Optional Attributes:

	
	R, Cin, Cout – The resistance, input capacitance and output capacitance of the switch.

	Tdel – Switch’s intrinsic delay. It can be outlined that the delay through an unloaded switch is Tdel + R * Cout.

	
<sizing mux_trans_size="int" buf_size="float"/>

	
The sizing information contains all the information needed for area calculation.

	Required Attributes:

	
	mux_trans_size – The area of each transistor in the segment’s driving mux. This is measured in minimum width transistor units.

	buf_size – The area of the buffer. If this is set to zero, the area is calculated from the resistance.

Segments

The segments tag contains all the segments and its information. Note again that the capacitance has a high decimal precision. Each segment is then enclosed in its own segment tag.

	
<segment id="int" name="unique_identifier">

	
	Required Attributes:

	
	id – The index of this segment.

	name – The name of this segment.

	
<timing R_per_meter="float" C_per_meter="float">

	
This optional tag defines the timing information of this segment.

	Optional Attributes:

	
	R_per_meter, C_per_meter – The resistance and capacitance of a routing track, per unit logic block length.

Blocks

The block_types tag outlines the information of a placeable complex logic block. This includes generation, pin classes, and pins within each block. Information here is checked to make sure it corresponds with the architecture. It contains the following subtags:

	
<block_type id="int" name="unique_identifier" width="int" height="int">

	
This describes generation information about the block using the following attributes:

	Required Attributes:

	
	id – The index of the type of the descriptor in the array. This is used for index referencing

	name – A unique identifier for this type of block. Note that an empty block type must be denoted "EMPTY" without the brackets <> to prevent breaking the xml format. Input and output blocks must be named “io”. Other blocks can have any name.

	width, height – The width and height of a large block in grid tiles.

	
<pin_class type="pin_type">

	
This optional subtag of block_type describes groups of pins in configurable logic blocks that share common properties.

	Required Attributes:

	
	type – This describes whether the pin class is a driver or receiver. Valid inputs are OPEN, OUTPUT, and INPUT.

	
<pin ptc="block_pin_index">name</pin>

	
This required subtag of pin_class describes its pins.

	Required Attributes:

	
	ptc – The index of the pin within the block_type.

	name – Human readable pin name.

Grid

The grid tag contains information about the grid of the FPGA. Information here is checked to make sure it corresponds with the architecture. Each grid tag has one subtag as outlined below:

	
<grid_loc x="int" y="int" block_type_id="int" width_offset="int" height_offset="int">

	
	Required Attributes:

	
	x, y – The x and y coordinate location of this grid tile.

	block_type_id – The index of the type of logic block that resides here.

	width_offset, height_offset – The number of grid tiles reserved based on the width and height of a block.

Nodes

The rr_nodes tag stores information about each node for the routing resource graph. These nodes describe each wire and each logic block pin as represented by nodes.

	
<node id="int" type="unique_type" direction="unique_direction" capacity="int">

	
	Required Attributes:

	
	id – The index of the particular routing resource node

	type – Indicates whether the node is a wire or a logic block.
Valid inputs for class types are { CHANX | CHANY | SOURCE | SINK | OPIN | IPIN }.
Where CHANX and CHANY describe a horizontal and vertical channel.
Sources and sinks describes where nets begin and end.
OPIN represents an output pin and IPIN representd an input pin

	capacity – The number of routes that can use this node.

	Optional Attributes:

	
	direction – If the node represents a track (CHANX or CHANY), this field represents its direction as {INC_DIR | DEC_DIR | BI_DIR}.
In other cases this attribute should not be specified.

	
<loc xlow="int" ylow="int" xhigh="int" yhigh="int" side="{LEFT|RIGHT|TOP|BOTTOM}" ptc="int">

	Contains location information for this node. For pins or segments of length one, xlow = xhigh and ylow = yhigh.

	Required Attributes:

	
	xlow, xhigh, ylow, yhigh – Integer coordinates of the ends of this routing source.

	ptc – This is the pin, track, or class number that depends on the rr_node type.

	Optional Attributes:

	
	side – For IPIN and OPIN nodes specifies the side of the grid tile on which the node is located.
Valid values are { LEFT | RIGHT | TOP | BOTTOM }.
In other cases this attribute should not be specified.

	
<timing R="float" C="float">

	This optional subtag contains information used for timing analysis

	Required Attributes:

	
	R – The resistance that goes through this node. This is only the metal resistance, it does not include the resistance of the switch that leads to another routing resource node.

	C – The total capacitance of this node. This includes the metal capacitance, input capacitance of all the switches hanging off the node, the output capacitance of all the switches to the node, and the connection box buffer capacitances that hangs off it.

	
<segment segment_id="int">

	
This optional subtag describes the information of the segment that connects to the node.

	Required Attributes:

	
	segment_id – This describes the index of the segment type. This value only applies to horizontal and vertical channel types. It can be left empty, or as -1 for other types of nodes.

Edges

The final subtag is the rr_edges tag that encloses information about all the edges between nodes. Each rr_edges tag contains multiple subtags:

	
<edge src_node="int" sink_node="int" switch_id="int"/>

	This subtag repeats every edge that connects nodes together in the graph.

	Required Attributes:

	
	src_node, sink_node – The index for the source and sink node that this edge connects to.

	switch_id – The type of switch that connects the two nodes.

Node and Edge Metadata

metadata blocks (see Architecture metadata) are supported under both node and edge tags.

Routing Resource Graph Format Example

An example of what a generated routing resource graph file would look like is shown below:

Listing 12 Example of a routing resource graph in XML format

 1<rr_graph tool_name="vpr" tool_version="82a3c72" tool_comment="Based on my_arch.xml">
 2 <channels>
 3 <channel chan_width_max="2" x_min="2" y_min="2" x_max="2" y_max="2"/>
 4 <x_list index="1" info="5"/>
 5 <x_list index="2" info="5"/>
 6 <y_list index="1" info="5"/>
 7 <y_list index="2" info="5"/>
 8 </channels>
 9 <switches>
10 <switch id="0" name="my_switch" buffered="1">
11 <timing R="100" Cin="1233-12" Cout="123e-12" Tdel="1e-9"/>
12 <sizing mux_trans_size="2.32" buf_size="23.54"/>
13 </switch>
14 </switches>
15 <segments>
16 <segment id="0" name="L4">
17 <timing R_per_meter="201.7" C_per_meter="18.110e-15"/>
18 </segment>
19 </segments>
20 <block_types>
21 <block_type id="0" name="io" width="1" height="1">
22 <pin_class type="input">
23 <pin ptc="0">DATIN[0]</pin>
24 <pin ptc="1">DATIN[1]</pin>
25 <pin ptc="2">DATIN[2]</pin>
26 <pin ptc="3">DATIN[3]</pin>
27 </pin_class>
28 <pin_class type="output">
29 <pin ptc="4">DATOUT[0]</pin>
30 <pin ptc="5">DATOUT[1]</pin>
31 <pin ptc="6">DATOUT[2]</pin>
32 <pin ptc="7">DATOUT[3]</pin>
33 </pin_class>
34 </block_type>
35 <block_type id="1" name="buf" width="1" height="1">
36 <pin_class type="input">
37 <pin ptc="0">IN</pin>
38 </pin_class>
39 <pin_class type="output">
40 <pin ptc="1">OUT</pin>
41 </pin_class>
42 </block_type>
43 </block_types>
44 <grid>
45 <grid_loc x="0" y="0" block_type_id="0" width_offset="0" height_offset="0"/>
46 <grid_loc x="1" y="0" block_type_id="1" width_offset="0" height_offset="0"/>
47 </grid>
48 <rr_nodes>
49 <node id="0" type="SOURCE" direction="NONE" capacity="1">
50 <loc xlow="0" ylow="0" xhigh="0" yhigh="0" ptc="0"/>
51 <timing R="0" C="0"/>
52 </node>
53 <node id="1" type="CHANX" direction="INC" capacity="1">
54 <loc xlow="0" ylow="0" xhigh="2" yhigh="0" ptc="0"/>
55 <timing R="100" C="12e-12"/>
56 <segment segment_id="0"/>
57 </node>
58 </rr_nodes>
59 <rr_edges>
60 <edge src_node="0" sink_node="1" switch_id="0"/>
61 <edge src_node="1" sink_node="2" switch_id="0"/>
62 </rr_edges>
63</rr_graph>

Binary Format (Cap’n Proto)

To aid in handling large graphs, rr_graph files can also be saved in a binary (Cap’n Proto) format. This will result in a smaller file and faster read/write times.

Network-on-Chip (NoC) Traffic Flows Format (.flows)

In order to co-optimize for the NoC placement VPR needs expected performance metrics of the NoC.
VPR defines the performance requirements of the NoC as traffic flows. A traffic flow is a one-way communication between two
logical routers in a design. The traffic flows provide the communications bandwidth and Quality of
Service (QoS) requirements. The traffic flows are application dependant and need to be supplied
externally by a user. The traffic flows file is an XML based file format which designers
can use to describe the traffic flows in a given application.

Note

Use vpr --noc_traffic_flows to specify an NoC traffic flows file to be loaded.

Top Level Tags

The first tag in all NoC traffic flow files is the <traffic_flows> tag that contains detailed subtags for each catagory in the NoC traffic flows.

The traffic_flows tag contains the following tags:

	
	<single_flow>
	
	<single_flow>``content``</single_flow>

Detailed Tag Information

Single Flow

A given traffic flow information is contained within the single_flow tag. There can be 0 or more single flow tags.
0 would indicate that an application does not have any traffic flows.

	
<channel src="logical_router_name" dst="logical_router_name" bandwidth="float" latency_cons="float" priority="int"/>

	
	Optional Attributes:

	
	latency_cons – A floating point number which indicates the upper bound
on the latency for a traffic flow. This is in units of seconds and is an optional attribute.
If this attribute is not provided then the CAD tool will try to reduce the latency as much
as possible.

	priority – An integer which represents the relative importance of the traffic flow
against all other traffic flows in an application. For example, a traffic flow with priority
10 would be weighted ten times more than a traffic flow with priority 1. This is an
optional attribute and by default all traffic flows have a priority of 1

	Required Attributes:

	
	src – A string which represents a logical router name in an application.
This logical router is the source endpoint for the traffic flow being described by the cor-
responding single flow tag. The logical router name must match the name of the router
as found in the clustered netlist; since this name assigned by the CAD tool, instead of
having the designer go through the clustered netlist to retrieve the exact name we instead
allow designers to use regex patters in the logical router name. For example, instead of
”noc_router_adapter_block:noc_router_layer1_mvm2:slave_tready_reg0” user could pro-
vide ”.*noc_router_layer1_mvm2.*”. This allows users to provide the instance name for a given logical router
module in the design. This is a required attribute.

	dst – A string which represents a logical router name in an application.
This logical router is the deastination endpoint for the traffic flow being described by the cor-
responding single flow tag. The logical router name must match the name of the router
as found in the clustered netlist; since this name assigned by the CAD tool, instead of
having the designer go through the clustered netlist to retrieve the exact name we instead
allow designers to use regex patters in the logical router name. For example, instead of
”noc_router_adapter_block:noc_router_layer1_mvm3:slave_tready_reg0” user could pro-
vide ”.*noc_router_layer1_mvm3.*”. This allows users to provide the instance name for a given logical router
module in the design. This is a required attribute.

	bandwidth – A floating point number which indicates the data size in the
traffic flow communication. This is in units of bits-per-second (bps) and is a required
attribute.

NoC Traffic Flows File Example

An example of what a NoC traffic flows file looks like is shown below:

Listing 13 Example of a NoC traffic flows file in XML format

1<traffic_flows>
2 <single_flow src="m0" dst="m1" bandwidth="2.3e9" latency_cons="3e-9"/>
3 <single_flow src="m0" dst="m2" bandwidth="5e8"/>
4 <single_flow src="ddr" dst="m0" bandwidth="1.3e8" priority=3/>
5 <single_flow src="m3" dst="m2" bandwidth="4.8e9" latency_cons="5e-9" priority=2/>
6</traffic_flows>

Block types usage summary (.txt .xml or .json)

Block types usage summary is a file written in human or machine readable format.
It describes types and the amount of cluster-level FPGA resources that are used
by implemented design. This file is generated after the placement step with
option: –write_block_usage <filename>. It can be saved as a human readable
text file or in XML or JSON file to provide machine readable output. Format is
selected based on the extension of the <filename>.

The summary consists of 4 parameters:

	nets number - the amount of created nets

	blocks number - sum of blocks used to implement the design

	input pins - sum of input pins

	output pins - sum of output pins

and a list of block types followed by the number of specific block types that
are used in the design.

TXT

Presents the information in human readable format, the same as in log output:

Listing 14 TXT format of block types usage summary

1Netlist num_nets: <int>
2Netlist num_blocks: <int>
3Netlist <block_type_name_0> blocks: <int>
4Netlist <block_type_name_1> blocks: <int>
5...
6Netlist <block_type_name_n> blocks: <int>
7Netlist inputs pins: <int>
8Netlist output pins: <int>

JSON

One of two available machine readable formats. The information is written as follows:

Listing 15 JSON format of block types usage summary

 1{
 2 "num_nets": "<int>",
 3 "num_blocks": "<int>",
 4 "input_pins": "<int>",
 5 "output_pins": "<int>",
 6 "blocks": {
 7 "<block_type_name_0>": <int>,
 8 "<block_type_name_1>": <int>,
 9 ...
10 "<block_type_name_n>": <int>
11 }
12}

XML

Second machine readable format. The information is written as follows:

Listing 16 XML format of block types usage summary

 1<?xml version="1.0" encoding="UTF-8"?>
 2<block_usage_report>
 3 <nets num="<int>"></nets>
 4 <blocks num="<int>">
 5 <block type="<block_type_name_0>" usage="<int>"></block>
 6 <block type="<block_type_name_1>" usage="<int>"></block>
 7 ...
 8 <block type="<block_type_name_n>" usage="<int>"></block>
 9 </blocks>
10 <input_pins num="<int>"></input_pins>
11 <output_pins num="<int>"></output_pins>
12</block_usage_report>

Timing summary (.txt .xml or .json)

Timing summary is a file written in human or machine readable format.
It describes final timing parameters of design implemented for the FPGA device.
This file is generated after the routing step with option: –write_timing_summary <filename>.
It can be saved as a human readable text file or in XML or JSON file to provide
machine readable output. Format is selected based on the extension of the <filename>.

The summary consists of 4 parameters:

	Critical Path Delay (cpd) [ns]

	Max Circuit Frequency (Fmax) [MHz]

	setup Worst Negative Slack (sWNS) [ns]

	setup Total Negative Slack (sTNS) [ns]

TXT

Presents the information in human readable format, the same as in log output:

Listing 17 TXT format of timing summary

1Final critical path delay (least slack): <double> ns, Fmax: <double> MHz
2Final setup Worst Negative Slack (sWNS): <double> ns
3Final setup Total Negative Slack (sTNS): <double> ns

JSON

One of two available machine readable formats. The information is written as follows:

Listing 18 JSON format of timing summary

1{
2 "cpd": <double>,
3 "fmax": <double>,
4 "swns": <double>,
5 "stns": <double>
6}

XML

Second machine readable format. The information is written as follows:

Listing 19 XML format of timing summary

1<?xml version="1.0" encoding="UTF-8"?>
2<timing_summary_report>
3 <cpd value="<double>" unit="ns" description="Final critical path delay"></nets>
4 <fmax value="<double>" unit="MHz" description="Max circuit frequency"></fmax>
5 <swns value="<double>" unit="ns" description="setup Worst Negative Slack (sWNS)"></swns>
6 <stns value="<double>" unit="ns" description="setup Total Negative Slack (sTNS)"></stns>
7</block_usage_report>

Debugging Aids

Note

This section is most relevant to developers modifying VPR

The report_timing.setup.rpt file lists details about the critical path of a circuit, and is very useful for determining why your circuit is so fast or so slow.

To access detailed echo files from VPR’s operation, use the command-line option --echo_file on.
After parsing the netlist and architecture files, VPR dumps out an image of its internal data structures into echo files (typically ending in .echo).
These files can be examined to be sure that VPR is parsing the input files as you expect.

You ca visualize and control the placement move generator whenever the placement engine is paused in the UI. Run with graphics and VTR_ENABLE_DEBUG_LOGGONG enabled and set a breakpoint to stop placement. The new location of the moving block for each proposed move will be highlighted with GREEN and the old location will be highlighted with GOLD. The fanin and fanout blocks will also be highlighted. The move type, move outcome and delta cost will be printed in the status bar.
.. warning:: VPR must have been compiled with VTR_ENABLE_DEBUG_LOGGING on to get any debug output from this flag.

If the preprocessor flag DEBUG is defined in vpr_types.h, some additional sanity checks are performed during a run.
DEBUG only slows execution by 1 to 2%.
The major sanity checks are always enabled, regardless of the state of DEBUG.
Finally, if VERBOSE is set in vpr_types.h, a great deal of intermediate data will be printed to the screen as VPR runs.
If you set verbose, you may want to redirect screen output to a file.

The initial and final placement costs provide useful numbers for regression testing the netlist parsers and the placer, respectively.
VPR generates and prints out a routing serial number to allow easy regression testing of the router.

Finally, if you need to route an FPGA whose routing architecture cannot be described in VPR’s architecture description file, don’t despair!
The router, graphics, sanity checker, and statistics routines all work only with a graph that defines all the available routing resources in the FPGA and the permissible connections between them.
If you change the routines that build this graph (in rr_graph*.c) so that they create a graph describing your FPGA, you should be able to route your FPGA.
If you want to read a text file describing the entire routing resource graph, call the dump_rr_graph subroutine.

Placer and Router Debugger

[image: ../_images/debuggerWindow.png]

Overview

It can be very useful to stop the program at a significant point and evaluate the circuit at that stage. This debugger allows setting breakpoints during placement and routing using a variety of variables and operations. For example the user can stop the placer after a certain number of perturbations, temperature changes, or when a specific block is moved. It can also stop after a net is routed in the routing process and other such scenarios. There are multiple ways to set and manipulate breakpoints which are all explained in detail below.

Adding a breakpoint

Currently the user is required to have graphics on in order to set breakpoints. By clocking the “Debug” button, the debugger window opens up and from there the user can enter integer values in the entry fields and set breakpoints. A more advanced option is using expressions which allows a wider variety of settings since the user can incorporate multiple variables and use boolean operators. This option is found by clicking the “Advanced” button in the debugger window. Using an expression is more accurate than the entry fields when setting multiple breakpoints.

Enabling/Disabling a breakpoint

Enabling and disabling breakpoints are done using the checkboxes in front of each breakpoint in the breakpoint list. The breakpoint is enabled when the box is checked and disabled otherwise.

Deleting a breakpoint

Deleting a breakpoint is done using the trash can button in front of each breakpoint in the breakpoint list.

Reaching a breakpoint

Upon reaching a breakpoint, the program will stop, notify the user which breakpoint was encountered, and give a summary of the current variable values. This information is presented through a pop-up window and printed to the terminal as well.

Available Variables

[image: ../_images/advancedWindow.png]
You can also find the variables’ list in the Advanced Settings Window, on the left.

Placer Variables

	
	move_num: every placer perturbation counts as a move, so the user can stop the program after a certain number of moves. This breakpoint can be enabled through the entry field on the main debugger window or using an expression. It should be noted however, that using the entry field would proceed the specified number of moves. (as in the second example)
	
	Ex. move _num == 33

	Ex. move_num += 4

	
	temp_count: every time the temperature is updated it counts as an increase to temp_count. This breakpoint can be enabled through the entry field on the main debugger window or using an expression. It should be noted however, that using the entry field would proceed the specified number of temperatures. (as in the second example)
	
	Ex. temp_count == 5

	Ex. temp_count += 5

	
	from_block: in every placer move one or more blocks are relocated. from_block specifies the first block that is relocated in every move; and a breakpoint of this type stops the program when the first block moved is the one indicated by the user. This breakpoint can be enabled through the entry field on the main debugger window or using an expression.
	
	Ex. from_block == 83

	
	in_blocks_affected: this variable allows you to stop after your specified block was moved. Unlike “from_block” which only checks the first block relocated in every move, in_blocks_affected looks through all the blocks whose locations were changed by that move. This breakpoint can only be enabled through the use of an expression.
	
	Ex. in_blocks_affected == 83

Router Variables

	
	router_iter: Every pass through the whole netlist (with each unrouted or poorly routed net being re-routed) counts as a router iteration. This breakpoint can be enabled through the entry field on the main debugger window or using an expression.
	
	Ex. router_iter == 2

	
	route_net_id: stops after the specified net is rerouted. This breakpoint can be enabled through the entry field on the main debugger window or using an expression.
	
	route_net_id == 12

Available Operators

	
	==
	
	Ex. temp_count == 2

	
	>
	
	Ex. move_num > 94

	
	<
	
	Ex. move_num < 94

	
	>=
	
	Ex. router_iter >=2

	
	<=
	
	Ex. router_iter <=2

	
	&&
	
	Ex. from_block == 83 && move_num > 72

	
	||
	
	Ex. in_blocks_affected == 11 || temp_count == 9

	
	+=
	
	Ex. move_num += 8

Parmys

Parmys frontend utilizes Yosys which is a framework for Verilog RTL synthesis and Parmys-plugin as partial mapper.

Quickstart

	Quickstart
	Prerequisites

	Building

	Basic Usage

Yosys

	Yosys

Parmys Plugin

	Parmys Plugin
	Available parameters

Structure

	Structure
	Structure of Parmys Frontend (Yosys + Parmys Plugin)

Quickstart

Prerequisites

	ctags

	bison

	flex

	g++ 9.x

	cmake 3.16 (minimum version)

	time

	cairo

	build-essential

	libreadline-dev

	gawk tcl-dev

	libffi-dev

	git

	graphviz

	xdot

	pkg-config

	python3-dev

	libboost-system-dev

	libboost-python-dev

	libboost-filesystem-dev

	zlib1g-dev

Building

To build the VTR flow with the Parmys front-end you may use the VTR Makefile wrapper, by calling the make CMAKE_PARAMS="-DWITH_PARMYS=ON" command in the $VTR_ROOT directory.

Note

Our CI testing is on Ubuntu 22.04, so that is the best tested platform and recommended for development.

Note

Compiling the VTR flow with the -DYOSYS_F4PGA_PLUGINS=ON flag is required to build and install Yosys SystemVerilog and UHDM plugins.
Using this compile flag, the Yosys-F4PGA-Plugins [https://github.com/chipsalliance/yosys-f4pga-plugins] and Surelog [https://github.com/chipsalliance/Surelog] repositories are cloned in the $VTR_ROOT/libs/EXTERNAL directory and then will be compiled and added as external plugins to the Parmys front-end.

Basic Usage

To run the VTR flow with the Parmys front-end, you would need to run the run_vtr_flow.py [https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/vtr_flow/scripts/run_vtr_flow.py] script with the start stage specified as parmys.

./run_vtr_flow `PATH_TO_VERILOG_FILE.v` `PATH_TO_ARCH_FILE.xml` -start parmys

Note

Please see Run VTR Flow [https://docs.verilogtorouting.org/en/latest/vtr/run_vtr_flow/#advanced-usage] for advanced usage of the Parmys front-end with external plugins.

Note

Parmys is the default frontend in VTR flow which means it is no more necessary to pass build flags to cmake or explicitly define the start stage of vtr flow as parmys.

Yosys

Yosys is a Verilog RTL synthesis framework to perform logic synthesis, elaboration, and converting a subset of the Verilog Hardware Description Language (HDL) into a BLIF netlist.
Please see Yosys GitHub [https://github.com/YosysHQ/yosys.git] repository for more information.

Parmys Plugin

Parmys (Partial Mapper for Yosys) is a Yosys plugin that performs intelligent partial mapping (inference, binding, and hard/soft logic trade-offs) from Odin-II.
Please see Parmys-Plugin GitHub [https://github.com/CAS-Atlantic/parmys-plugin.git] repository for more information.

Available parameters

	
-a ARCHITECTURE_FILE

	VTR FPGA architecture description file (XML)

	
-c XML_CONFIGURATION_FILE

	Configuration file

	
-top top_module

	set the specified module as design top module

	
-nopass

	No additional passes will be executed.

	
-exact_mults int_value

	To enable mixing hard block and soft logic implementation of adders

	
-mults_ratio float_value

	To enable mixing hard block and soft logic implementation of adders

	
-vtr_prim

	No additional passes will be executed.

	
-vtr_prim

	loads vtr primitives as modules, if the design uses vtr primitives then this flag is mandatory for first run

Structure

Structure of Parmys Frontend (Yosys + Parmys Plugin)

└── $VTR_ROOT
 ├── vtr_flow
 │ └── misc
 │ └── parmys
 │ └── synthesis.tcl
 ├── parmys
 │ ├── parmys-plugin
 │ │ ├── core
 │ │ ├── mapping
 │ │ ├── netlist
 │ │ ├── techlibs
 │ │ ├── tests
 │ │ └──utils
 │ ├── test-utils
 │ └── third_party
 └── yosys
 ├── backends
 ├── examples
 ├── frontends
 ├── guidelines
 ├── kernel
 ├── libs
 ├── manual
 ├── misc
 ├── passes
 ├── techlibs
 └── tests

Odin II

Odin II is used for logic synthesis and elaboration, converting a subset of the Verilog Hardware Description Language (HDL) into a BLIF netlist.

Note

Odin-II has been deprecated and will be removed in a future version. Now VTR uses Parmys as the default frontend which utilizes Yosys as elaborator with partial mapping features enabled.

To build the VTR flow with the Odin-II front-end you may use the VTR Makefile wrapper, by calling the make CMAKE_PARAMS="-DWITH_ODIN=ON" command in the $VTR_ROOT directory.

Quickstart

	Quickstart
	Prerequisites

	Building

	Basic Usage

	Example Usage

User Guide

	User guide
	Synthesis Arguments

	Simulation Arguments

	Examples

	Getting Help

	Reporting Bugs and Feature Requests

verilog Support

	Verilog Support
	Lexicon

	Syntax

Developer Guide

	Contributing
	Creating a Pull Request (PR)

	Odin II’s Flow

	Useful tools of Odin II for Developers

	Regression Tests
	Benchmarks

	Creating Regression Tests

	Regression Test Summaries

	Verify Script
	Arguments

	Examples

	TESTING ODIN II
	USING MODELSIM TO TEST ODIN II

Quickstart

Prerequisites

	ctags

	bison

	flex

	gcc 5.x

	cmake 3.9 (minimum version)

	time

	cairo

Building

To build you may use the Makefile wrapper in the $VTR_ROOT/odin_ii make build To build with debug symbols you may use the Makefile wrapper in $VTR_ROOT/odin_ii make debug

NOTE

ODIN uses CMake as it’s build system. CMake provides a portable cross-platform build systems with many useful features.
For unix-like systems we provide a wrapper Makefile which supports the traditional make and make clean commands, but calls CMake behind the scenes.

WARNING

After you build Odin, please run from the $VTR_ROOT/odin_ii make test.
This will simulate and verify all of the included microbenchmark circuits to ensure that Odin is working correctly on your system.

Basic Usage

./odin_ii [arguments]

*Requires one and only one of -c, -v, or -b

	arg
	following argument
	Description

	-c
	XML Configuration File
	an XML configuration file dictating the runtime parameters of odin

	-v
	Verilog HDL File
	You may specify multiple space-separated verilog HDL files

	-b
	BLIF File
	You may specify multiple space-separated blif files

	-o
	BLIF output file
	full output path and file name for the blif output file

	-a
	architecture file
	You may not specify the architecture file, which results in pure soft logic synthesis

	-h
	
	Print help

Example Usage

The following are simple command-line arguments and a description of what they do.
It is assumed that they are being performed in the odin_ii directory.

 ./odin_ii -v <path/to/verilog/File>

Passes a verilog HDL file to Odin II where it is synthesized.
Warnings and errors may appear regarding the HDL code.

 ./odin_ii -b <path/to/blif/file>

Passes a blif file to Odin II where it is synthesized.

 ./odin_ii -v <path/to/verilog/File> -a <path/to/arch/file> -o myModel.blif

Passes a verilog HDL file and and architecture to Odin II where it is synthesized.
Odin will use the architecture to do technology mapping.
Odin will output the blif in the current directory at ./myModel.blif
Warnings and errors may appear regarding the HDL code.

User guide

Synthesis Arguments

	arg
	following argument
	Description

	-c
	XML Configuration File
	XML runtime directives for the syntesizer such as the verilog file, and parametrized synthesis

	-v
	Verilog HDL File
	You may specify multiple space-separated verilog HDL files for synthesis

	-b
	BLIF File
	You may not specify multiple BLIF files as only single input BLIF file is accepted

	-o
	BLIF output file
	full output path and file name for the BLIF output file

	-a
	architecture file
	You may specify multiple space-separated Verilog HDL files for synthesis

	-G
	
	Output netlist graph in GraphViz viewable .dot format. (net.dot, opens with dotty)

	-A
	
	Output AST graph in in GraphViz viewable .dot format.

	-W
	
	Print all warnings. (Can be substantial.)

	-h
	
	Print help

Simulation Arguments

To activate simulation you must pass one and only one of the following argument:

	-g <number of random vector>

	-t <input vector file>

Simulation always produces the folowing files:

	input_vectors

	output_vectors

	test.do (ModelSim)

	arg
	following argument
	Description

	-g
	Number of random test vectors
	will simulate the generated netlist with the entered number of clock cycles using pseudo-random test vectors. \These vectors and the resulting output vectors are written to “input_vectors” and “output_vectors” respectively

	-t
	Input vector file
	Supply a predefined input vector file

	-T
	output vector file
	The output vectors is verified against the supplied predefined output vector file

	-E
	
	Output after both edges of the clock. (Default is to output only after the falling edge.)

	-R
	
	Output after rising edge of the clock only. (Default is to output only after the falling edge.)

	-p
	comma seperated list
	Comma-separated list of additional pins/nodes to monitor during simulation. (view NOTES)

	-U0
	
	initial register value to 0

	-U1
	
	initial resigster value to 1

	-UX
	
	initial resigster value to X (unknown) (DEFAULT)

	-L
	Comma seperated list
	Comma-separated list of primary inputs to hold high at cycle 0, and low for all subsequent cycles.

	-3
	
	Generate three valued logic. (Default is binary.)

Examples

Example for -p

	argument
	explanation

	-p input~0,input~1
	monitors pin 0 and 1 of input

	-p input
	monitors all pins of input as a single port

	-p input~
	monitors all pins of input as separate ports. (split)

NOTE

Matching for -p is done via strstr so general strings will match all
similar pins and nodes. (Eg: FF_NODE will create a single port with
all flipflops)

Example of .xml configuration file for -c

<config>
 <verilog_files>
 <!-- Way of specifying multiple files in a project! -->
 <verilog_file>verilog_file.v</verilog_file>
 </verilog_files>
 <output>
 <!-- These are the output flags for the project -->
 <output_type>blif</output_type>
 <output_path_and_name>./output_file.blif</output_path_and_name>
 <target>
 <!-- This is the target device the output is being built for -->
 <arch_file>fpga_architecture_file.xml</arch_file>
 </target>
 </output>
 <optimizations>
 <!-- This is where the optimization flags go -->
 </optimizations>
 <debug_outputs>
 <!-- Various debug options -->
 <debug_output_path>.</debug_output_path>
 <output_ast_graphs>1</output_ast_graphs>
 <output_netlist_graphs>1</output_netlist_graphs>
 </debug_outputs>
</config>

NOTE

Hard blocks can be simulated; given a hardblock named block in the
architecture file with an instance of it named instance in the
verilog file, write a C method with signature defined in
SRC/sim_block.h and compile it with an output filename of
block+instance.so in the directory you plan to invoke Odin_II from.

When compiling the file, you’ll need to specify the following
arguments to the compiler (assuming that you’re in the SANBOX
directory):

cc -I../../libarchfpga_6/include/ -L../../libarchfpga_6 -lvpr_6 -lm --shared -o block+instance.so block.c.

If the netlist generated by Odin II contains the definition of a
hardblock which doesn’t have a shared object file defined for it in
the working directory, Odin II will not work if you specify it to use
the simulator with the -g or -t options.

WARNING

Use of static memory within the simulation code necessitates compiling
a distinct shared object file for each instance of the block you wish
to simulate. The method signature the simulator expects contains only
int and int[] parameters, leaving the code provided to simulate the
hard block agnostic of the internal Odin II data structures. However,
a cycle parameter is included to provide researchers with the ability
to delay results of operations performed by the simulation code.

Examples vector file for -t or -T

Example vector input file
GLOBAL_SIM_BASE_CLK intput_1 input_2 input_3 clk_input
Comment
0 0XA 1011 0XD 0
0 0XB 0011 0XF 1
0 0XC 1100 0X2 0

Example vector output file
output_1 output_2
Comment
1011 0Xf
0110 0X4
1000 0X5

NOTE

Each line represents a vector. Each value must be specified in binary
or hex. Comments may be included by placing an # at the start of the
line. Blank lines are ignored. Values may be separated by non-newline
whitespace. (tabs and spaces) Hex values must be prefixed with 0X or 0x.

Each line in the vector file represents one cycle, or one falling edge
and one rising edge. Input vectors are read on a falling edge, while
output vectors are written on a rising edge.

The input vector file does not have a clock input, it is assumed it is
controlled by a single global clock that is why it is necessary to add
a GLOBAL_SIM_BASE_CLK to the input. To read more about this please
visit here [http://www.cs.columbia.edu/~cs6861/sis/blif/index.html].

Examples using vector files -t and -T

A very useful function of Odin II is to compare the simulated output vector file with the expected output vector file based on an input vector file and a verilog file.
To do this the command line should be:

./odin_ii -v <Path/to/verilog/file> -t <Path/to/Input/Vector/File> -T <Path/to/Output/Vector/File>

An error will arrise if the output vector files do not match.

Without an expected vector output file the command line would be:

./odin_ii -v <Path/to/verilog/file> -t <Path/to/Input/Vector/File>

The generated output file can be found in the current directory under the name output_vectors.

Example using vector files -g

This function generates N amounnt of random input vectors for Odin II to simulate with.

./odin_ii -v <Path/to/verilog/file> -g 10

This example will produce 10 autogenerated input vectors. These vectors can be found in the current directory under input_vectors and the resulting output vectors can be found under output_vectors.

Getting Help

If you have any questions or concerns there are multiple outlets to express them.
There is a google group [https://groups.google.com/forum/#!forum/vtr-users] for users who have questions that is checked regularly by Odin II team members.
If you have found a bug please make an issue in the vtr-verilog-to-routing GitHub repository [https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues?q=is%3Aopen+is%3Aissue+label%3AOdin].

Reporting Bugs and Feature Requests

Creating an Issue on GitHub

Odin II is still in development and there may be bugs present.
If Odin II doesn’t perform as expected or doesn’t adhere to the Verilog Standard, it is important to create a bug report [https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues/new/choose] in the GitHub repository.
There is a template included, but make sure to include micro-benchmark(s) that reproduces the bug. This micro-benchmark should be as simple as possible.
It is important to link some documentation that provides insight on what Odin II is doing that differs from the Verilog Standard.
Linked below is a pdf of the IEEE Standard of Verilog (2005) that could help.

IEEE Standard for Verilog Hardware Description Language [http://staff.ustc.edu.cn/~songch/download/IEEE.1364-2005.pdf]

If unsure, there are several outlets to ask questions in the Help section.

Feature Requests

If there are any features that the Odin II system overlooks or would be a great addition, please make a feature request [https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues/new/choose] in the GitHub repository. There is a template provided and be as in-depth as possible.

Verilog Support

Lexicon

Verilog Synthesizable Operators Support

	Supported Operators
	NOT Sup. Operators

	!=
	

	!==
	

	==
	

	===
	

	=>
	

	**
	

	\^\~
	

	\<\<\<
	

	>>>
	

	>=
	

	||
	

	\~&
	

	&&
	

	\<\<
	

	\<=
	

	>>
	

	\~\^
	

	\~
	

	-:
	

	+:
	

Verilog NON-Synthesizable Operator Support

	Supported Operators
	NOT Sup. Operators

	&&&
	

Verilog Synthesizable Keyword Support

	Supported Keyword
	NOT Sup. Keyword

	@()
	repeat

	@*
	deassign

	always
	edge

	and
	forever

	assign
	disable

	case
	

	defparam
	

	end
	

	endfunction
	

	endmodule
	

	begin
	

	default
	

	else
	

	endcase
	

	endspecify
	

	for
	

	function
	

	if
	

	inout
	

	input
	

	integer
	

	localparam
	

	module
	

	nand
	

	negedge
	

	nor
	

	not
	

	or
	

	output
	

	parameter
	

	posedge
	

	reg
	

	specify
	

	while
	

	wire
	

	xnor
	

	xor
	

	macromodule
	

	generate
	

	genvar
	

	automatic
	

	task
	

	endtask
	

	signed
	

Verilog NON-Synthesizable Keyword Support

	Supported Keyword
	NOT Sup. Keyword

	initial
	casex

	specparam
	casez

	
	endprimitive

	
	endtable

	
	event

	
	force

	
	fork

	
	join

	
	primitive

	
	release

	
	table

	
	time

	
	wait

Verilog Gate Level Modeling Support

	Supported Keyword
	NOT Sup. Keyword

	buf
	bufif0

	
	bufif1

	
	cmos

	
	highz0

	
	highz0

	
	highz1

	
	highz1

	
	large

	
	medium

	
	nmos

	
	notif0

	
	notif1

	
	pmos

	
	pull0

	
	pull1

	
	pulldown

	
	pullup

	
	rcmos

	
	rnmos

	
	rpmos

	
	rtran

	
	rtranif0

	
	rtranif1

	
	scalared

	
	small

	
	strong0

	
	strong0

	
	strong1

	
	strong1

	
	supply0

	
	supply1

	
	tran

	
	tranif0

	
	tranif1

	
	tri

	
	tri0

	
	tri1

	
	triand

	
	trior

	
	vectored

	
	wand

	
	weak0

	
	weak0

	
	weak1

	
	weak1

	
	wor

C Functions support

	Supported Functions

	$clog2

	$unsigned

	$signed

	$finish

	$display

Verilog Synthesizable preprocessor Keywords Support

	Supported Keywords
	NOT Sup. Keywords

	`ifdef
	`timescale

	`elsif
	`pragma

	`ifndef
	`line

	`else
	`celldefine

	`define
	`endcelldefine

	`undef
	`endcelldefine

	`endif
	`begin_keywords

	`include
	`end_keywords

	`default_nettype
	`nounconnected_drive

	`resetall
	`unconnected_drive

Syntax

inline port declaration in the module declaration i.e:

module a(input clk)
...
endmodule

Contributing

The Odin II team welcomes outside help from anyone interested.
To fix issues or add a new feature submit a PR or WIP PR following the provided guidelines.

Creating a Pull Request (PR)

Important Before creating a Pull Request (PR), if it is a bug you have happened upon and intend to fix make sure you create an issue beforehand.

Pull requests are intended to correct bugs and improve Odin’s performance.
To create a pull request, clone the vtr-verilog-to-routing repository [https://github.com/verilog-to-routing/vtr-verilog-to-routing] and branch from the master.
Make changes to the branch that improve Odin II and correct the bug.
Important In addition to correcting the bug, it is required that test cases (benchmarks) are created that reproduce the issue and are included in the regression tests.
An example of a good test case could be the benchmark found in the “Issue” being addressed.
The results of these new tests need to be regenerate. See regression tests for further instruction.
Push these changes to the cloned repository and create the pull request.
Add a description of the changes made and reference the “issue” that it corrects. There is a template provided on GitHub.

Creating a “Work in progress” (WIP) PR

Important Before creating a WIP PR, if it is a bug you have happened upon and intend to fix make sure you create an issue beforehand.

A “work in progress” PR is a pull request that isn’t complete or ready to be merged.
It is intended to demonstrate that an Issue is being addressed and indicates to other developers that they don’t need to fix it.
Creating a WIP PR is similar to a regular PR with a few adjustments.
First, clone the vtr-verilog-to-routing repository [https://github.com/verilog-to-routing/vtr-verilog-to-routing] and branch from the master.
Make changes to that branch.
Then, create a pull request with that branch and include WIP in the title.
This will automatically indicate that this PR is not ready to be merged.
Continue to work on the branch, pushing the commits regularly.
Like a PR, test cases must be included through the use of benchmarks.
See regression tests for further instruction.

Formating

Odin II shares the same contributing philosophy as VPR [https://docs.verilogtorouting.org/en/latest/dev/contributing/contributing/].
Most importantly PRs will be rejected if they do not respect the coding standard: see VPRs coding standard [https://docs.verilogtorouting.org/en/latest/dev/developing/#code-formatting]

To correct any code formatting issues flagged by the CI system, simply run make format to adapt the newly added code to VPR’s coding standard.
If you have made alterations to python scripts, you would probably need to run make format-py and ./dev/pylint_check.py from the VTR root directory to correct the python code formatting and check for lint errors.

Odin II’s Flow

Odin II functions by systematically executing a set of steps determined by the files and arguments passed in.
The figure below illustrates the flow of Odin II if a Verilog File is passed, with an optional FPGA Architecture Specification File.
The simulator is only activated if an Input Vector file is passed in which creates the Output Vector File.

.. graphviz ::
digraph G {
0 [label=”Verilog HDL File”,shape=plaintext];
2 [label=”Input Vector File”,shape=plaintext];
3 [label=”Output Vector File”,shape=diamond];
4 [label=”FPGA Architecture Specification File”,shape=plaintext];
5 [label=”Build Abstract Syntax Tree”,shape=box];
6 [label=”Elaborate AST”,shape=box];
7 [label=”Build Netlist”,shape=box];
8 [label=”Partial Mapping”,shape=box];
10 [label=”Simulator”,shape=box];
11 [label=”Output Blif”,shape=diamond];

0 -> 5 -> 6 -> 7 -> 8
7->10 [color=purple]
4->8 [style=dotted] [color=purple]
8->11
4->10 [style=dotted] [color=purple]
2->10 [color=purple]
10->3 [color=purple]

}

Currently, BLIF files being passed in are only used for simulation; no partial mapping takes place.
The flow is depicted in the figure below.

.. graphviz ::
digraph G {
0 [label=”Input Blif File”,shape=plaintext];
1 [label=”Read Blif”,shape=box];
3 [label=”Build Netlist”,shape=box];
4 [label=”Output Blif”,shape=diamond];
5 [label=”Simulator”,shape=box];
6 [label=”FPGA Architecture Specification File”,shape=box];
7 [label=”Input Vector File”,shape=plaintext];
8 [label=”Output Vector File”,shape=diamond];

0->1->3
3->5 [color=purple]
3->4
5->8 [color=purple]
7->5 [color=purple]
6->5 [style=dotted] [color=purple]

}

Building the Abstract Syntax Tree (AST)

Odin II uses Bison and Flex to parse a passed Verilog file and produce an Abstract Syntax Tree for each module found in the Verilog File.
The AST is considered the “front-end” of Odin II.
Most of the code for this can be found in verilog_bison.y, verilog_flex.l and parse_making_ast.cpp located in the odin_ii/SRC directory.

AST Elaboration

In this step, Odin II parses through the ASTs and elaborates specific parts like for loops, function instances, etc.
It also will simplify the tree and rid itself of useless parts, such as an unused if statement.
It then builds one large AST, incorporating each module.
The code for this can mostly be found in ast_elaborate.cpp located in the odin_ii/SRC directory.

NOTE

These ASTs can be viewed via graphviz using the command -A. The file(s) will appear in the main directory.

Building the Netlist

Once again, Odin II parses through the AST assembling a Netlist.
During the Netlist creation, pins are assigned and connected.
The code for this can be found in netlist_create_from_ast.cpp located in the odin_ii/SRC directory.

NOTE

The Netlist can be viewed via graphviz using the command -G. The file will appear in the main directory under net.dot.

Partial Mapping

During partial mapping, Odin II maps the logic using an architecture.
If no architecture is passed in, Odin II will create the soft logic and use LUTs for mapping.
However, if an architecture is passed, Odin II will map accordingly to the available hard blocks and LUTs.
It uses a combination of soft logic and hard logic.

Simulator

The simulator of Odin II takes an Input Vector file and creates an Output Vector file determined by the behaviour described in the Verilog file or BLIF file.

Useful tools of Odin II for Developers

When making improvements to Odin II, there are some features the developer should be aware of to make their job easier.
For instance, Odin II has a -A and -G command that prints the ASTs and Netlist viewable with GraphViz.
These files can be found in the odin_ii directory.
This is very helpful to visualize what is being created and how everything is related to each other in the Netlist and AST.

Another feature to be aware of is make test.
This build runs through all the regression tests and will list all the benchmarks that fail.
It is important to run this after every major change implemented to ensure the change only affects benchmarks it was intended to effect (if any).
It sheds insight on what needs to be fixed and how close it is to being merged with the master.

Regression Tests

Regression tests are tests that are repeatedly executed to assess functionality.
Each regression test targets a specific function of Odin II.
There are two main components of a regression test; benchmarks and a configuration file.
The benchmarks are comprised of verilog files, input vector files and output vector files.
The configuration file calls upon each benchmark and synthesizes them with different architectures.
The current regression tests of Odin II can be found in regression_test/benchmark.

Benchmarks

Benchmarks are used to test the functionality of Odin II and ensure that it runs properly.
Benchmarks of Odin II can be found in regression_test/benchmark/verilog/any_folder.
Each benchmark is comprised of a verilog file, an input vector file, and an output vector file.
They are called upon during regression tests and synthesized with different architectures to be compared against the expected results.
These tests are useful for developers to test the functionality of Odin II after implementing changes.
The command make test runs through all these tests, comparing the results to previously generated results, and should be run through when first installing.

Unit Benchmarks

Unit benchmarks are the simplest of benchmarks. They are meant to isolate different functions of Odin II.
The goal is that if it does not function properly, the error can be traced back to the function being tested.
This cannot always be achieved as different functions depend on others to work properly.
It is ideal that these benchmarks test bit size capacity, erroneous cases, as well as standards set by the IEEE Standard for Verilog® Hardware Description Language - 2005.

Micro Benchmarks

Micro benchmarks are precise, like unit benchmarks, however are more syntactic.
They are meant to isolate the behaviour of different functions.
They trace the behaviour of functions to ensure they adhere to the IEEE Standard for Verilog® Hardware Description Language - 2005.
Like unit benchmarks, they should check erroneous cases and behavioural standards set by the IEEE Standard for Verilog® Hardware Description Language - 2005.

Macro Benchmarks

Macro benchmarks are more realistic tests that incorporate multiple functions of Odin II.
They are intended to simulate real-user behaviour to ensure that functions work together properly.
These tests are designed to test things like syntax and more complicated standards set by the IEEE Standard for Verilog® Hardware Description Language - 2005.

External Benchmarks

External benchmarks are benchmarks created by outside users to the project.
It is possible to pull an outside directory and build them on the fly thus creating a benchmark for Odin II.

Creating Regression Tests

New Regression Test Checklist

	Create benchmarks here

	Create configuration file here

	Create a folder in the task directory for the configuration file here

	Generate the results here

	Add the task to a suite (large suite if generating the results takes longer than 3 minutes, otherwise put in light suite) here

	Update the documentation by providing a summary in Regression Test Summary section and updating the Directory Tree here

New Benchmarks added to Regression Test Checklist

	Create benchmarks and add them to the correct regression test folder found in the benchmark/verilog directory here (There is a description of each regression test here)

	Regenerate the results here

Include

	verilog file

	input vector file

	expected output vector file

	configuration file (conditional)

	architecture file (optional)

Creating Benchmarks

If only a few benchmarks are needed for a PR, simply add the benchmarks to the appropriate set of regression tests.
The Regression Test Summary summarizes the target of each regression test which may be helpful.

The standard of naming the benchmarks are as follows:

	verilog file: meaningful_title.v

	input vector file: meaningful_title_input

	output vector file: meaningful_title_output

If the tests needed do not fit in an already existing set of regression tests or need certain architecture(s), create a separate folder in the verilog directory and label appropriately.
Store the benchmarks in that folder.
Add the architecture (if it isn’t one that already exists) to ../vtr_flow/arch.

NOTE

If a benchmark fails and should pass, include a $display statement in the verilog file in the following format:

$display("Expect::FUNCTION < message >);

The function should be in all caps and state what is causing the issue. For instance, if else if was behaving incorrectly it should read ELSE_IF. The message
should illustrate what should happen and perhaps a suggestion in where things are going wrong.

Creating a Configuration File

A configuration file is only necessary if the benchmarks added are placed in a new folder.
The configuration file is where architectures and commands are specified for the synthesis of the benchmarks.
The configuration file must be named task.conf.
The following is an example of a standard task.conf (configuration) file:

########################
<title> benchmarks config
########################

commands
regression_params=--include_default_arch
script_synthesis_params=--time_limit 3600s
script_simulation_params=--time_limit 3600s
simulation_params= -L reset rst -H we

setup the architecture (standard architectures already available)
archs_dir=../vtr_flow/arch/timing

arch_list_add=k6_N10_40nm.xml
arch_list_add=k6_N10_mem32K_40nm.xml
arch_list_add=k6_frac_N10_frac_chain_mem32K_40nm.xml

setup the circuits
circuits_dir=regression_test/benchmark/verilog/

circuit_list_add=<verilog file group>/*.vh
circuit_list_add=<verilog file group>/*.v

synthesis_parse_file=regression_test/parse_result/conf/synth.toml
simulation_parse_file=regression_test/parse_result/conf/sim.toml

The following key = value are available for configuration files:

	key
	following argument

	circuits_dir
	< path/to/circuit/dir >

	circuit_list_add
	< circuit file path relative to [circuits_dir] >

	archs_dir
	< path/to/arch/dir >

	arch_list_add
	< architecture file path relative to [archs_dir] >

	synthesis_parse_file
	< path/to/parse/file >

	simulation_parse_file
	< path/to/parse/file >

	script_synthesis_params
	[see exec_wrapper.sh options]

	script_simulation_params
	[see exec_wrapper.sh options]

	synthesis_params
	[see Odin options]

	simulation_params
	[see Odin options]

	regression_params
	[see Regression Parameters bellow]

Regression Parameters:

	--verbose display error logs after batch of tests

	--concat_circuit_list concatenate the circuit list and pass it straight through to odin

	--generate_bench generate input and output vectors from scratch

	--disable_simulation disable the simulation for this task

	--disable_parallel_jobs disable running circuit/task pairs in parallel

	--randomize perform a dry run randomly to check the validity of the task and flow |

	--regenerate_expectationregenerate expectation and override the expected value only if there’s a mismatch |

	--generate_expectation generate the expectation and override the expectation file |

Creating a Task

The following diagram illustrates the structure of regression tests.
Each regression test needs a corresponding folder in the task directory containing the configuration file.
The <task display name> should have the same name as the verilog file group in the verilog directory.
This folder is where the synthesis results and simulation results will be stored.
The task diplay name and the verilog file group should share the same title.

└── odin_ii
 └── regression_test
 └── benchmark
 ├── task
 │ └── < task display name >
 │ ├── [simulation_result.json]
 │ ├── [synthesis_result.json]
 │ └── task.conf
 └── verilog
 └── < verilog file group >
 ├── *.v
 └── *.vh

Creating a Complicated Task

There are times where multiple configuration files are needed in a regression test due to different commands wanted or architectures.
The task cmd_line_args is an example of this.
If that is the case, each configuration file will still need its own folder, however these folders should be placed in a parent folder.

└── odin_ii
 └── regression_test
 └── benchmark
 ├── task
 │ └── < parent task display name >
 | ├── < task display name >
 │ │ ├── [simulation_result.json]
 │ │ ├── [synthesis_result.json]
 | │ └── task.conf
 │ └── < task display name >
 │ . ├── [simulation_result.json]
 │ . ├── [synthesis_result.json]
 | . └── task.conf
 └── verilog
 └── < verilog file group >
 ├── *.v
 └── *.vh

Creating a Suite

Suites are used to call multiple tasks at once. This is handy for regenerating results for multiple tasks.
In the diagram below you can see the structure of the suite.
The suite contains a configuration file that calls upon the different tasks named task_list.conf.

└── odin_ii
 └── regression_test
 └── benchmark
 ├── suite
 │ └── < suite display name >
 | └── task_list.conf
 ├── task
 │ ├── < parent task display name >
 | │ ├── < task display name >
 │ │ │ ├── [simulation_result.json]
 │ │ │ ├── [synthesis_result.json]
 | │ │ └── task.conf
 │ │ └── < task display name >
 │ │ ├── [simulation_result.json]
 │ │ ├── [synthesis_result.json]
 | │ └── task.conf
 │ └── < task display name >
 │ ├── [simulation_result.json]
 │ ├── [synthesis_result.json]
 | └── task.conf
 └── verilog
 └── < verilog file group >
 ├── *.v
 └── *.vh

In the configuration file all that is required is to list the tasks to be included in the suite with the path.
For example, if the wanted suite was to call the binary task and the operators task, the configuration file would be as follows:

regression_test/benchmark/task/operators
regression_test/benchmark/task/binary

For more examples of task_list.conf configuration files look at the already existing configuration files in the suites.

Regenerating Results

WARNING

BEFORE regenerating the result, run make test to ensure any changes in the code don’t affect the results of benchmarks beside your own. If they do, the failing benchmarks will be listed.

Regenerating results is necessary if any regression test is changed (added benchmarks), if a regression test is added, or if a bug fix was implemented that changes the results of a regression test.
For all cases, it is necessary to regenerate the results of the task corresponding to said change.
The following commands illustrate how to do so:

make sanitize

then: where N is the number of processors in the computer, and the path following -t ends with the same name as the folder you placed

./verify_odin.sh -j N --regenerate_expectation -t regression_test/benchmark/task/<task_display_name>

NOTE

DO NOT run the make sanitize if regenerating the large test. It is probable that the computer will not have enough ram to do so and it will take a long time. Instead run make build

For more on regenerating results, refer to the Verify Script section.

Regression Test Summaries

c_functions

This regression test targets c functions supported by Verilog such as clog_2.

cmd_line_args

This is a more complicated regression test that incorporates multiple child tasks.
It targets different commands available in Odin II.
Although it doesn’t have a dedicated set of benchmarks in the verilog folder, the configuration files call on different preexisting benchmarks.

FIR

FIR is an acronym for “Finite Impulse Response”.
These benchmarks were sourced from Layout Aware Optimization of High Speed Fixed Coefficient FIR Filters for FPGAs [http://kastner.ucsd.edu/fir-benchmarks/?fbclid=IwAR0sLk_qaBXfeCeDuzD2EWBrCJ_qGQd7rNISYPemU6u98F6CeFjWOMAM2NM].
They test a method of implementing high speed FIR filters on FPGAs discussed in the paper.

full

The full regression test is designed to test real user behaviour.

It does this by simulating flip flop, muxes and other common uses of Verilog.

large

This regression test targets cases that require a lot of ram and time.

micro

The micro regression test targets hards blocks and pieces that can be easily instantiated in architectures.

mixing_optimization

The mixing optimization regression test targets mixing implementations for operations implementable in hard blocks and their soft logic counterparts that can be can be easily instantiated in architectures. The tests support extensive command line coverage, as well as provide infrastructure to enable the optimization from an .xml configuration file, require for using the optimization as a part of VTR synthesis flow.

operators

This regression test targets the functionality of different operators. It checks bit size capacity and behaviour.

syntax

The syntax regression test targets syntactic behaviour. It checks that functions work cohesively together and adhere to the verilog standard.

keywords

This regression test targets the function of keywords. It has a folder or child for each keyword containing their respective benchmarks. Some folders have benchmarks for two keywords like task_endtask because they both are required together to function properly.

preprocessor

This set of regression test includes benchmarks targetting compiler directives available in Verilog.

Regression Tests Directory Tree

benchmark
 ├── suite
 │ ├── complex_synthesis_suite
 │ │ └── task_list.conf
 │ ├── full_suite
 │ │ └── task_list.conf
 │ ├── heavy_suite
 │ │ └── task_list.conf
 │ └── light_suite
 │ └── task_list.conf
 ├── task
 │ ├── arch_sweep
 │ │ ├── synthesis_result.json
 │ │ └── task.conf
 │ ├── c_functions
 │ │ └── clog2
 │ │ ├── simulation_result.json
 │ │ ├── synthesis_result.json
 │ │ └── task.conf
 │ ├── cmd_line_args
 │ │ ├── batch_simulation
 │ │ │ ├── simulation_result.json
 │ │ │ ├── synthesis_result.json
 │ │ │ └── task.conf
 │ │ ├── best_coverage
 │ │ │ ├── simulation_result.json
 │ │ │ ├── synthesis_result.json
 │ │ │ └── task.conf
 │ │ ├── coverage
 │ │ │ ├── simulation_result.json
 │ │ │ ├── synthesis_result.json
 │ │ │ └── task.conf
 │ │ ├── graphviz_ast
 │ │ │ ├── synthesis_result.json
 │ │ │ └── task.conf
 │ │ ├── graphviz_netlist
 │ │ │ ├── synthesis_result.json
 │ │ │ └── task.conf
 │ │ └── parallel_simulation
 │ │ ├── simulation_result.json
 │ │ ├── synthesis_result.json
 │ │ └── task.conf
 │ ├── FIR
 │ │ ├── simulation_result.json
 │ │ ├── synthesis_result.json
 │ │ └── task.conf
 │ ├── fpu
 │ │ └── hardlogic
 │ │ ├── simulation_result.json
 │ │ ├── synthesis_result.json
 │ │ └── task.conf
 │ ├── full
 │ │ ├── simulation_result.json
 │ │ ├── synthesis_result.json
 │ │ └── task.conf
 │ ├── keywords
 │ │ ├── always
 │ │ ├── and
 │ │ ├── assign
 │ │ ├── at_parenthathese
 │ │ ├── automatic
 │ │ ├── begin_end
 │ │ ├── buf
 │ │ ├── case_endcase
 │ │ ├── default
 │ │ ├── defparam
 │ │ ├── else
 │ │ ├── for
 │ │ ├── function_endfunction
 │ │ ├── generate
 │ │ ├── genvar
 │ │ ├── if
 │ │ ├── initial
 │ │ ├── inout
 │ │ ├── input_output
 │ │ ├── integer
 │ │ ├── localparam
 │ │ ├── macromodule
 │ │ ├── nand
 │ │ ├── negedge
 │ │ ├── nor
 │ │ ├── not
 │ │ ├── or
 │ │ ├── parameter
 │ │ ├── posedge
 │ │ ├── reg
 │ │ ├── signed_unsigned
 │ │ ├── specify_endspecify
 │ │ ├── specparam
 │ │ ├── star
 │ │ ├── task_endtask
 │ │ ├── while
 │ │ ├── wire
 │ │ ├── xnor
 │ │ └── xor
 │ ├── koios
 │ │ ├── synthesis_result.json
 │ │ └── task.conf
 │ ├── large
 │ │ ├── synthesis_result.json
 │ │ └── task.conf
 │ ├── micro
 │ │ ├── simulation_result.json
 │ │ ├── synthesis_result.json
 │ │ └── task.conf
 │ ├── mixing_optimization
 │ │ ├── mults_auto_full
 │ │ │ ├── simulation_result.json
 │ │ │ │── synthesis_result.json
 │ │ │ └── task.conf
 │ │ ├── mults_auto_half
 │ │ │ ├── simulation_result.json
 │ │ │ │── synthesis_result.json
 │ │ │ └── task.conf
 │ │ ├── mults_auto_none
 │ │ │ ├── simulation_result.json
 │ │ │ │── synthesis_result.json
 │ │ │ └── task.conf
 │ │ ├── config_file_half
 │ │ │ ├── config_file_half.xml
 │ │ │ ├── simulation_result.json
 │ │ │ │── synthesis_result.json
 │ │ │ └── task.conf
 │ ├── operators
 │ │ ├── simulation_result.json
 │ │ ├── synthesis_result.json
 │ │ └── task.conf
 │ ├── preprocessor
 │ │ ├── simulation_result.json
 │ │ ├── synthesis_result.json
 │ │ └── task.conf
 │ ├── syntax
 │ │ ├── simulation_result.json
 │ │ ├── synthesis_result.json
 │ │ └── task.conf
 │ └── vtr
 │ ├── synthesis_result.json
 │ └── task.conf
 │
 ├── third_party
 │ └── SymbiFlow
 │ ├── build.sh
 │ └── task.mk
 └── verilog
 ├── FIR
 ├── c_functions
 ├── common
 ├── full
 ├── keywords
 ├── large
 ├── micro
 ├── operators
 ├── preprocessor
 └── syntax

Verify Script

The verify_odin.sh script is designed for generating regression test results.

./verify_odin.sh [args]

Arguments

*The tool requires a task to run hence -t <task directory> must be passed in

	arg
	equivalent form
	Following argument
	Description

	-t
	path to directory containing a test
	The test types are a task.conf,task_list.conf or a predefined test
	

	-j
	-- nb_of_process
	# of processors requested
	This allows the user to choose how many processor are used in the computer, the default is 1

	-d
	--output_dir
	path to directory
	This allows the user to change the directory of the run output

	-C
	--config
	path to configuration file
	This directs the compiler to a configuration file to append the configuration file of the test

	-t
	--test
	path to directory containing a test
	The test types are a task.conf,task_list.conf or a predefined test

	-h
	--help
	N/A
	Prints all possible commands and directives

	-g
	--generate_bench
	N/A
	Generates input and output vectors for test

	-o
	--generate_output
	N/A
	Generates output vector for test given its input vector

	-b
	--build_config
	path to directory
	Generates a configuration file for a given directory

	-c
	--clean
	N/A
	Clean temporary directory

	-f
	--force_simulate
	N/A
	Force the simulation to be executed regardless of the configuration file

	N/A
	--override
	N/A
	if a configuration file is passed in, override arguments rather than append

	N/A
	--dry_run
	N/A
	performs a dry run to check the validity of the task and flow

	N/A
	--randomize
	N/A
	performs a dry run randomly to check the validity of the task and flow

	N/A
	--regenerate_expectation
	N/A
	regenerates expectation and overrides the expected value only if there's a mismatch

	N/A
	--generate_expectation
	N/A
	generate the expectation and overrides the expectation file

Examples

The following examples are being performed in the odin_ii directory:

Generating Results for a New Task

To generate new results, synthesis_parse_file and simulation_parse_file must be specified
in task.conf file.

The following commands will generate the results of a new regression test using N processors:

make sanitize

./verify_odin.sh --generate_expectation -j N -t <regression_test/benchmark/task/<task_name>

A synthesis_result.json and a simulation_result.json will be generated in the task’s folder.
The simulation results for each benchmark are only generated if they synthesize correctly (no exit error), thus if none of the benchmarks synthesize there will be no simulation_result.json generated.

Regenerating Results for a Changed Test

The following commands will only generate the results of the changes.
If there are new benchmarks it will add to the results.
If there are deleted benchmarks or modified benchmarks the results will be updated accordingly.

make sanitize

./verify_odin.sh --regenerate_expectation -t <regression_test/benchmark/task/<task_name>

Generating Results for a Suite

The following commands generate the results for all the tasks called upon in a suite.

make sanitize

NOTE

If the suite calls upon the large test DO NOT run make sanitize.
Instead run make build.

./verify_odin.sh --generate_expectation -t <regression_test/benchmark/suite/<suite_name>

Checking the configuration file

The following commands will check if a configuration file is being read properly.

make build

./verify_odin.sh --dry_run -t <regression_test/benchmark/<path/to/config_file/difrectory>

Running a subset of tests in a suite

The following commands will run only the tests matching <test regex>:

./verify_odin.sh -t <regression_test/benchmark/suite/<suite_name> <test regex>

You may specify as many test regular expressions as desired and the script will run any test that matches at least one regex

NOTE

This uses grep’s extended regular expression syntax for matching test names.

Test names matched are of the form <suite_name>/<test_name>/

 TESTING ODIN II

TESTING ODIN II

The verify_odin.sh script will simulate the microbenchmarks and a larger set of benchmark circuits.
These scripts use simulation results which have been verified against ModelSim.

After you build Odin-II, run make test to ensure that everything is working correctly on your system.
The verify_odin.sh also simulates the blif output, as well as simulating the verilog with and without the
architecture file.

Before checking in any changes to Odin II, please run both of these scripts to ensure that both of these scripts execute correctly.
If there is a failure, use ModelSim to verify that the failure is within Odin II and not a faulty regression test.
If it is a faulty regression test, make an issue on GitHub [https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues/new/choose].
The Odin II simulator will produce a test.do file containing clock and input vector information for ModelSim.

When additional circuits are found to agree with ModelSim, they should be added to the regression tests.
When new features are added to Odin II, new microbenchmarks should be developed which test those features for regression.
This process is illustrated in the Developer Guide, in the Regression Tests section.

USING MODELSIM TO TEST ODIN II

ModelSim may be installed as part of the Quartus II Web Edition IDE.
Load the Verilog circuit into a new project in ModelSim.
Compile the circuit, and load the resulting library for simulation.

You may use random vectors via the -g option, or specify your own input vectors using the -t option.
When simulation is complete, load the resulting test.do file into your ModelSim project and execute it.
You may now directly compare the vectors in the output_vectors file with those produced by ModelSim.

NOTE

For simulation purposes, you may need to handle the GLOBAL_SIM_BASE_CLK signal in the input_vector by either adding this signal as an input signal to the top module or removing it from the input_vector file.

To add the verified vectors and circuit to an existing test set, move the Verilog file (eg: test_circuit.v) to the test set folder.
Next, move the input_vectors file to the test set folder, and rename it test_circuit_odin_input. Finally, move the output_vectors file to the test set folder and rename it test_circuit_odin_output.

 ABC

ABC

ABC is included with in VTR to perform technology independant logic optimization and technology mapping.

ABC is developed at UC Berkeley, see the ABC homepage [http://www.eecs.berkeley.edu/~alanmi/abc/] for details.

 Tutorials

Tutorials

	Design Flow Tutorials
	Basic Design Flow Tutorial

	Architecture Modeling
	Classic Soft Logic Block Tutorial

	Multi-mode Logic Block Tutorial

	Configurable Memory Bus-Based Tutorial

	Fracturable Multiplier Bus-Based Tutorial

	Fracturable Multiplier Example

	Configurable Memory Block Example

	Virtex 6 like Logic Slice Example

	Equivalent Sites tutorial

	Heterogeneous tiles tutorial

	Primitive Block Timing Modeling Tutorial

	Running the Titan Benchmarks
	Integrating the Titan benchmarks into VTR

	Running benchmarks manually

	Post-Implementation Timing Simulation
	Generating the Post-Implementation Netlist

	Inspecting the Post-Implementation Netlist

	Creating a Test Bench

	Performing Timing Simulation in Modelsim

 Design Flow Tutorials

Design Flow Tutorials

These tutorials describe how to run the VTR design flow.

	Basic Design Flow Tutorial

 Basic Design Flow Tutorial

Basic Design Flow Tutorial

The following steps show you to run the VTR design flow to map a sample circuit to an FPGA architecture containing embedded memories and multipliers:

	From the $VTR_ROOT , move to the vtr_flow/tasks/regression_tests/vtr_reg_basic directory, and run:

../../../scripts/run_vtr_task.py basic_no_timing

or:

$VTR_ROOT/vtr_flow/scripts/run_vtr_task.py basic_no_timing

The subdirectory regression_tests/vtr_reg_basic contains tests that are to be run before each commit. They check for basic functionallity to make sure nothing was extremely out of order. This command runs the VTR flow on a set of circuits and a single architecture.
The files generated from the run are stored in basic_no_timing/run[#] where [#] is the number of runs you have done.
If this is your first time running the flow, the results will be stored in basic_no_timing/run001.
When the script completes, enter the following command:

../../../scripts/python_libs/vtr/parse_vtr_task.py basic_no_timing/

This parses out the information of the VTR run and outputs the results in a text file called run[#]/parse_results.txt.

More info on how to run the flow on multiple circuits and architectures along with different options later.
Before that, we need to ensure that the run that you have done works.

	The basic_no_timing comes with golden results that you can use to check for correctness.
To do this check, enter the following command:

../../../scripts/python_libs/vtr/parse_vtr_task.py -check_golden basic_no_timing

It should return: basic_no_timing...[Pass]

Note

Due to the nature of the algorithms employed, the measurements that you get may not match exactly with the golden measurements.
We included margins in our scripts to account for that noise during the check.
We also included runtime estimates based on our machine.
The actual runtimes that you get may differ dramatically from these values.

	To see precisely which see circuits, architecture, and CAD flow was employed by the run, look at vtr_flow/tasks/regression_tests/vtr_reg_basic/config.txt.
Inside this directory, the config.txt file contains the circuits and architecture file employed in the run.

Some also contain a golden_results.txt file that is used by the scripts to check for correctness.

The $VTR_ROOT/vtr_flow/scripts/run_vtr_flow.py script describes the CAD flow employed in the test.
You can modify the flow by editing this script.

At this point, feel free to run any of the tasks with the prefix vtr_reg
These are regression tests included with the flow that test various combinations of flows, architectures, and benchmarks. Refer to the README for a description what each task aims to test.

	For more information on how the vtr_flow infrastructure works (and how to add the tests that you want to do to this infrastructure) see Tasks.

 Architecture Modeling

Architecture Modeling

This page provides information on the FPGA architecture description language used by VPR.
This page is geared towards both new and experienced users of vpr.

New users may wish to consult the conference paper that introduces the language [LAR11].
This paper describes the motivation behind this new language as well as a short tutorial on how to use the language to describe different complex blocks of an FPGA.

New and experienced users alike should consult the detailed Architecture Reference which serves to documents every property of the language.

Multiple examples of how this language can be used to describe different types of complex blocks are provided as follows:

Complete Architecture Description Walkthrough Examples:

	Classic Soft Logic Block Tutorial

	Multi-mode Logic Block Tutorial

	Configurable Memory Bus-Based Tutorial

	Fracturable Multiplier Bus-Based Tutorial

Architecture Description Examples:

	Fracturable Multiplier Example

	Configurable Memory Block Example

	Virtex 6 like Logic Slice Example

	Equivalent Sites tutorial

	Heterogeneous tiles tutorial

Modeling Guides:

	Primitive Block Timing Modeling Tutorial

 Classic Soft Logic Block Tutorial

Classic Soft Logic Block Tutorial

The following is an example on how to use the VPR architecture description langauge to describe a classical academic soft logic block.
First we provide a step-by-step explanation on how to construct the logic block.
Afterwards, we present the complete code for the logic block.

[image: ../../_images/soft_logic_cluster.jpg]

Fig. 52 Model of a classic FPGA soft logic cluster

Fig. 52 shows an example of a classical soft logic block found in academic FPGA literature.
This block consists of N Basic Logic Elements (BLEs).
The BLE inputs can come from either the inputs to the logic block or from other BLEs within the logic block via a full crossbar.
The logic block in this figure has I general inputs, one clock input, and N outputs (where each output corresponds to a BLE).
A BLE can implement three configurations: a K-input look-up table (K-LUT), a flip-flop, or a K-LUT followed by a flip-flop.
The structure of a classical soft logic block results in a property known as logical equivalence for certain groupings of input/output pins.
Logically equivalent pins means that connections to those pins can be swapped without changing functionality.
For example, the input to AND gates are logically equivalent while the inputs to a 4-bit adders are not logically equivalent.
In the case of a classical soft logic block, all input pins are logically equivalent (due to the fully populated crossbar) and all output pins are logically equivalent (because one can swap any two BLEs without changing functionality).
Logical equivalence is important because it enables the CAD tools to make optimizations especially during routing.
We describe a classical soft logic block with N = 10, I = 22, and K = 4 below.

First, a complex block pb_type called CLB is declared with appropriate input, output and clock ports.
Logical equivalence is labelled at ports where it applies:

<pb_type name="clb">
 <input name="I" num_pins="22" equivalent="full"/>
 <output name="O" num_pins="10" equivalent="instance"/>
 <clock name="clk" equivalent="false"/>

A CLB contains 10 BLEs.
Each BLE has 4 inputs, one output, and one clock.
A BLE block and its inputs and outputs are specified as follows:

<pb_type name="ble" num_pb="10">
 <input name="in" num_pins="4"/>
 <output name="out" num_pins="1"/>
 <clock name="clk"/>

A BLE consists of one LUT and one flip-flop (FF).
Both of these are primitives.
Recall that primitive physical blocks must have a blif_model attribute that matches with the model name in the BLIF input netlist.
For the LUT, the model is .names in BLIF.
For the FF, the model is .latch in BLIF.
The class construct denotes that these are special (common) primitives.
The primitives contained in the BLE are specified as:

<pb_type name="lut_4" blif_model=".names" num_pb="1" class="lut">
 <input name="in" num_pins="4" port_class="lut_in"/>
 <output name="out" num_pins="1" port_class="lut_out"/>
</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" port_class="clock"/>
</pb_type>

Fig. 53 shows the ports of the BLE with the input and output pin sets.
The inputs to the LUT and flip-flop are direct connections.
The multiplexer allows the BLE output to be either the LUT output or the flip-flop output.
The code to specify the interconnect is:

[image: ../../_images/classic_ble.jpg]

Fig. 53 Internal BLE names

 <interconnect>
 <direct input="lut_4.out" output="ff.D"/>
 <direct input="ble.in" output="lut_4.in"/>
 <mux input="ff.Q lut_4.out" output="ble.out"/>
 <direct input="ble.clk" output="ff.clk"/>
 </interconnect>
</pb_type>

The CLB interconnect is then modeled (see Fig. 52).
The inputs to the 10 BLEs (ble[9:0].in) can be connected to any of the CLB inputs (clb.I) or any of the BLE outputs (ble[9:0].out) by using a full crossbar.
The clock of the CLB is wired to multiple BLE clocks, and is modeled as a full crossbar.
The outputs of the BLEs have direct wired connections to the outputs of the CLB and this is specified using one direct tag.
The CLB interconnect specification is:

<interconnect>
 <complete input="{clb.I ble[9:0].out}" output="ble[9:0].in"/>
 <complete input="clb.clk" output="ble[9:0].clk"/>
 <direct input="ble[9:0].out" output="clb.O"/>
</interconnect>

Finally, we model the connectivity between the CLB and the general FPGA fabric (recall that a CLB communicates with other CLBs and I/Os using general-purpose interconnect).
The ratio of tracks that a particular input/output pin of the CLB connects to is defined by fc_in/fc_out.
In this example, a fc_in of 0.15 means that each input pin connects to 15% of the available routing tracks in the external-to-CLB routing channel adjacent to that pin.
The pinlocations tag is used to associate pins on the CLB with which side of the logic block pins reside on where the pattern spread corresponds to evenly spreading out the pins on all sides of the CLB in a round-robin fashion.
In this example, the CLB has a total of 33 pins (22 input pins, 10 output pins, 1 clock pin) so 8 pins are assigned to all sides of the CLB except one side which gets assigned 9 pins.

 <!-- Describe complex block relation with FPGA -->

 <fc_in type="frac">0.150000</fc_in>
 <fc_out type="frac">0.125000</fc_out>

 <pinlocations pattern="spread"/>

</pb_type>

Classic Soft Logic Block Complete Example

<!--
Example of a classical FPGA soft logic block with
N = 10, K = 4, I = 22, O = 10
BLEs consisting of a single LUT followed by a flip-flop that can be bypassed
-->

<pb_type name="clb">
 <input name="I" num_pins="22" equivalent="full"/>
 <output name="O" num_pins="10" equivalent="instance"/>
 <clock name="clk" equivalent="false"/>

 <pb_type name="ble" num_pb="10">
 <input name="in" num_pins="4"/>
 <output name="out" num_pins="1"/>
 <clock name="clk"/>

 <pb_type name="lut_4" blif_model=".names" num_pb="1" class="lut">
 <input name="in" num_pins="4" port_class="lut_in"/>
 <output name="out" num_pins="1" port_class="lut_out"/>
 </pb_type>
 <pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" port_class="clock"/>
 </pb_type>

 <interconnect>
 <direct input="lut_4.out" output="ff.D"/>
 <direct input="ble.in" output="lut_4.in"/>
 <mux input="ff.Q lut_4.out" output="ble.out"/>
 <direct input="ble.clk" output="ff.clk"/>
 </interconnect>
 </pb_type>

 <interconnect>
 <complete input="{clb.I ble[9:0].out}" output="ble[9:0].in"/>
 <complete input="clb.clk" output="ble[9:0].clk"/>
 <direct input="ble[9:0].out" output="clb.O"/>
 </interconnect>

 <!-- Describe complex block relation with FPGA -->

 <fc_in type="frac">0.150000</fc_in>
 <fc_out type="frac">0.125000</fc_out>

 <pinlocations pattern="spread"/>

</pb_type>

 Multi-mode Logic Block Tutorial

Multi-mode Logic Block Tutorial

This tutorial aims to introduce how to build a representative multi-mode logic block by exploiting VPR architecture description language, as well as debugging tips to guarantee each mode of a logic block is functional.

Definition

Modern FPGA logic blocks are designed to operate in various modes, so as to provide best performance for different applications.
VPR offers enriched syntax to support highly flexible multi-mode logic block architecture.

Fig. 54 shows the physical implemenation of a Fracturable Logic Element (FLE), which consists of a fracturable 6-input Look-Up Table (LUT), two Flip-flops (FFs) and routing multiplexers to select between combinational and sequential outputs.

[image: ../../_images/frac_lut_le.png]

Fig. 54 Schematic of a fracturable logic element

The FLE in Fig. 54 can operate in two different modes: (a) dual 5-input LUT mode (see Fig. 55); and (b) single 6-input LUT mode (see Fig. 56). Note that each operating mode does not change the physical implementation of FLE but uses part of the programmable resources.

[image: ../../_images/frac_lut_le_dual_lut5_mode.png]

Fig. 55 Simplified organization when the FLE in Fig. 54 operates in dual 5-input LUT mode

[image: ../../_images/frac_lut_le_lut6_mode.png]

Fig. 56 Simplified organization when the FLE in Fig. 54 operates in 6-input LUT mode

Architecture Description

To accurately model the operating modes of the FLE, we will use the syntax <pb_type> and <mode> in architecture description language.

<!-- Multi-mode Fracturable Logic Element definition begin -->
<pb_type name="fle" num_pb="10">
 <input name="in" num_pins="6"/>
 <output name="out" num_pins="2"/>
 <clock name="clk" num_pins="1"/>

 <!-- Dual 5-input LUT mode definition begin -->
 <mode name="n2_lut5">
 <!-- Detailed definition of the dual 5-input LUT mode -->
 </mode>
 <!-- Dual 5-input LUT mode definition end -->

 <!-- 6-input LUT mode definition begin -->
 <mode name="n1_lut6">
 <!-- Detailed definition of the 6-input LUT mode -->
 </mode>
 <!-- 6-input LUT mode definition end -->
</pb_type>

In the above XML codes, we define a <pb_type> for the FLE by following the port organization in Fig. 54.
Under the <pb_type>, we create two modes, n2_lut5 and n1_lut6, corresponding to the two operating modes as shown in Fig. 55 and Fig. 56.
Note that we focus on operating modes here, which are sufficient to perform architecture evaluation.

Under the dual 5-input LUT mode, we can define <pb_type> and <interconnect> to model the schematic in Fig. 55.

<!-- Dual 5-input LUT mode definition begin -->
<mode name="n2_lut5">
 <pb_type name="lut5inter" num_pb="1">
 <input name="in" num_pins="5"/>
 <output name="out" num_pins="2"/>
 <clock name="clk" num_pins="1"/>
 <!-- Define two LUT5 + FF pairs (num_pb=2) corresponding to :numref:`fig_frac_lut_le_dual_lut5_mode` -->
 <pb_type name="ble5" num_pb="2">
 <input name="in" num_pins="5"/>
 <output name="out" num_pins="1"/>
 <clock name="clk" num_pins="1"/>
 <!-- Define the LUT -->
 <pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
 <input name="in" num_pins="5" port_class="lut_in"/>
 <output name="out" num_pins="1" port_class="lut_out"/>
 <!-- LUT timing using delay matrix -->
 <!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
 we instead take the average of these numbers to get more stable results
 82e-12
 173e-12
 261e-12
 263e-12
 398e-12
 -->
 <delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
 235e-12
 235e-12
 235e-12
 235e-12
 235e-12
 </delay_matrix>
 </pb_type>
 <!-- Define the flip-flop -->
 <pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" num_pins="1" port_class="clock"/>
 <T_setup value="66e-12" port="ff.D" clock="clk"/>
 <T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
 </pb_type>
 <interconnect>
 <direct name="direct1" input="ble5.in[4:0]" output="lut5[0:0].in[4:0]"/>
 <direct name="direct2" input="lut5[0:0].out" output="ff[0:0].D">
 <!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
 <pack_pattern name="ble5" in_port="lut5[0:0].out" out_port="ff[0:0].D"/>
 </direct>
 <direct name="direct3" input="ble5.clk" output="ff[0:0].clk"/>
 <mux name="mux1" input="ff[0:0].Q lut5.out[0:0]" output="ble5.out[0:0]">
 <!-- LUT to output is faster than FF to output on a Stratix IV -->
 <delay_constant max="25e-12" in_port="lut5.out[0:0]" out_port="ble5.out[0:0]"/>
 <delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble5.out[0:0]"/>
 </mux>
 </interconnect>
 </pb_type>
 <interconnect>
 <direct name="direct1" input="lut5inter.in" output="ble5[0:0].in"/>
 <direct name="direct2" input="lut5inter.in" output="ble5[1:1].in"/>
 <direct name="direct3" input="ble5[1:0].out" output="lut5inter.out"/>
 <complete name="complete1" input="lut5inter.clk" output="ble5[1:0].clk"/>
 </interconnect>
 </pb_type>
 <interconnect>
 <direct name="direct1" input="fle.in[4:0]" output="lut5inter.in"/>
 <direct name="direct2" input="lut5inter.out" output="fle.out"/>
 <direct name="direct3" input="fle.clk" output="lut5inter.clk"/>
 </interconnect>
</mode>
<!-- Dual 5-input LUT mode definition end -->

Under the 6-input LUT mode, we can define <pb_type> and <interconnect> to model the schematic in Fig. 56.

<!-- 6-LUT mode definition begin -->
<mode name="n1_lut6" disable_packing="false">
 <!-- Define 6-LUT mode, consisting of a LUT6 + FF pair (num_pb=1) corresponding to :numref:`fig_frac_lut_le_lut6_mode`-->
 <pb_type name="ble6" num_pb="1">
 <input name="in" num_pins="6"/>
 <output name="out" num_pins="1"/>
 <clock name="clk" num_pins="1"/>
 <!-- Define LUT -->
 <pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
 <input name="in" num_pins="6" port_class="lut_in"/>
 <output name="out" num_pins="1" port_class="lut_out"/>
 <!-- LUT timing using delay matrix -->
 <!-- These are the physical delay inputs on a Stratix IV LUT but because VPR cannot do LUT rebalancing,
 we instead take the average of these numbers to get more stable results
 82e-12
 173e-12
 261e-12
 263e-12
 398e-12
 397e-12
 -->
 <delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
 261e-12
 261e-12
 261e-12
 261e-12
 261e-12
 261e-12
 </delay_matrix>
 </pb_type>
 <!-- Define flip-flop -->
 <pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" num_pins="1" port_class="clock"/>
 <T_setup value="66e-12" port="ff.D" clock="clk"/>
 <T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
 </pb_type>
 <interconnect>
 <direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
 <direct name="direct2" input="lut6.out" output="ff.D">
 <!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
 <pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>
 </direct>
 <direct name="direct3" input="ble6.clk" output="ff.clk"/>
 <mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
 <!-- LUT to output is faster than FF to output on a Stratix IV -->
 <delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
 <delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>
 </mux>
 </interconnect>
 </pb_type>
 <interconnect>
 <!--direct name="direct1" input="fle.in" output="ble6.in"/-->
 <direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
 <direct name="direct3" input="fle.clk" output="ble6.clk"/>
 </interconnect>
</mode>
<!-- 6-LUT mode definition end -->

Full example can be found at link [https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/vtr_flow/arch/timing/k6_frac_N10_40nm.xml].

Validation in packer

After finishing the architecture description, the next step is to validate that VPR can map logic to each operating mode.
Since VPR packer will exhaustively try each operating mode and finally map logic to one of it.
As long as there is an operating mode that is feasible for mapping, VPR will complete packing without errors.
However, this may shadow the problems for other operating modes.
It is entirely possible that an operating mode is not defined correctly and is always dropped by VPR during packing.
Therefore, it is necessary to validate the correctness of each operating mode.
To efficiently reach the goal, we will temporarily apply the syntax disable_packing to specific modes, so as to narrow down the search space.

First, we can disable the dual 5-input LUT mode for packer, by changing

<mode name="n2_lut5">

to

<mode name="n2_lut5" disable_packing="true">

As a result, VPR packer will only consider the 6-input LUT mode during packing.
We can try a benchmark mult_2x2.blif [https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/vtr_flow/benchmarks/microbenchmarks/mult_2x2.blif]
by following the design flow tutorial Basic Design Flow Tutorial.
If the flow-run succeed, it means that the 6-input LUT mode is being successfully used by the packer.

Then, we can enable the dual 5-input LUT mode for packer, and disable the 6-input LUT mode, by changing

<mode name="n2_lut5" disable_packing="true">

<mode name="n1_lut6">

to

<mode name="n2_lut5">

<mode name="n1_lut6" disable_packing="true">

In this case, VPR packer will consider the dual 5-input LUT mode during packing.
We can again try the same benchmark mult_2x2.blif [https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/vtr_flow/benchmarks/microbenchmarks/mult_2x2.blif]
by following the design flow tutorial Basic Design Flow Tutorial.
If the flow-run succeed, it means that the dual 5-input LUT mode is being successfully used by the packer.

Finally, after having validated that both operating modes are being successfully used by the packer, we can re-enable both operating modes by changing to

<mode name="n2_lut5">
<mode name="n1_lut6">

Now, VPR packer will try to choose the best operating mode to use.

Tips for Debugging

When packing fails on a multi-mode logic block, the following procedures are recommended to quickly spot the bugs.

	Apply disable_packing to all the modes, except the one you suspect to be problematic.
In the example of this tutorial, you may disable the packing for mode n2_lut5 and focus on debugging mode n1_lut6.

<mode name="n2_lut5" disable_packing="true">
<mode name="n1_lut6" disable_packing="false">

	Turn on verbose output of packer --pack_verbosity (see details in Packing Options. Recommend to use a higher verbosity number than the default value, e.g., 5.
Consider the example blif and architecture in this tutorial, you may execute vpr with

vpr k6_frac_N10_40nm.xml mult_2x2.blif --pack_verbosity 5

	Packer will show detailed information about why it fails.
For example:

FAILED Detailed Routing Legality
Placed atom 'p3' (.names) at clb[0][default]/fle[4][n1_lut6]/ble6[0][default]/lut6[0][lut6]/lut[0]
(921:cluster-external source (LB_SOURCE)-->1:'clb[0].I[1]') (1:'clb[0].I[1]'-->62:'fle[0].in[1]') (62:'fle[0].in[1]'-->123:'ble6[0].in[1]') (123:'ble6[0].in[1]'-->131:'lut6[0].in[1]') (131:'lut6[0].in[1]'-->138:'lut[0].in[1]') (138:'lut[0].in[1]'-->930:cluster-internal sink (LB_SINK accessible via architecture pins: clb[0]/fle[0]/ble6[0]/lut6[0]/lut[0].in[0], clb[0]/fle[0]/ble6[0]/lut6[0]/lut[0].in[1], clb[0]/fle[0]/ble6[0]/lut6[0]/lut[0].in[2], clb[0]/fle[0]/ble6[0]/lut6[0]/lut[0].in[3], clb[0]/fle[0]/ble6[0]/lut6[0]/lut[0].in[4], clb[0]/fle[0]/ble6[0]/lut6[0]/lut[0].in[5]))

Which indicates that input ports of <pb_type name=lut6> in the mode n1_lut6 may be dangling, and thus leads to failures in routing stage of packing.

	You may modify the architecture description and re-run vpr until packing succeeds.

	Move on to the next mode you will debug and repeat from the first step.

The debugging tips are not only applicable to the example showed in this tutorial but rather general to any multi-mode logic block architecture.

 Configurable Memory Bus-Based Tutorial

Configurable Memory Bus-Based Tutorial

Warning

The description in this tutorial is not yet supported by CAD tools due to bus-based routing.

See also

Configurable Memory Block Example for a supported version.

Configurable memories are found in today’s commercial FPGAs for two primary reasons:

	Memories are found in a variety of different applications including image processing, soft processors, etc and

	Implementing memories in soft logic (LUTs and flip-flops) is very costly in terms of area.

Thus it is important for modern FPGA architects be able to describe the specific properties of the configurable memory that they want to investigate.
The following is an example on how to use the langauge to describe a configurable memory block.
First we provide a step-by-step explanation on how to construct the memory block.
Afterwards, we present the complete code for the memory block.

[image: ../../_images/configurable_memory.jpg]

Fig. 57 Model of a configurable memory block

Fig. 57 shows an example of a single-ported memory.
This memory block can support multiple different width and depth combinations (called aspect ratios).
The inputs can be either registered or combinational.
Similarly, the outputs can be either registered or combinational.
Also, each memory configuration has groups of pins called ports that share common properties.
Examples of these ports include address ports, data ports, write enable, and clock.
In this example, the block memory has the following three configurations: 2048x1, 1024x2, and 512x4, which will be modeled using modes.
We begin by declaring the reconfigurable block RAM along with its I/O as follows:

<pb_type name="block_RAM">
 <input name="addr" num_pins="11" equivalent="false"/>
 <input name="din" num_pins="4" equivalent="false"/>
 <input name="wen" num_pins="1" equivalent="false"/>
 <output name="dout" num_pins="4" equivalent="false"/>
 <clock name="clk" equivalent="false"/>

The input and output registers are defined as 2 sets of bypassable flip-flops at the I/Os of the block RAM.
There are a total of 16 inputs that can be registered as a bus so 16 flip-flops (for the 11 address lines, 4 data lines, and 1 write enable), named ff_reg_in, must be declared.
There are 4 output bits that can also be registered, so 4 flip-flops (named ff_reg_out) are declared:

<pb_type name="ff_reg_in" blif_model=".latch" num_pb="16" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" port_class="clock"/>
</pb_type>
<pb_type name="ff_reg_out" blif_model=".latch" num_pb="4" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" port_class="clock"/>
</pb_type>

Each aspect ratio of the memory is declared as a mode within the memory physical block type as shown below.
Also, observe that since memories are one of the special (common) primitives, they each have a class attribute:

[image: ../../_images/configurable_memory_modes.jpg]

Fig. 58 Different modes of operation for the memory block.

<pb_type name="mem_reconfig" num_pb="1">
 <input name="addr" num_pins="11"/>
 <input name="din" num_pins="4"/>
 <input name="wen" num_pins="1"/>
 <output name="dout" num_pins="4"/>

 <!-- Declare a 512x4 memory type -->
 <mode name="mem_512x4_mode">
 <!-- Follows the same pattern as the 1024x2 memory type declared below -->
 </mode>

 <!-- Declare a 1024x2 memory type -->
 <mode name="mem_1024x2_mode">
 <pb_type name="mem_1024x2" blif_model=".subckt sp_mem" class="memory">
 <input name="addr" num_pins="10" port_class="address"/>
 <input name="din" num_pins="2" port_class="data_in"/>
 <input name="wen" num_pins="1" port_class="write_en"/>
 <output name="dout" num_pins="2" port_class="data_out"/>
 </pb_type>
 <interconnect>
 <direct input="mem_reconfig.addr[9:0]" output="mem_1024x2.addr"/>
 <direct input="mem_reconfig.din[1:0]" output="mem_1024x2.din"/>
 <direct input="mem_reconfig.wen" output="mem_1024x2.wen"/>
 <direct input="mem_1024x2.dout" output="mem_reconfig.dout[1:0]"/>
 </interconnect>
 </mode>

 <!-- Declare a 2048x1 memory type -->
 <mode name="mem_2048x1_mode">
 <!-- Follows the same pattern as the 1024x2 memory type declared above -->
 </mode>

</pb_type>

The top-level interconnect structure of the memory SPCB is shown in Fig. 59.
The inputs of the SPCB can connect to input registers or bypass the registers and connect to the combinational memory directly.
Similarly, the outputs of the combinational memory can either be registered or connect directly to the outputs.
The description of the interconnect is as follows:

[image: ../../_images/configurable_block_ram_routing.jpg]

Fig. 59 Interconnect within the configurable memory block.

 1 <interconnect>
 2 <direct input="{block_RAM.wen block_RAM.din block_RAM.addr}" output="ff_reg_in[15:0].D"/>
 3 <direct input="mem_reconfig.dout" output="ff_reg_out[3:0].D"/>
 4 <mux input="mem_reconfig.dout ff_reg_out[3:0].Q" output="block_RAM.dout"/>
 5 <mux input="{block_RAM.wen block_RAM.din[3:0] block_RAM.addr[10:0]} ff_reg_in[15:0].Q"
 6 output="{mem_reconfig.wen mem_reconfig.din mem_reconfig.addr}"/>
 7 <complete input="block_RAM.clk" output="ff_reg_in[15:0].clk"/>
 8 <complete input="block_RAM.clk" output="ff_reg_out[3:0].clk"/>
 9 </interconnect>
10</pb_type>

The interconnect for the bypassable registers is complex and so we provide a more detailed explanation.
First, consider the input registers.
Line 2 shows that the SPCB inputs drive the input flip-flops using direct wired connections.
Then, in line 5, the combinational configurable memory inputs {mem_reconfig.wen mem_reconfig.din mem_reconfig.addr} either come from the flip-flops ff_reg_in[15:0].Q or from the SPCB inputs {block_RAM.wen block_RAM.din[3:0] block_RAM.addr[10:0]} through a 16-bit 2-to-1 bus-based mux.
Thus completing the bypassable input register interconnect.
A similar scheme is used at the outputs to ensure that either all outputs are registered or none at all.
Finally, we model the relationship of the memory block with the general FPGA fabric.
The ratio of tracks that a particular input/output pin of the CLB connects to is defined by fc_in/fc_out.
The pinlocations describes which side of the logic block pins reside on where the pattern spread describes evenly spreading out the pins on all sides of the CLB in a round-robin fashion.

<!-- Describe complex block relation with FPGA -->

<fc_in type="frac">0.150000</fc_in>
<fc_out type="frac">0.125000</fc_out>

<pinlocations pattern="spread"/>

Configurable Memory Bus-Based Complete Example

<pb_type name="block_RAM">
 <input name="addr" num_pins="11" equivalent="false"/>
 <input name="din" num_pins="4" equivalent="false"/>
 <input name="wen" num_pins="1" equivalent="false"/>
 <output name="dout" num_pins="4" equivalent="false"/>
 <clock name="clk" equivalent="false"/>
 <pb_type name="ff_reg_in" blif_model=".latch" num_pb="16" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" port_class="clock"/>
 </pb_type>
 <pb_type name="ff_reg_out" blif_model=".latch" num_pb="4" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" port_class="clock"/>
 </pb_type>

 <pb_type name="mem_reconfig" num_pb="1">
 <input name="addr" num_pins="11"/>
 <input name="din" num_pins="4"/>
 <input name="wen" num_pins="1"/>
 <output name="dout" num_pins="4"/>

 <!-- Declare a 2048x1 memory type -->
 <mode name="mem_2048x1_mode">
 <pb_type name="mem_2048x1" blif_model=".subckt sp_mem" class="memory">
 <input name="addr" num_pins="11" port_class="address"/>
 <input name="din" num_pins="1" port_class="data_in"/>
 <input name="wen" num_pins="1" port_class="write_en"/>
 <output name="dout" num_pins="1" port_class="data_out"/>
 </pb_type>
 <interconnect>
 <direct input="mem_reconfig.addr[10:0]" output="mem_2048x1.addr"/>
 <direct input="mem_reconfig.din[0]" output="mem_2048x1.din"/>
 <direct input="mem_reconfig.wen" output="mem_2048x1.wen"/>
 <direct input="mem_2048x1.dout" output="mem_reconfig.dout[0]"/>
 </interconnect>
 </mode>

 <!-- Declare a 1024x2 memory type -->
 <mode name="mem_1024x2_mode">
 <pb_type name="mem_1024x2" blif_model=".subckt sp_mem" class="memory">
 <input name="addr" num_pins="10" port_class="address"/>
 <input name="din" num_pins="2" port_class="data_in"/>
 <input name="wen" num_pins="1" port_class="write_en"/>
 <output name="dout" num_pins="2" port_class="data_out"/>
 </pb_type>
 <interconnect>
 <direct input="mem_reconfig.addr[9:0]" output="mem_1024x2.addr"/>
 <direct input="mem_reconfig.din[1:0]" output="mem_1024x2.din"/>
 <direct input="mem_reconfig.wen" output="mem_1024x2.wen"/>
 <direct input="mem_1024x2.dout" output="mem_reconfig.dout[1:0]"/>
 </interconnect>
 </mode>

 <!-- Declare a 512x4 memory type -->
 <mode name="mem_512x4_mode">
 <pb_type name="mem_512x4" blif_model=".subckt sp_mem" class="memory">
 <input name="addr" num_pins="9" port_class="address"/>
 <input name="din" num_pins="4" port_class="data_in"/>
 <input name="wen" num_pins="1" port_class="write_en"/>
 <output name="dout" num_pins="4" port_class="data_out"/>
 </pb_type>
 <interconnect>
 <direct input="mem_reconfig.addr[8:0]" output="mem_512x4.addr"/>
 <direct input="mem_reconfig.din[3:0]" output="mem_512x4.din"/>
 <direct input="mem_reconfig.wen" output="mem_512x4.wen"/>
 <direct input="mem_512x4.dout" output="mem_reconfig.dout[3:0]"/>
 </interconnect>
 </mode>
 </pb_type>

 <interconnect>
 <direct input="{block_RAM.wen block_RAM.din block_RAM.addr}" output="ff_reg_in[15:0].D"/>
 <direct input="mem_reconfig.dout" output="ff_reg_out[3:0].D"/>
 <mux input="mem_reconfig.dout ff_reg_out[3:0].Q" output="block_RAM.dout"/>
 <mux input="{block_RAM.wen block_RAM.din[3:0] block_RAM.addr[10:0]} ff_reg_in[15:0].Q"
 output="{mem_reconfig.wen mem_reconfig.din mem_reconfig.addr}"/>
 <complete input="block_RAM.clk" output="ff_reg_in[15:0].clk"/>
 <complete input="block_RAM.clk" output="ff_reg_out[3:0].clk"/>
 </interconnect>
</pb_type>

 <!-- Describe complex block relation with FPGA -->

 <fc_in type="frac">0.150000</fc_in>
 <fc_out type="frac">0.125000</fc_out>

 <pinlocations pattern="spread"/>

 Fracturable Multiplier Bus-Based Tutorial

Fracturable Multiplier Bus-Based Tutorial

Warning

The description in this tutorial is not yet supported by CAD tools due to bus-based routing.

See also

Fracturable Multiplier Example for a supported version.

Configurable multipliers are found in today’s commercial FPGAs for two primary reasons:

	Multipliers are found in a variety of different applications including DSP, soft processors, scientific computing, etc and

	Implementing multipliers in soft logic is very area expensive.

Thus it is important for modern FPGA architects be able to describe the specific properties of the configurable multiplier that they want to investigate.
The following is an example on how to use the VPR architecture description langauge to describe a common type of configurable multiplier called a fracturable multiplier shown in Fig. 60.
We first give a step-by-step description on how to construct the multiplier block followed by a complete example.

[image: ../../_images/fracturable_multiplier.jpg]

Fig. 60 Model of a fracturable multiplier block

The large block_mult can implement one 36x36 multiplier cluster called a mult_36x36_slice or it can implement two divisble 18x18 multipliers.
A divisible 18x18 multiplier can implement a 18x18 multiplier cluster called a mult_18x18_slice or it can be fractured into two 9x9 mulitplier clusters called mult_9x9_slice.
Fig. 61 shows a multiplier slice.
Pins belonging to the same input or output port of a multiplier slice must be either all registered or none registered.
Pins belonging to different ports or different slices may have different register configurations.
A multiplier primitive itself has two input ports (A and B) and one output port (OUT).

[image: ../../_images/fracturable_multiplier_slice.jpg]

Fig. 61 Multiplier slice

First, we describe the block_mult complex block as follows:

<pb_type name="block_mult">
 <input name="A" num_pins="36"/>
 <input name="B" num_pins="36"/>
 <output name="OUT" num_pins="72"/>
 <clock name="clk"/>

The block_mult complex block has two modes: a mode containing a 36x36 multiplier slice and a mode containing two fracturable 18x18 multipliers.
The mode containing the 36x36 multiplier slice is described first.
The mode and slice is declared here:

<mode name="mult_36x36">
 <pb_type name="mult_36x36_slice" num_pb="1">
 <input name="A_cfg" num_pins="36"/>
 <input name="B_cfg" num_pins="36"/>
 <input name="OUT_cfg" num_pins="72"/>
 <clock name="clk"/>

This is followed by a description of the primitives within the slice.
There are two sets of 36 flip-flops for the input ports and one set of 72 flip-flops for the output port.
There is one 36x36 multiplier primitive.
These primitives are described by four pb_types as follows:

<pb_type name="reg_36x36_A" blif_model=".latch" num_pb="36" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" port_class="clock"/>
</pb_type>
<pb_type name="reg_36x36_B" blif_model=".latch" num_pb="36" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" port_class="clock"/>
</pb_type>
<pb_type name="reg_36x36_out" blif_model=".latch" num_pb="72" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" port_class="clock"/>
</pb_type>

<pb_type name="mult_36x36" blif_model=".subckt mult" num_pb="1">
 <input name="A" num_pins="36"/>
 <input name="B" num_pins="36"/>
 <output name="OUT" num_pins="72"/>
</pb_type>

The slice description finishes with a specification of the interconnection.
Using the same technique as in the memory example, bus-based multiplexers are used to register the ports.
Clocks are connected using the complete tag because there is a one-to-many relationship.
Direct tags are used to make simple, one-to-one connections.

 <interconnect>
 <direct input="mult_36x36_slice.A_cfg" output="reg_36x36_A[35:0].D"/>
 <direct input="mult_36x36_slice.B_cfg" output="reg_36x36_B[35:0].D"/>
 <mux input="mult_36x36_slice.A_cfg reg_36x36_A[35:0].Q" output="mult_36x36.A"/>
 <mux input="mult_36x36_slice.B_cfg reg_36x36_B[35:0].Q" output="mult_36x36.B"/>

 <direct input="mult_36x36.OUT" output="reg_36x36_out[71:0].D"/>
 <mux input="mult_36x36.OUT reg_36x36_out[71:0].Q" output="mult_36x36_slice.OUT_cfg"/>

 <complete input="mult_36x36_slice.clk" output="reg_36x36_A[35:0].clk"/>
 <complete input="mult_36x36_slice.clk" output="reg_36x36_B[35:0].clk"/>
 <complete input="mult_36x36_slice.clk" output="reg_36x36_out[71:0].clk"/>
 </interconnect>
</pb_type>

The mode finishes with a specification of the interconnect between the slice and its parent.

 <interconnect>
 <direct input="block_mult.A" output="mult_36x36_slice.A_cfg"/>
 <direct input="block_mult.B" output="mult_36x36_slice.A_cfg"/>
 <direct input="mult_36x36_slice.OUT_cfg" output="block_mult.OUT"/>
 <direct input="block_mult.clk" output="mult_36x36_slice.clk"/>
 </interconnect>
</mode>

After the mode containing the 36x36 multiplier slice is described, the mode containing two fracturable 18x18 multipliers is described:

<mode name="two_divisible_mult_18x18">
 <pb_type name="divisible_mult_18x18" num_pb="2">
 <input name="A" num_pins="18"/>
 <input name="B" num_pins="18"/>
 <input name="OUT" num_pins="36"/>
 <clock name="clk"/>

This mode has two additional modes which are the actual 18x18 multiply block or two 9x9 mulitplier blocks.
Both follow a similar description as the mult_36x36_slice with just the number of pins halved so the details are not repeated.

 <mode name="two_divisible_mult_18x18">
 <pb_type name="mult_18x18_slice" num_pb="1">
 <!-- follows previous pattern for slice definition -->
 </pb_type>
 <interconnect>
 <!-- follows previous pattern for slice definition -->
 </interconnect>
 </mode>

 <mode name="two_mult_9x9">
 <pb_type name="mult_9x9_slice" num_pb="2">
 <!-- follows previous pattern for slice definition -->
 </pb_type>
 <interconnect>
 <!-- follows previous pattern for slice definition -->
 </interconnect>
 </mode>

</pb_type>

The interconnect for the divisible 18x18 mode is shown in Fig. 62.
The unique characteristic of this interconnect is that the input and output ports of the parent is split in half, one half for each child.
A convenient way to specify this is to use the syntax divisible_mult_18x18[1:0] which will append the pins of the ports of the children together.
The interconnect for the fracturable 18x18 mode is described here:

[image: ../../_images/fracturable_multiplier_cluster.jpg]

Fig. 62 Multiplier Cluster

 <interconnect>
 <direct input="block_mult.A" output="divisible_mult_18x18[1:0].A"/>
 <direct input="block_mult.B" output="divisible_mult_18x18[1:0].B"/>
 <direct input="divisible_mult_18x18[1:0].OUT" output="block_mult.OUT"/>
 <complete input="block_mult.clk" output="divisible_mult_18x18[1:0].clk"/>
 </interconnect>
 </mode>
</pb_type>

Fracturable Multiplier Bus-Based Complete Example

<!-- Example of a fracturable mutliplier whose inputs and outputs may be optionally registered
 The multiplier hard logic block can implement one 36x36, two 18x18, or four 9x9 multiplies
 -->
<pb_type name="block_mult">
 <input name="A" num_pins="36"/>
 <input name="B" num_pins="36"/>
 <output name="OUT" num_pins="72"/>
 <clock name="clk"/>

 <mode name="mult_36x36">
 <pb_type name="mult_36x36_slice" num_pb="1">
 <input name="A_cfg" num_pins="36" equivalence="false"/>
 <input name="B_cfg" num_pins="36" equivalence="false"/>
 <input name="OUT_cfg" num_pins="72" equivalence="false"/>
 <clock name="clk"/>

 <pb_type name="reg_36x36_A" blif_model=".latch" num_pb="36" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" port_class="clock"/>
 </pb_type>
 <pb_type name="reg_36x36_B" blif_model=".latch" num_pb="36" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" port_class="clock"/>
 </pb_type>
 <pb_type name="reg_36x36_out" blif_model=".latch" num_pb="72" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" port_class="clock"/>
 </pb_type>

 <pb_type name="mult_36x36" blif_model=".subckt mult" num_pb="1">
 <input name="A" num_pins="36"/>
 <input name="B" num_pins="36"/>
 <output name="OUT" num_pins="72"/>
 </pb_type>

 <interconnect>
 <direct input="mult_36x36_slice.A_cfg" output="reg_36x36_A[35:0].D"/>
 <direct input="mult_36x36_slice.B_cfg" output="reg_36x36_B[35:0].D"/>
 <mux input="mult_36x36_slice.A_cfg reg_36x36_A[35:0].Q" output="mult_36x36.A"/>
 <mux input="mult_36x36_slice.B_cfg reg_36x36_B[35:0].Q" output="mult_36x36.B"/>

 <direct input="mult_36x36.OUT" output="reg_36x36_out[71:0].D"/>
 <mux input="mult_36x36.OUT reg_36x36_out[71:0].Q" output="mult_36x36_slice.OUT_cfg"/>

 <complete input="mult_36x36_slice.clk" output="reg_36x36_A[35:0].clk"/>
 <complete input="mult_36x36_slice.clk" output="reg_36x36_B[35:0].clk"/>
 <complete input="mult_36x36_slice.clk" output="reg_36x36_out[71:0].clk"/>
 </interconnect>
 </pb_type>
 <interconnect>
 <direct input="block_mult.A" output="mult_36x36_slice.A_cfg"/>
 <direct input="block_mult.B" output="mult_36x36_slice.A_cfg"/>
 <direct input="mult_36x36_slice.OUT_cfg" output="block_mult.OUT"/>
 <direct input="block_mult.clk" output="mult_36x36_slice.clk"/>
 </interconnect>
 </mode>

 <mode name="two_divisible_mult_18x18">
 <pb_type name="divisible_mult_18x18" num_pb="2">
 <input name="A" num_pins="18"/>
 <input name="B" num_pins="18"/>
 <input name="OUT" num_pins="36"/>
 <clock name="clk"/>

 <mode name="mult_18x18">
 <pb_type name="mult_18x18_slice" num_pb="1">
 <input name="A_cfg" num_pins="18"/>
 <input name="B_cfg" num_pins="18"/>
 <input name="OUT_cfg" num_pins="36"/>
 <clock name="clk"/>

 <pb_type name="reg_18x18_A" blif_model=".latch" num_pb="18" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" port_class="clock"/>
 </pb_type>
 <pb_type name="reg_18x18_B" blif_model=".latch" num_pb="18" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" port_class="clock"/>
 </pb_type>
 <pb_type name="reg_18x18_out" blif_model=".latch" num_pb="36" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" port_class="clock"/>
 </pb_type>

 <pb_type name="mult_18x18" blif_model=".subckt mult" num_pb="1">
 <input name="A" num_pins="18"/>
 <input name="B" num_pins="18"/>
 <output name="OUT" num_pins="36"/>
 </pb_type>

 <interconnect>
 <direct input="mult_18x18_slice.A_cfg" output="reg_18x18_A[17:0].D"/>
 <direct input="mult_18x18_slice.B_cfg" output="reg_18x18_B[17:0].D"/>
 <mux input="mult_18x18_slice.A_cfg reg_18x18_A[17:0].Q" output="mult_18x18.A"/>
 <mux input="mult_18x18_slice.B_cfg reg_18x18_B[17:0].Q" output="mult_18x18.B"/>

 <direct input="mult_18x18.OUT" output="reg_18x18_out[35:0].D"/>
 <mux input="mult_18x18.OUT reg_18x18_out[35:0].Q" output="mult_18x18_slice.OUT_cfg"/>

 <complete input="mult_18x18_slice.clk" output="reg_18x18_A[17:0].clk"/>
 <complete input="mult_18x18_slice.clk" output="reg_18x18_B[17:0].clk"/>
 <complete input="mult_18x18_slice.clk" output="reg_18x18_out[35:0].clk"/>
 </interconnect>
 </pb_type>
 <interconnect>
 <direct input="divisible_mult_18x18.A" output="mult_18x18_slice.A_cfg"/>
 <direct input="divisible_mult_18x18.B" output="mult_18x18_slice.A_cfg"/>
 <direct input="mult_18x18_slice.OUT_cfg" output="divisible_mult_18x18.OUT"/>
 <complete input="divisible_mult_18x18.clk" output="mult_18x18_slice.clk"/>
 </interconnect>
 </mode>

 <mode name="two_mult_9x9">
 <pb_type name="mult_9x9_slice" num_pb="2">
 <input name="A_cfg" num_pins="9"/>
 <input name="B_cfg" num_pins="9"/>
 <input name="OUT_cfg" num_pins="18"/>
 <clock name="clk"/>

 <pb_type name="reg_9x9_A" blif_model=".latch" num_pb="9" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" port_class="clock"/>
 </pb_type>
 <pb_type name="reg_9x9_B" blif_model=".latch" num_pb="9" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" port_class="clock"/>
 </pb_type>
 <pb_type name="reg_9x9_out" blif_model=".latch" num_pb="18" class="flipflop">
 <input name="D" num_pins="1" port_class="D"/>
 <output name="Q" num_pins="1" port_class="Q"/>
 <clock name="clk" port_class="clock"/>
 </pb_type>

 <pb_type name="mult_9x9" blif_model=".subckt mult" num_pb="1">
 <input name="A" num_pins="9"/>
 <input name="B" num_pins="9"/>
 <output name="OUT" num_pins="18"/>
 </pb_type>

 <interconnect>
 <direct input="mult_9x9_slice.A_cfg" output="reg_9x9_A[8:0].D"/>
 <direct input="mult_9x9_slice.B_cfg" output="reg_9x9_B[8:0].D"/>
 <mux input="mult_9x9_slice.A_cfg reg_9x9_A[8:0].Q" output="mult_9x9.A"/>
 <mux input="mult_9x9_slice.B_cfg reg_9x9_B[8:0].Q" output="mult_9x9.B"/>

 <direct input="mult_9x9.OUT" output="reg_9x9_out[17:0].D"/>
 <mux input="mult_9x9.OUT reg_9x9_out[17:0].Q" output="mult_9x9_slice.OUT_cfg"/>

 <complete input="mult_9x9_slice.clk" output="reg_9x9_A[8:0].clk"/>
 <complete input="mult_9x9_slice.clk" output="reg_9x9_B[8:0].clk"/>
 <complete input="mult_9x9_slice.clk" output="reg_9x9_out[17:0].clk"/>
 </interconnect>
 </pb_type>
 <interconnect>
 <direct input="divisible_mult_18x18.A" output="mult_9x9_slice[1:0].A_cfg"/>
 <direct input="divisible_mult_18x18.B" output="mult_9x9_slice[1:0].A_cfg"/>
 <direct input="mult_9x9_slice[1:0].OUT_cfg" output="divisible_mult_18x18.OUT"/>
 <complete input="divisible_mult_18x18.clk" output="mult_9x9_slice[1:0].clk"/>
 </interconnect>
 </mode>
 </pb_type>
 <interconnect>
 <direct input="block_mult.A" output="divisible_mult_18x18[1:0].A"/>
 <direct input="block_mult.B" output="divisible_mult_18x18[1:0].B"/>
 <direct input="divisible_mult_18x18[1:0].OUT" output="block_mult.OUT"/>
 <complete input="block_mult.clk" output="divisible_mult_18x18[1:0].clk"/>
 </interconnect>
 </mode>

 <fc_in type="frac">0.15</fc_in>
 <fc_out type="frac">0.125</fc_out>

 <pinlocations pattern="custom">
 <loc side="left">a[35:0]</loc>
 <loc side="left" offset="1">b[35:0]</loc>
 <loc side="right">out[19:0]</loc>
 <loc side="right" offset="1">out[39:20]</loc>
 <loc side="right" offset="2">out[63:40]</loc>
 </pinlocations>

</pb_type>

 Fracturable Multiplier Example

Fracturable Multiplier Example

A 36x36 multiplier fracturable into 18x18s and 9x9s

<pb_type name="mult_36" height="3">
 <input name="a" num_pins="36"/>
 <input name="b" num_pins="36"/>
 <output name="out" num_pins="72"/>

 <mode name="two_divisible_mult_18x18">
 <pb_type name="divisible_mult_18x18" num_pb="2">
 <input name="a" num_pins="18"/>
 <input name="b" num_pins="18"/>
 <output name="out" num_pins="36"/>

 <mode name="two_mult_9x9">
 <pb_type name="mult_9x9_slice" num_pb="2">
 <input name="A_cfg" num_pins="9"/>
 <input name="B_cfg" num_pins="9"/>
 <output name="OUT_cfg" num_pins="18"/>

 <pb_type name="mult_9x9" blif_model=".subckt multiply" num_pb="1" area="300">
 <input name="a" num_pins="9"/>
 <input name="b" num_pins="9"/>
 <output name="out" num_pins="18"/>
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="{a b}" out_port="out"/>
 </pb_type>

 <interconnect>
 <direct name="a2a" input="mult_9x9_slice.A_cfg" output="mult_9x9.a">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_9x9_slice.A_cfg" out_port="mult_9x9.a"/>
 <C_constant C="1.89e-13" in_port="mult_9x9_slice.A_cfg" out_port="mult_9x9.a"/>
 </direct>
 <direct name="b2b" input="mult_9x9_slice.B_cfg" output="mult_9x9.b">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_9x9_slice.B_cfg" out_port="mult_9x9.b"/>
 <C_constant C="1.89e-13" in_port="mult_9x9_slice.B_cfg" out_port="mult_9x9.b"/>
 </direct>
 <direct name="out2out" input="mult_9x9.out" output="mult_9x9_slice.OUT_cfg">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_9x9.out" out_port="mult_9x9_slice.OUT_cfg"/>
 <C_constant C="1.89e-13" in_port="mult_9x9.out" out_port="mult_9x9_slice.OUT_cfg"/>
 </direct>
 </interconnect>
 </pb_type>
 <interconnect>
 <direct name="a2a" input="divisible_mult_18x18.a" output="mult_9x9_slice[1:0].A_cfg">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="divisible_mult_18x18.a" out_port="mult_9x9_slice[1:0].A_cfg"/>
 <C_constant C="1.89e-13" in_port="divisible_mult_18x18.a" out_port="mult_9x9_slice[1:0].A_cfg"/>
 </direct>
 <direct name="b2b" input="divisible_mult_18x18.b" output="mult_9x9_slice[1:0].B_cfg">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="divisible_mult_18x18.b" out_port="mult_9x9_slice[1:0].B_cfg"/>
 <C_constant C="1.89e-13" in_port="divisible_mult_18x18.b" out_port="mult_9x9_slice[1:0].B_cfg"/>
 </direct>
 <direct name="out2out" input="mult_9x9_slice[1:0].OUT_cfg" output="divisible_mult_18x18.out">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_9x9_slice[1:0].OUT_cfg" out_port ="divisible_mult_18x18.out"/>
 <C_constant C="1.89e-13" in_port="mult_9x9_slice[1:0].OUT_cfg" out_port="divisible_mult_18x18.out"/>
 </direct>
 </interconnect>
 </mode>

 <mode name="mult_18x18">
 <pb_type name="mult_18x18_slice" num_pb="1">
 <input name="A_cfg" num_pins="18"/>
 <input name="B_cfg" num_pins="18"/>
 <output name="OUT_cfg" num_pins="36"/>

 <pb_type name="mult_18x18" blif_model=".subckt multiply" num_pb="1" area="1000">
 <input name="a" num_pins="18"/>
 <input name="b" num_pins="18"/>
 <output name="out" num_pins="36"/>
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="{a b}" out_port="out"/>
 </pb_type>

 <interconnect>
 <direct name="a2a" input="mult_18x18_slice.A_cfg" output="mult_18x18.a">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_18x18_slice.A_cfg" out_port="mult_18x18.a"/>
 <C_constant C="1.89e-13" in_port="mult_18x18_slice.A_cfg" out_port="mult_18x18.a"/>
 </direct>
 <direct name="b2b" input="mult_18x18_slice.B_cfg" output="mult_18x18.b">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_18x18_slice.B_cfg" out_port="mult_18x18.b"/>
 <C_constant C="1.89e-13" in_port="mult_18x18_slice.B_cfg" out_port="mult_18x18.b"/>
 </direct>
 <direct name="out2out" input="mult_18x18.out" output="mult_18x18_slice.OUT_cfg">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_18x18.out" out_port="mult_18x18_slice.OUT_cfg"/>
 <C_constant C="1.89e-13" in_port="mult_18x18.out" out_port="mult_18x18_slice.OUT_cfg"/>
 </direct>
 </interconnect>
 </pb_type>
 <interconnect>
 <direct name="a2a" input="divisible_mult_18x18.a" output="mult_18x18_slice.A_cfg">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="divisible_mult_18x18.a" out_port="mult_18x18_slice.A_cfg"/>
 <C_constant C="1.89e-13" in_port="divisible_mult_18x18.a" out_port="mult_18x18_slice.A_cfg"/>
 </direct>
 <direct name="b2b" input="divisible_mult_18x18.b" output="mult_18x18_slice.B_cfg">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="divisible_mult_18x18.b" out_port="mult_18x18_slice.B_cfg"/>
 <C_constant C="1.89e-13" in_port="divisible_mult_18x18.b" out_port="mult_18x18_slice.B_cfg"/>
 </direct>
 <direct name="out2out" input="mult_18x18_slice.OUT_cfg" output="divisible_mult_18x18.out">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_18x18_slice.OUT_cfg" out_port="divisible_mult_18x18.out"/>
 <C_constant C="1.89e-13" in_port="mult_18x18_slice.OUT_cfg" out_port="divisible_mult_18x18.out"/>
 </direct>
 </interconnect>
 </mode>
 </pb_type>
 <interconnect>
 <direct name="a2a" input="mult_36.a" output="divisible_mult_18x18[1:0].a">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36.a" out_port="divisible_mult_18x18[1:0].a"/>
 <C_constant C="1.89e-13" in_port="mult_36.a" out_port="divisible_mult_18x18[1:0].a"/>
 </direct>
 <direct name="b2b" input="mult_36.b" output="divisible_mult_18x18[1:0].a">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36.b" out_port="divisible_mult_18x18[1:0].a"/>
 <C_constant C="1.89e-13" in_port="mult_36.b" out_port="divisible_mult_18x18[1:0].a"/>
 </direct>
 <direct name="out2out" input="divisible_mult_18x18[1:0].out" output="mult_36.out">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="divisible_mult_18x18[1:0].out" out_port ="mult_36.out"/>
 <C_constant C="1.89e-13" in_port="divisible_mult_18x18[1:0].out" out_port="mult_36.out"/>
 </direct>
 </interconnect>
 </mode>

 <mode name="mult_36x36">
 <pb_type name="mult_36x36_slice" num_pb="1">
 <input name="A_cfg" num_pins="36"/>
 <input name="B_cfg" num_pins="36"/>
 <output name="OUT_cfg" num_pins="72"/>

 <pb_type name="mult_36x36" blif_model=".subckt multiply" num_pb="1" area="4000">
 <input name="a" num_pins="36"/>
 <input name="b" num_pins="36"/>
 <output name="out" num_pins="72"/>
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="{a b}" out_port="out"/>
 </pb_type>

 <interconnect>
 <direct name="a2a" input="mult_36x36_slice.A_cfg" output="mult_36x36.a">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36x36_slice.A_cfg" out_port="mult_36x36.a"/>
 <C_constant C="1.89e-13" in_port="mult_36x36_slice.A_cfg" out_port="mult_36x36.a"/>
 </direct>
 <direct name="b2b" input="mult_36x36_slice.B_cfg" output="mult_36x36.b">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36x36_slice.B_cfg" out_port="mult_36x36.b"/>
 <C_constant C="1.89e-13" in_port="mult_36x36_slice.B_cfg" out_port="mult_36x36.b"/>
 </direct>
 <direct name="out2out" input="mult_36x36.out" output="mult_36x36_slice.OUT_cfg">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36x36.out" out_port="mult_36x36_slice.OUT_cfg"/>
 <C_constant C="1.89e-13" in_port="mult_36x36.out" out_port="mult_36x36_slice.OUT_cfg"/>
 </direct>
 </interconnect>
 </pb_type>
 <interconnect>
 <direct name="a2a" input="mult_36.a" output="mult_36x36_slice.A_cfg">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36.a" out_port="mult_36x36_slice.A_cfg"/>
 <C_constant C="1.89e-13" in_port="mult_36.a" out_port="mult_36x36_slice.A_cfg"/>
 </direct>
 <direct name="b2b" input="mult_36.b" output="mult_36x36_slice.B_cfg">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36.b" out_port="mult_36x36_slice.B_cfg"/>
 <C_constant C="1.89e-13" in_port="mult_36.b" out_port="mult_36x36_slice.B_cfg"/>
 </direct>
 <direct name="out2out" input="mult_36x36_slice.OUT_cfg" output="mult_36.out">
 <delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36x36_slice.OUT_cfg" out_port="mult_36.out"/>
 <C_constant C="1.89e-13" in_port="mult_36x36_slice.OUT_cfg" out_port="mult_36.out"/>
 </direct>
 </interconnect>
 </mode>

 <fc_in type="frac"> 0.15</fc_in>
 <fc_out type="frac"> 0.125</fc_out>

 <pinlocations pattern="spread"/>

</pb_type>

 Configurable Memory Block Example

Configurable Memory Block Example

A memory block with a reconfigurable aspect ratio.

<pb_type name="memory" height="1">
 <input name="addr1" num_pins="14"/>
 <input name="addr2" num_pins="14"/>
 <input name="data" num_pins="16"/>
 <input name="we1" num_pins="1"/>
 <input name="we2" num_pins="1"/>
 <output name="out" num_pins="16"/>
 <clock name="clk" num_pins="1"/>

 <mode name="mem_1024x16_sp">
 <pb_type name="mem_1024x16_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1" area="1000">
 <input name="addr" num_pins="10" port_class="address"/>
 <input name="data" num_pins="16" port_class="data_in"/>
 <input name="we" num_pins="1" port_class="write_en"/>
 <output name="out" num_pins="16" port_class="data_out"/>
 <clock name="clk" num_pins="1" port_class="clock"/>
 </pb_type>
 <interconnect>
 <direct name="address1" input="memory.addr1[9:0]" output="mem_1024x16_sp.addr">
 </direct>
 <direct name="data1" input="memory.data[15:0]" output="mem_1024x16_sp.data">
 </direct>
 <direct name="writeen1" input="memory.we1" output="mem_1024x16_sp.we">
 </direct>
 <direct name="dataout1" input="mem_1024x16_sp.out" output="memory.out[15:0]">
 </direct>
 <direct name="clk" input="memory.clk" output="mem_1024x16_sp.clk">
 </direct>
 </interconnect>
 </mode>
 <mode name="mem_2048x8_dp">
 <pb_type name="mem_2048x8_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1" area="1000">
 <input name="addr1" num_pins="11" port_class="address1"/>
 <input name="addr2" num_pins="11" port_class="address2"/>
 <input name="data1" num_pins="8" port_class="data_in1"/>
 <input name="data2" num_pins="8" port_class="data_in2"/>
 <input name="we1" num_pins="1" port_class="write_en1"/>
 <input name="we2" num_pins="1" port_class="write_en2"/>
 <output name="out1" num_pins="8" port_class="data_out1"/>
 <output name="out2" num_pins="8" port_class="data_out2"/>
 <clock name="clk" num_pins="1" port_class="clock"/>
 </pb_type>
 <interconnect>
 <direct name="address1" input="memory.addr1[10:0]" output="mem_2048x8_dp.addr1">
 </direct>
 <direct name="address2" input="memory.addr2[10:0]" output="mem_2048x8_dp.addr2">
 </direct>
 <direct name="data1" input="memory.data[7:0]" output="mem_2048x8_dp.data1">
 </direct>
 <direct name="data2" input="memory.data[15:8]" output="mem_2048x8_dp.data2">
 </direct>
 <direct name="writeen1" input="memory.we1" output="mem_2048x8_dp.we1">
 </direct>
 <direct name="writeen2" input="memory.we2" output="mem_2048x8_dp.we2">
 </direct>
 <direct name="dataout1" input="mem_2048x8_dp.out1" output="memory.out[7:0]">
 </direct>
 <direct name="dataout2" input="mem_2048x8_dp.out2" output="memory.out[15:8]">
 </direct>
 <direct name="clk" input="memory.clk" output="mem_2048x8_dp.clk">
 </direct>
 </interconnect>
 </mode>

 <mode name="mem_2048x8_sp">
 <pb_type name="mem_2048x8_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1" area="1000">
 <input name="addr" num_pins="11" port_class="address"/>
 <input name="data" num_pins="8" port_class="data_in"/>
 <input name="we" num_pins="1" port_class="write_en"/>
 <output name="out" num_pins="8" port_class="data_out"/>
 <clock name="clk" num_pins="1" port_class="clock"/>
 </pb_type>
 <interconnect>
 <direct name="address1" input="memory.addr1[10:0]" output="mem_2048x8_sp.addr">
 </direct>
 <direct name="data1" input="memory.data[7:0]" output="mem_2048x8_sp.data">
 </direct>
 <direct name="writeen1" input="memory.we1" output="mem_2048x8_sp.we">
 </direct>
 <direct name="dataout1" input="mem_2048x8_sp.out" output="memory.out[7:0]">
 </direct>
 <direct name="clk" input="memory.clk" output="mem_2048x8_sp.clk">
 </direct>
 </interconnect>
 </mode>
 <mode name="mem_4096x4_dp">
 <pb_type name="mem_4096x4_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1" area="1000">
 <input name="addr1" num_pins="12" port_class="address1"/>
 <input name="addr2" num_pins="12" port_class="address2"/>
 <input name="data1" num_pins="4" port_class="data_in1"/>
 <input name="data2" num_pins="4" port_class="data_in2"/>
 <input name="we1" num_pins="1" port_class="write_en1"/>
 <input name="we2" num_pins="1" port_class="write_en2"/>
 <output name="out1" num_pins="4" port_class="data_out1"/>
 <output name="out2" num_pins="4" port_class="data_out2"/>
 <clock name="clk" num_pins="1" port_class="clock"/>
 </pb_type>
 <interconnect>
 <direct name="address1" input="memory.addr1[11:0]" output="mem_4096x4_dp.addr1">
 </direct>
 <direct name="address2" input="memory.addr2[11:0]" output="mem_4096x4_dp.addr2">
 </direct>
 <direct name="data1" input="memory.data[3:0]" output="mem_4096x4_dp.data1">
 </direct>
 <direct name="data2" input="memory.data[7:4]" output="mem_4096x4_dp.data2">
 </direct>
 <direct name="writeen1" input="memory.we1" output="mem_4096x4_dp.we1">
 </direct>
 <direct name="writeen2" input="memory.we2" output="mem_4096x4_dp.we2">
 </direct>
 <direct name="dataout1" input="mem_4096x4_dp.out1" output="memory.out[3:0]">
 </direct>
 <direct name="dataout2" input="mem_4096x4_dp.out2" output="memory.out[7:4]">
 </direct>
 <direct name="clk" input="memory.clk" output="mem_4096x4_dp.clk">
 </direct>
 </interconnect>
 </mode>

 <mode name="mem_4096x4_sp">
 <pb_type name="mem_4096x4_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1" area="1000">
 <input name="addr" num_pins="12" port_class="address"/>
 <input name="data" num_pins="4" port_class="data_in"/>
 <input name="we" num_pins="1" port_class="write_en"/>
 <output name="out" num_pins="4" port_class="data_out"/>
 <clock name="clk" num_pins="1" port_class="clock"/>
 </pb_type>
 <interconnect>
 <direct name="address1" input="memory.addr1[11:0]" output="mem_4096x4_sp.addr">
 </direct>
 <direct name="data1" input="memory.data[3:0]" output="mem_4096x4_sp.data">
 </direct>
 <direct name="writeen1" input="memory.we1" output="mem_4096x4_sp.we">
 </direct>
 <direct name="dataout1" input="mem_4096x4_sp.out" output="memory.out[3:0]">
 </direct>
 <direct name="clk" input="memory.clk" output="mem_4096x4_sp.clk">
 </direct>
 </interconnect>
 </mode>
 <mode name="mem_8192x2_dp">
 <pb_type name="mem_8192x2_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1" area="1000">
 <input name="addr1" num_pins="13" port_class="address1"/>
 <input name="addr2" num_pins="13" port_class="address2"/>
 <input name="data1" num_pins="2" port_class="data_in1"/>
 <input name="data2" num_pins="2" port_class="data_in2"/>
 <input name="we1" num_pins="1" port_class="write_en1"/>
 <input name="we2" num_pins="1" port_class="write_en2"/>
 <output name="out1" num_pins="2" port_class="data_out1"/>
 <output name="out2" num_pins="2" port_class="data_out2"/>
 <clock name="clk" num_pins="1" port_class="clock"/>
 </pb_type>
 <interconnect>
 <direct name="address1" input="memory.addr1[12:0]" output="mem_8192x2_dp.addr1">
 </direct>
 <direct name="address2" input="memory.addr2[12:0]" output="mem_8192x2_dp.addr2">
 </direct>
 <direct name="data1" input="memory.data[1:0]" output="mem_8192x2_dp.data1">
 </direct>
 <direct name="data2" input="memory.data[3:2]" output="mem_8192x2_dp.data2">
 </direct>
 <direct name="writeen1" input="memory.we1" output="mem_8192x2_dp.we1">
 </direct>
 <direct name="writeen2" input="memory.we2" output="mem_8192x2_dp.we2">
 </direct>
 <direct name="dataout1" input="mem_8192x2_dp.out1" output="memory.out[1:0]">
 </direct>
 <direct name="dataout2" input="mem_8192x2_dp.out2" output="memory.out[3:2]">
 </direct>
 <direct name="clk" input="memory.clk" output="mem_8192x2_dp.clk">
 </direct>
 </interconnect>
 </mode>

 <mode name="mem_8192x2_sp">
 <pb_type name="mem_8192x2_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1" area="1000">
 <input name="addr" num_pins="13" port_class="address"/>
 <input name="data" num_pins="2" port_class="data_in"/>
 <input name="we" num_pins="1" port_class="write_en"/>
 <output name="out" num_pins="2" port_class="data_out"/>
 <clock name="clk" num_pins="1" port_class="clock"/>
 </pb_type>
 <interconnect>
 <direct name="address1" input="memory.addr1[12:0]" output="mem_8192x2_sp.addr">
 </direct>
 <direct name="data1" input="memory.data[1:0]" output="mem_8192x2_sp.data">
 </direct>
 <direct name="writeen1" input="memory.we1" output="mem_8192x2_sp.we">
 </direct>
 <direct name="dataout1" input="mem_8192x2_sp.out" output="memory.out[1:0]">
 </direct>
 <direct name="clk" input="memory.clk" output="mem_8192x2_sp.clk">
 </direct>
 </interconnect>
 </mode>
 <mode name="mem_16384x1_dp">
 <pb_type name="mem_16384x1_dp" blif_model=".subckt dual_port_ram" class="memory" num_pb="1" area="1000">
 <input name="addr1" num_pins="14" port_class="address1"/>
 <input name="addr2" num_pins="14" port_class="address2"/>
 <input name="data1" num_pins="1" port_class="data_in1"/>
 <input name="data2" num_pins="1" port_class="data_in2"/>
 <input name="we1" num_pins="1" port_class="write_en1"/>
 <input name="we2" num_pins="1" port_class="write_en2"/>
 <output name="out1" num_pins="1" port_class="data_out1"/>
 <output name="out2" num_pins="1" port_class="data_out2"/>
 <clock name="clk" num_pins="1" port_class="clock"/>
 </pb_type>
 <interconnect>
 <direct name="address1" input="memory.addr1[13:0]" output="mem_16384x1_dp.addr1">
 </direct>
 <direct name="address2" input="memory.addr2[13:0]" output="mem_16384x1_dp.addr2">
 </direct>
 <direct name="data1" input="memory.data[0:0]" output="mem_16384x1_dp.data1">
 </direct>
 <direct name="data2" input="memory.data[1:1]" output="mem_16384x1_dp.data2">
 </direct>
 <direct name="writeen1" input="memory.we1" output="mem_16384x1_dp.we1">
 </direct>
 <direct name="writeen2" input="memory.we2" output="mem_16384x1_dp.we2">
 </direct>
 <direct name="dataout1" input="mem_16384x1_dp.out1" output="memory.out[0:0]">
 </direct>
 <direct name="dataout2" input="mem_16384x1_dp.out2" output="memory.out[1:1]">
 </direct>
 <direct name="clk" input="memory.clk" output="mem_16384x1_dp.clk">
 </direct>
 </interconnect>
 </mode>

 <mode name="mem_16384x1_sp">
 <pb_type name="mem_16384x1_sp" blif_model=".subckt single_port_ram" class="memory" num_pb="1" area="1000">
 <input name="addr" num_pins="14" port_class="address"/>
 <input name="data" num_pins="1" port_class="data_in"/>
 <input name="we" num_pins="1" port_class="write_en"/>
 <output name="out" num_pins="1" port_class="data_out"/>
 <clock name="clk" num_pins="1" port_class="clock"/>
 </pb_type>
 <interconnect>
 <direct name="address1" input="memory.addr1[13:0]" output="mem_16384x1_sp.addr">
 </direct>
 <direct name="data1" input="memory.data[0:0]" output="mem_16384x1_sp.data">
 </direct>
 <direct name="writeen1" input="memory.we1" output="mem_16384x1_sp.we">
 </direct>
 <direct name="dataout1" input="mem_16384x1_sp.out" output="memory.out[0:0]">
 </direct>
 <direct name="clk" input="memory.clk" output="mem_16384x1_sp.clk">
 </direct>
 </interconnect>
 </mode>

 <fc_in type="frac"> 0.15</fc_in>
 <fc_out type="frac"> 0.125</fc_out>

 <pinlocations pattern="spread"/>

</pb_type>

 Virtex 6 like Logic Slice Example

Virtex 6 like Logic Slice Example

In order to demonstrate the expressiveness of the architecture description language, we use it to describe a section of a commercial logic block.
In this example, we describe the Xilinx Virtex-6 FPGA logic slice [Xilinx Inc12], shown in Fig. 63, as follows:

[image: ../../_images/v6_logic_slice.jpg]

Fig. 63 Commercial FPGA logic block slice (Xilinx Virtex-6)

<pb_type name="v6_lslice">

 <input name="AX" num_pins="1" equivalent="false"/>
 <input name="A" num_pins="5" equivalent="false"/>
 <input name="AI" num_pins="1" equivalent="false"/>
 <input name="BX" num_pins="1" equivalent="false"/>
 <input name="B" num_pins="5" equivalent="false"/>
 <input name="BI" num_pins="1" equivalent="false"/>
 <input name="CX" num_pins="1" equivalent="false"/>
 <input name="C" num_pins="5" equivalent="false"/>
 <input name="CI" num_pins="1" equivalent="false"/>
 <input name="DX" num_pins="1" equivalent="false"/>
 <input name="D" num_pins="5" equivalent="false"/>
 <input name="DI" num_pins="1" equivalent="false"/>
 <input name="SR" num_pins="1" equivalent="false"/>
 <input name="CIN" num_pins="1" equivalent="false"/>
 <input name="CE" num_pins="1" equivalent="false"/>

 <output name="AMUX" num_pins="1" equivalent="false"/>
 <output name="Aout" num_pins="1" equivalent="false"/>
 <output name="AQ" num_pins="1" equivalent="false"/>
 <output name="BMUX" num_pins="1" equivalent="false"/>
 <output name="Bout" num_pins="1" equivalent="false"/>
 <output name="BQ" num_pins="1" equivalent="false"/>
 <output name="CMUX" num_pins="1" equivalent="false"/>
 <output name="Cout" num_pins="1" equivalent="false"/>
 <output name="CQ" num_pins="1" equivalent="false"/>
 <output name="DMUX" num_pins="1" equivalent="false"/>
 <output name="Dout" num_pins="1" equivalent="false"/>
 <output name="DQ" num_pins="1" equivalent="false"/>
 <output name="COUT" num_pins="1" equivalent="false"/>

 <clock name="CLK"/>

 <!--
 For the purposes of this example, the Virtex-6 fracturable LUT will be specified as a primitive.
 If the architect wishes to explore the Xilinx Virtex-6 further, add more detail into this pb_type.
 Similar convention for flip-flops
 -->
 <pb_type name="fraclut" num_pb="4" blif_model=".subckt vfraclut">
 <input name="A" num_pins="5"/>
 <input name="W" num_pins="5"/>
 <input name="DI1" num_pins="1"/>
 <input name="DI2" num_pins="1"/>
 <output name="MC31" num_pins="1"/>
 <output name="O6" num_pins="1"/>
 <output name="O5" num_pins="1"/>
 </pb_type>
 <pb_type name="carry" num_pb="4" blif_model=".subckt carry">
 <!-- This is actually the carry-chain but we don't have a special way to specify chain logic yet in UTFAL
 so it needs to be specified as regular gate logic, the xor gate and the two muxes to the left of it that are shaded grey
 comprise the logic gates representing the carry logic -->
 <input name="xor" num_pins="1"/>
 <input name="cmuxxor" num_pins="1"/>
 <input name="cmux" num_pins="1"/>
 <input name="cmux_select" num_pins="1"/>
 <input name="mmux" num_pins="2"/>
 <input name="mmux_select" num_pins="1"/>
 <output name="xor_out" num_pins="1"/>
 <output name="cmux_out" num_pins="1"/>
 <output name="mmux_out" num_pins="1"/>
 </pb_type>
 <pb_type name="ff_small" num_pb="4" blif_model=".subckt vffs">
 <input name="D" num_pins="1"/>
 <input name="CE" num_pins="1"/>
 <input name="SR" num_pins="1"/>
 <output name="Q" num_pins="1"/>
 <clock name="CK" num_pins="1"/>
 </pb_type>
 <pb_type name="ff_big" num_pb="4" blif_model=".subckt vffb">
 <input name="D" num_pins="1"/>
 <input name="CE" num_pins="1"/>
 <input name="SR" num_pins="1"/>
 <output name="Q" num_pins="1"/>
 <clock name="CK" num_pins="1"/>
 </pb_type>
 <!-- TODO: Add in ability to specify constants such as gnd/vcc -->

 <interconnect>
 <direct name="fraclutA" input="{v6_lslice.A v6_lslice.B v6_lslice.C v6_lslice.D}" output="fraclut.A"/>
 <direct name="fraclutW" input="{v6_lslice.A v6_lslice.B v6_lslice.C v6_lslice.D}" output="fraclut.W"/>
 <direct name="fraclutDI2" input="{v6_lslice.AX v6_lslice.BX v6_lslice.CX v6_lslice.DX}" output="fraclut.DI2"/>
 <direct name="DfraclutDI1" input="v6_lslice.DI" output="fraclut[3].DI1"/>

 <direct name="carryO6" input="fraclut.O6" output="carry.xor"/>
 <direct name="carrymuxxor" input="carry[2:0].cmux_out" output="carry[3:1].cmuxxor"/>
 <direct name="carrymmux" input="{fraclut[3].O6 fraclut[2].O6 fraclut[2].O6 fraclut[1].O6 fraclut[1].O6 fraclut[0].O6}" output="carry[2:0].mmux"/>
 <direct name="carrymmux_select" input="{v6_lslice.AX v6_lslice.BX v6_lslice.CX}" output="carry[2:0].mmux_select"/>

 <direct name="cout" input="carry[3].mmux_out" output="v6_lslice.COUT"/>
 <direct name="ABCD" input="fraclut[3:0].O6" output="{v6_lslice.Dout v6_lslice.Cout v6_lslice.Bout v6_lslice.Aout}"/>
 <direct name="Q" input="ff_big.Q" output="{DQ CQ BQ AQ}"/>

 <mux name="ff_smallA" input="v6_lslice.AX fraclut[0].O5" output="ff_small[0].D"/>
 <mux name="ff_smallB" input="v6_lslice.BX fraclut[1].O5" output="ff_small[1].D"/>
 <mux name="ff_smallC" input="v6_lslice.CX fraclut[2].O5" output="ff_small[2].D"/>
 <mux name="ff_smallD" input="v6_lslice.DX fraclut[3].O5" output="ff_small[3].D"/>

 <mux name="ff_bigA" input="fraclut[0].O5 fraclut[0].O6 carry[0].cmux_out carry[0].mmux_out carry[0].xor_out" output="ff_big[0].D"/>
 <mux name="ff_bigB" input="fraclut[1].O5 fraclut[1].O6 carry[1].cmux_out carry[1].mmux_out carry[1].xor_out" output="ff_big[1].D"/>
 <mux name="ff_bigC" input="fraclut[2].O5 fraclut[2].O6 carry[2].cmux_out carry[2].mmux_out carry[2].xor_out" output="ff_big[2].D"/>
 <mux name="ff_bigD" input="fraclut[3].O5 fraclut[3].O6 carry[3].cmux_out carry[3].mmux_out carry[3].xor_out" output="ff_big[3].D"/>

 <mux name="AMUX" input="fraclut[0].O5 fraclut[0].O6 carry[0].cmux_out carry[0].mmux_out carry[0].xor_out ff_small[0].Q" output="AMUX"/>
 <mux name="BMUX" input="fraclut[1].O5 fraclut[1].O6 carry[1].cmux_out carry[1].mmux_out carry[1].xor_out ff_small[1].Q" output="BMUX"/>
 <mux name="CMUX" input="fraclut[2].O5 fraclut[2].O6 carry[2].cmux_out carry[2].mmux_out carry[2].xor_out ff_small[2].Q" output="CMUX"/>
 <mux name="DMUX" input="fraclut[3].O5 fraclut[3].O6 carry[3].cmux_out carry[3].mmux_out carry[3].xor_out ff_small[3].Q" output="DMUX"/>

 <mux name="CfraclutDI1" input="v6_lslice.CI v6_lslice.DI fraclut[3].MC31" output="fraclut[2].DI1"/>
 <mux name="BfraclutDI1" input="v6_lslice.BI v6_lslice.DI fraclut[2].MC31" output="fraclut[1].DI1"/>
 <mux name="AfraclutDI1" input="v6_lslice.AI v6_lslice.BI v6_lslice.DI fraclut[2].MC31 fraclut[1].MC31" output="fraclut[0].DI1"/>

 <mux name="carrymuxxorA" input="v6_lslice.AX v6_lslice.CIN" output="carry[0].muxxor"/>
 <mux name="carrymuxA" input="v6_lslice.AX fraclut[0].O5" output="carry[0].cmux"/>
 <mux name="carrymuxB" input="v6_lslice.BX fraclut[1].O5" output="carry[1].cmux"/>
 <mux name="carrymuxC" input="v6_lslice.CX fraclut[2].O5" output="carry[2].cmux"/>
 <mux name="carrymuxD" input="v6_lslice.DX fraclut[3].O5" output="carry[3].cmux"/>

 <complete name="clock" input="v6_lslice.CLK" output="{ff_small.CK ff_big.CK}"/>
 <complete name="ce" input="v6_lslice.CE" output="{ff_small.CE ff_big.CE}"/>
 <complete name="SR" input="v6_lslice.SR" output="{ff_small.SR ff_big.SR}"/>
 </interconnect>
</pb_type>

 Equivalent Sites tutorial

Equivalent Sites tutorial

This tutorial aims at providing information to the user on how to model the equivalent sites to enable equivalent placement in VPR.

Equivalent site placement allows the user to define complex logical blocks (top-level pb_types) that can be used in multiple physical location types of the FPGA device grid.
In the same way, the user can define many physical tiles that have different physical attributes that can implement the same logical block.

The first case (multiple physical grid location types for one complex logical block) is explained below.
The device has at disposal two different Configurable Logic Blocks (CLB), SLICEL and SLICEM.
In this case, the SLICEM CLB is a superset that implements additional features w.r.t. the SLICEL CLB.
Therefore, the user can decide to model the architecture to be able to place the SLICEL Complex Block in a SLICEM physical tile, being it a valid grid location.
This behavior can lead to the generation of more accurate and better placement results, given that a Complex Logic Block is not bound to only one physical location type.

Below the user can find the implementation of this situation starting from an example that does not make use of the equivalent site placement:

<tiles>
 <tile name="SLICEL_TILE">
 <input name="IN_A" num_pins="6"/>
 <input name="AX" num_pins="1"/>
 <input name="SR" num_pins="1"/>
 <input name="CE" num_pins="1"/>
 <input name="CIN" num_pins="1"/>
 <clock name="CLK" num_pins="1"/>
 <output name="A" num_pins="1"/>
 <output name="AMUX" num_pins="1"/>
 <output name="AQ" num_pins="1"/>

 <equivalent_sites>
 <site pb_type="SLICEL_SITE" pin_mapping="direct"/>
 </equivalent_sites>

 <fc />
 <pinlocations />
 </tile>
 <tile name="SLICEM_TILE">
 <input name="IN_A" num_pins="6"/>
 <input name="AX" num_pins="1"/>
 <input name="AI" num_pins="1"/>
 <input name="SR" num_pins="1"/>
 <input name="WE" num_pins="1"/>
 <input name="CE" num_pins="1"/>
 <input name="CIN" num_pins="1"/>
 <clock name="CLK" num_pins="1"/>
 <output name="A" num_pins="1"/>
 <output name="AMUX" num_pins="1"/>
 <output name="AQ" num_pins="1"/>

 <equivalent_sites>
 <site pb_type="SLICEM_SITE" pin_mapping="direct"/>
 </equivalent_sites>

 <fc />
 <pinlocations />
 </tile>
</tiles>

<complexblocklist>
 <pb_type name="SLICEL_SITE"/>
 <input name="IN_A" num_pins="6"/>
 <input name="AX" num_pins="1"/>
 <input name="AI" num_pins="1"/>
 <input name="SR" num_pins="1"/>
 <input name="CE" num_pins="1"/>
 <input name="CIN" num_pins="1"/>
 <clock name="CLK" num_pins="1"/>
 <output name="A" num_pins="1"/>
 <output name="AMUX" num_pins="1"/>
 <output name="AQ" num_pins="1"/>
 <mode />
 /
 </pb_type>
 <pb_type name="SLICEM_SITE"/>
 <input name="IN_A" num_pins="6"/>
 <input name="AX" num_pins="1"/>
 <input name="SR" num_pins="1"/>
 <input name="WE" num_pins="1"/>
 <input name="CE" num_pins="1"/>
 <input name="CIN" num_pins="1"/>
 <clock name="CLK" num_pins="1"/>
 <output name="A" num_pins="1"/>
 <output name="AMUX" num_pins="1"/>
 <output name="AQ" num_pins="1"/>
 <mode />
 /
 </pb_type>
</complexblocklist>

As the user can see, SLICEL and SLICEM are treated as two different entities, even though they seem to be similar one to another.
To have the possibility to make VPR choose a SLICEM location when placing a SLICEL_SITE pb_type, the user needs to change the SLICEM tile accordingly, as shown below:

<tile name="SLICEM_TILE">
 <input name="IN_A" num_pins="6"/>
 <input name="AX" num_pins="1"/>
 <input name="AI" num_pins="1"/>
 <input name="SR" num_pins="1"/>
 <input name="WE" num_pins="1"/>
 <input name="CE" num_pins="1"/>
 <input name="CIN" num_pins="1"/>
 <clock name="CLK" num_pins="1"/>
 <output name="A" num_pins="1"/>
 <output name="AMUX" num_pins="1"/>
 <output name="AQ" num_pins="1"/>

 <equivalent_sites>
 <site pb_type="SLICEM_SITE" pin_mapping="direct"/>
 <site pb_type="SLICEL_SITE" pin_mapping="custom">
 <direct from="SLICEM_TILE.IN_A" to="SLICEL_SITE.IN_A"/>
 <direct from="SLICEM_TILE.AX" to="SLICEL_SITE.AX"/>
 <direct from="SLICEM_TILE.SR" to="SLICEL_SITE.SR"/>
 <direct from="SLICEM_TILE.CE" to="SLICEL_SITE.CE"/>
 <direct from="SLICEM_TILE.CIN" to="SLICEL_SITE.CIN"/>
 <direct from="SLICEM_TILE.CLK" to="SLICEL_SITE.CLK"/>
 <direct from="SLICEM_TILE.A" to="SLICEL_SITE.A"/>
 <direct from="SLICEM_TILE.AMUX" to="SLICEL_SITE.AMUX"/>
 <direct from="SLICEM_TILE.AQ" to="SLICEL_SITE.AQ"/>
 </site>
 </equivalent_sites>

 <fc />
 <pinlocations />
</tile>

With the above description of the SLICEM tile, the user can now have the SLICEL sites to be placed in SLICEM physical locations.
One thing to notice is that not all the pins have been mapped for the SLICEL_SITE. For instance, the WE and AI port are absent from the SLICEL_SITE definition, hence they cannot appear in the pin mapping between physical tile and logical block.

The second case described in this tutorial refers to the situation for which there are multiple different physical location types in the device grid that are used by one complex logical blocks.
Imagine the situation for which the device has left and right I/O tile types which have different pinlocations, hence they need to be defined in two different ways.
With equivalent site placement, the user doesn’t need to define multiple different pb_types that implement the same functionality.

Below the user can find the implementation of this situation starting from an example that does not make use of the equivalent site placement:

<tiles>
 <tile name="LEFT_IOPAD_TILE">
 <input name="INPUT" num_pins="1"/>
 <output name="OUTPUT" num_pins="1"/>

 <equivalent_sites>
 <site pb_type="LEFT_IOPAD_SITE" pin_mapping="direct"/>
 </equivalent_sites>

 <fc />
 <pinlocations pattern="custom">
 <loc side="left">LEFT_IOPAD_TILE.INPUT</loc>
 <loc side="right">LEFT_IOPAD_TILE.OUTPUT</loc>
 </pinlocations>
 </tile>
 <tile name="RIGHT_IOPAD_TILE">
 <input name="INPUT" num_pins="1"/>
 <output name="OUTPUT" num_pins="1"/>

 <equivalent_sites>
 <site pb_type="RIGHT_IOPAD_SITE" pin_mapping="direct"/>
 </equivalent_sites>

 <fc />
 <pinlocations pattern="custom">
 <loc side="right">RIGHT_IOPAD_TILE.INPUT</loc>
 <loc side="left">RIGHT_IOPAD_TILE.OUTPUT</loc>
 </pinlocations>
 </tile>
</tiles>

<complexblocklist>
 <pb_type name="LEFT_IOPAD_SITE">
 <input name="INPUT" num_pins="1"/>
 <output name="OUTPUT" num_pins="1"/>
 <mode />
 /
 </pb_type>
 <pb_type name="RIGHT_IOPAD_SITE">
 <input name="INPUT" num_pins="1"/>
 <output name="OUTPUT" num_pins="1"/>
 <mode />
 /
 </pb_type>
</complexblocklist>

To avoid duplicating the complex logic blocks in LEFT and RIGHT IOPADS, the user can describe the pb_type only once and add it to the equivalent sites tag of the two different tiles, as follows:

<tiles>
 <tile name="LEFT_IOPAD_TILE">
 <input name="INPUT" num_pins="1"/>
 <output name="OUTPUT" num_pins="1"/>

 <equivalent_sites>
 <site pb_type="IOPAD_SITE" pin_mapping="direct"/>
 </equivalent_sites>

 <fc />
 <pinlocations pattern="custom">
 <loc side="left">LEFT_IOPAD_TILE.INPUT</loc>
 <loc side="right">LEFT_IOPAD_TILE.OUTPUT</loc>
 </pinlocations>
 </tile>
 <tile name="RIGHT_IOPAD_TILE">
 <input name="INPUT" num_pins="1"/>
 <output name="OUTPUT" num_pins="1"/>

 <equivalent_sites>
 <site pb_type="IOPAD_SITE" pin_mapping="direct"/>
 </equivalent_sites>

 <fc />
 <pinlocations pattern="custom">
 <loc side="right">RIGHT_IOPAD_TILE.INPUT</loc>
 <loc side="left">RIGHT_IOPAD_TILE.OUTPUT</loc>
 </pinlocations>
 </tile>
</tiles>

<complexblocklist>
 <pb_type name="IOPAD_SITE">
 <input name="INPUT" num_pins="1"/>
 <output name="OUTPUT" num_pins="1"/>
 <mode>
 ...
 </mode>
 </pb_type>
</complexblocklist>

With this implementation, the IOPAD_SITE can be placed both in the LEFT and RIGHT physical location types.
Note that the pin_mapping is set as direct, given that the physical tile and the logical block share the same IO pins.

The two different cases can be mixed to have a N to M mapping of physical tiles/logical blocks.

 Heterogeneous tiles tutorial

Heterogeneous tiles tutorial

This tutorial aims at providing information to the user on how to model sub tiles to enable heterogeneous tiles in VPR.

An heterogeneous tile is a tile that includes two or more site types that may differ in the following aspects:

	Block types (pb_type)

	Fc definition

	Pin locations definition

	IO ports definition

As a result, an heterogeneous tile has the possibility of having multiple block types at the same (x, y) location in the grid.
This comes with the introduction of a third spatial coordinate (sub-block) that identifies the placement of the block type within the x and y grid coordinate.

Moreover, the placer can choose and assign different locations for each block type within the same coordinates as well.

[image: ../../_images/sub_tiles_grid.png]

Fig. 64 Device grid, with (x, y, sub-block) coordinates. Each block can be moved by the placer in all the three spatial dimensions.

To correctly model an architecture, each Physical Tiles requires at least one sub tile definition. This represents a default
homogeneous architecture, composed of one or many instances of the sub tile within the physical tile (the number of such sub-tiles is referred to as the capacity).

To enhance the expressivity of VPR architecture, additional sub tiles can be inserted alongside with the default sub tile.
This enables the definition of the heterogeneous tiles.

With this new capability, the device grid of a given architecture does include a new sub-block coordinate that identifies the type of sub tile used and its actual location, in case the capacity is greater than 1.

Heterogeneous tiles examples

Following, there are two examples to illustrate some potential use cases of the heterogeneous tiles, that might be of interest to the reader.

Note

The examples below are a simplified versions of the real architectural specification.

Sub-tiles with different pin locations

The Xilinx Series 7 Clock tile is composed of 16 BUFGCTRL sites (pg. 36 of the 7 Series FPGAs
Clocking Resources [https://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf] guide). Even though they are equivalent regarding the ports and Fc definition, some of the sites differ in terms of pin locations, as depicted by the simplified representation of the Clock tile in Fig. 65.

[image: ../../_images/clock_tile_figure.png]

Fig. 65 Simplified view of the Clock tile of the Xilinx Series 7 fabric.

Heterogeneous tiles come in hand to model this kind of tiles and an example is the following:

<tiles>
 <tile name="BUFG_TILE">
 <sub_tile name="BUFG_SUB_TILE_0" capacity="1">
 <clock name="I0" num_pins="1"/>
 <clock name="I1" num_pins="1"/>
 <input name="CE0" num_pins="1"/>
 <input name="CE1" num_pins="1"/>
 <input name="IGNORE0" num_pins="1"/>
 <input name="IGNORE1" num_pins="1"/>
 <input name="S0" num_pins="1"/>
 <input name="S1" num_pins="1"/>
 <output name="O" num_pins="1"/>
 <fc in_type="abs" in_val="2" out_type="abs" out_val="2"/>
 <pinlocations pattern="custom">
 <loc side="top">BUFG_SUB_TILE_0.I1 BUFG_SUB_TILE_0.I0 BUFG_SUB_TILE_0.CE0 BUFG_SUB_TILE_0.S0 BUFG_SUB_TILE_0.IGNORE1 BUFG_SUB_TILE_0.CE1 BUFG_SUB_TILE_0.IGNORE0 BUFG_SUB_TILE_0.S1</loc>
 <loc side="right">BUFG_SUB_TILE_0.I1 BUFG_SUB_TILE_0.I0 BUFG_SUB_TILE_0.O</loc>
 </pinlocations>
 <equivalent_sites>
 <site pb_type="BUFGCTRL" pin_mapping="direct"/>
 </equivalent_sites>
 </sub_tile>
 <sub_tile name="BUFG_SUB_TILE_1" capacity="14">
 <clock name="I0" num_pins="1"/>
 <clock name="I1" num_pins="1"/>
 <input name="CE0" num_pins="1"/>
 <input name="CE1" num_pins="1"/>
 <input name="IGNORE0" num_pins="1"/>
 <input name="IGNORE1" num_pins="1"/>
 <input name="S0" num_pins="1"/>
 <input name="S1" num_pins="1"/>
 <output name="O" num_pins="1"/>
 <fc in_type="abs" in_val="2" out_type="abs" out_val="2"/>
 <pinlocations pattern="custom">
 <loc side="top">BUFG_SUB_TILE_1.S1 BUFG_SUB_TILE_1.I0 BUFG_SUB_TILE_1.CE1 BUFG_SUB_TILE_1.I1 BUFG_SUB_TILE_1.IGNORE1 BUFG_SUB_TILE_1.IGNORE0 BUFG_SUB_TILE_1.CE0 BUFG_SUB_TILE_1.S0</loc>
 <loc side="right">BUFG_SUB_TILE_1.I0 BUFG_SUB_TILE_1.I1 BUFG_SUB_TILE_1.O</loc>
 </pinlocations>
 <equivalent_sites>
 <site pb_type="BUFGCTRL" pin_mapping="direct"/>
 </equivalent_sites>
 </sub_tile>
 <sub_tile name="BUFG_SUB_TILE_2" capacity="1">
 <clock name="I0" num_pins="1"/>
 <clock name="I1" num_pins="1"/>
 <input name="CE0" num_pins="1"/>
 <input name="CE1" num_pins="1"/>
 <input name="IGNORE0" num_pins="1"/>
 <input name="IGNORE1" num_pins="1"/>
 <input name="S0" num_pins="1"/>
 <input name="S1" num_pins="1"/>
 <output name="O" num_pins="1"/>
 <fc in_type="abs" in_val="2" out_type="abs" out_val="2"/>
 <pinlocations pattern="custom">
 <loc side="right">BUFG_SUB_TILE_2.S1 BUFG_SUB_TILE_2.I0 BUFG_SUB_TILE_2.CE1 BUFG_SUB_TILE_2.I1 BUFG_SUB_TILE_2.IGNORE1 BUFG_SUB_TILE_2.IGNORE0 BUFG_SUB_TILE_2.CE0 BUFG_SUB_TILE_2.S0</loc>
 <loc side="left">BUFG_SUB_TILE_2.I0 BUFG_SUB_TILE_2.I1 BUFG_SUB_TILE_2.O</loc>
 </pinlocations>
 <equivalent_sites>
 <site pb_type="BUFGCTRL" pin_mapping="direct"/>
 </equivalent_sites>
 </sub_tile>
 </tile>
</tiles>

<complexblocklist>
 <pb_type name="BUFGCTRL"/>
 <clock name="I0" num_pins="1"/>
 <clock name="I1" num_pins="1"/>
 <input name="CE0" num_pins="1"/>
 <input name="CE1" num_pins="1"/>
 <input name="IGNORE0" num_pins="1"/>
 <input name="IGNORE1" num_pins="1"/>
 <input name="S0" num_pins="1"/>
 <input name="S1" num_pins="1"/>
 <output name="O" num_pins="1"/>
 </pb_type>
</complexblocklist>

The above BUFG_TILE contains three types of sub-tiles (BUFG_SUB_TILE_0, BUFG_SUB_TILE_1 and BUFG_SUB_TILE_2).

While each sub-tile type contains the same pb_type (equivalent_sites of BUFGCTRL), they differ in two ways:

	Each sub-tile has different pin locations. For example BUFG_SUB_TILE_0 has the I1 pins on the top side of the tile, while BUFG_SUB_TILE_1 and BUFG_SUB_TILE_2 have them on the right and left sides respectively.

	Each sub-tile has a different ‘capacity’ (i.e. a different number of sites). BUFG_SUB_TILE_1 and BUFG_SUB_TILE_2 have capacity 1, while BUFG_SUB_TILE_1 has capacity 14. As a result the BUFG_TILE can implement a total of 16 BUFGCTRL blocks.

Sub-tiles containing different block types

As another example taken from the Xilinx Series 7 fabric, the HCLK_IOI tile is composed of three different block types, namely BUFIO, BUFR and IDELAYCTRL.

[image: ../../_images/hclk_ioi.png]

Fig. 66 Simplified view of the HCLK_IOI tile in the Xilinx Series 7 fabric.

The reader might think that it is possible to model this situation using the Complex Blocks to model this situation, with a <pb_type> containing the various blocks.

Indeed, this could be done, but, for some architectures, the placement location of a sub block is particularly relevant, hence the need of leaving this choice to the placement algorithm instead of the packer one.

Each one of these site types has different IO pins as well as pin locations.

<tile name="HCLK_IOI">
 <sub_tile name="BUFIO" capacity="4">
 <clock name="I" num_pins="1"/>
 <output name="O" num_pins = "1"/>
 <equivalent_sites>
 <site pb_type="BUFIO_SITE" pin_mapping="direct"/>
 </equivalent_sites>
 <fc />
 <pinlocations />
 </sub_tile>
 <sub_tile name="BUFR" capacity="4">
 <clock name="I" num_pins="1"/>
 <input name="CE" num_pins="1"/>
 <output name="O" num_pins = "1"/>
 <equivalent_sites>
 <site pb_type="BUFR_SITE" pin_mapping="direct"/>
 </equivalent_sites>
 <fc />
 <pinlocations />
 </sub_tile>
 <sub_tile name="IDELAYCTRL" capacity="1">
 <clock name="REFCLK" num_pins="1"/>
 <output name="RDY" num_pins="1"/>
 <equivalent_sites>
 <site pb_type="IDELAYCTRL_SITE" pin_mapping="direct"/>
 </equivalent_sites>
 <fc />
 <pinlocations />
 </sub_tile>
</tile>

Each HCLK_IOI tile contains three sub-tiles, each containing a different type of pb_type:

	the BUFIO sub-tile supports 4 instances (capacity = 4) of pb_type BUFIO_SITE

	the BUFR sub-tile supports 4 instances of BUFR_SITE pb_types

	the IDELAYCTRL sub-tile supports 1 instances of the IDELAYCTRL_SITE

 Primitive Block Timing Modeling Tutorial

Primitive Block Timing Modeling Tutorial

To accurately model an FPGA, the architect needs to specify the timing characteristics of the FPGA’s primitives blocks.
This involves two key steps:

	Specifying the logical timing characteristics of a primitive including:

	whether primitive pins are sequential or combinational, and

	what the timing dependencies are between the pins.

	Specifying the physical delay values

These two steps separate the logical timing characteristics of a primitive, from the physically dependant delays.
This enables a single logical netlist primitive type (e.g. Flip-Flop) to be mapped into different physical locations with different timing characteristics.

The FPGA architecture description describes the logical timing characteristics in the models section, while the physical timing information is specified on pb_types within complex block.

The following sections illustrate some common block timing modeling approaches.

Combinational block

A typical combinational block is a full adder,

[image: ../../../_images/fa.svg]
Fig. 67 Full Adder

where a, b and cin are combinational inputs, and sum and cout are combinational outputs.

We can model these timing dependencies on the model with the combinational_sink_ports, which specifies the output ports which are dependant on an input port:

<model name="adder">
 <input_ports>
 <port name="a" combinational_sink_ports="sum cout"/>
 <port name="b" combinational_sink_ports="sum cout"/>
 <port name="cin" combinational_sink_ports="sum cout"/>
 </input_ports>
 <output_ports>
 <port name="sum"/>
 <port name="cout"/>
 </output_ports>
</model>

The physical timing delays are specified on any pb_type instances of the adder model.
For example:

<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
 <input name="a" num_pins="1"/>
 <input name="b" num_pins="1"/>
 <input name="cin" num_pins="1"/>
 <output name="cout" num_pins="1"/>
 <output name="sum" num_pins="1"/>

 <delay_constant max="300e-12" in_port="adder.a" out_port="adder.sum"/>
 <delay_constant max="300e-12" in_port="adder.b" out_port="adder.sum"/>
 <delay_constant max="300e-12" in_port="adder.cin" out_port="adder.sum"/>
 <delay_constant max="300e-12" in_port="adder.a" out_port="adder.cout"/>
 <delay_constant max="300e-12" in_port="adder.b" out_port="adder.cout"/>
 <delay_constant max="10e-12" in_port="adder.cin" out_port="adder.cout"/>
</pb_type>

specifies that all the edges of 300ps delays, except to cin to cout edge which has a delay of 10ps.

Sequential block (no internal paths)

A typical sequential block is a D-Flip-Flop (DFF).
DFFs have no internal timing paths between their input and output ports.

Note

If you are using BLIF’s .latch directive to represent DFFs there is no need to explicitly provide a <model> definition, as it is supported by default.

[image: ../../../_images/dff.svg]
Fig. 68 DFF

Sequential model ports are specified by providing the clock="<name>" attribute, where <name> is the name of the associated clock ports.
The assoicated clock port must have is_clock="1" specified to indicate it is a clock.

<model name="dff">
 <input_ports>
 <port name="d" clock="clk"/>
 <port name="clk" is_clock="1"/>
 </input_ports>
 <output_ports>
 <port name="q" clock="clk"/>
 </output_ports>
</model>

The physical timing delays are specified on any pb_type instances of the model.
In the example below the setup-time of the input is specified as 66ps, while the clock-to-q delay of the output is set to 124ps.

<pb_type name="ff" blif_model=".subckt dff" num_pb="1">
 <input name="D" num_pins="1"/>
 <output name="Q" num_pins="1"/>
 <clock name="clk" num_pins="1"/>

 <T_setup value="66e-12" port="ff.D" clock="clk"/>
 <T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>
</pb_type>

Mixed Sequential/Combinational Block

It is possible to define a block with some sequential ports and some combinational ports.

In the example below, the single_port_ram_mixed has sequential input ports: we, addr and data (which are controlled by clk).

[image: ../../../_images/mixed_sp_ram.svg]
Fig. 69 Mixed sequential/combinational single port ram

However the output port (out) is a combinational output, connected internally to the we, addr and data input registers.

<model name="single_port_ram_mixed">
 <input_ports>
 <port name="we" clock="clk" combinational_sink_ports="out"/>
 <port name="addr" clock="clk" combinational_sink_ports="out"/>
 <port name="data" clock="clk" combinational_sink_ports="out"/>
 <port name="clk" is_clock="1"/>
 </input_ports>
 <output_ports>
 <port name="out"/>
 </output_ports>
</model>

In the pb_type we define the external setup time of the input registers (50ps) as we did for Sequential block (no internal paths).
However, we also specify the following additional timing information:

	The internal clock-to-q delay of the input registers (200ps)

	The combinational delay from the input registers to the out port (800ps)

<pb_type name="mem_sp" blif_model=".subckt single_port_ram_mixed" num_pb="1">
 <input name="addr" num_pins="9"/>
 <input name="data" num_pins="64"/>
 <input name="we" num_pins="1"/>
 <output name="out" num_pins="64"/>
 <clock name="clk" num_pins="1"/>

 <!-- External input register timing -->
 <T_setup value="50e-12" port="mem_sp.addr" clock="clk"/>
 <T_setup value="50e-12" port="mem_sp.data" clock="clk"/>
 <T_setup value="50e-12" port="mem_sp.we" clock="clk"/>

 <!-- Internal input register timing -->
 <T_clock_to_Q max="200e-12" port="mem_sp.addr" clock="clk"/>
 <T_clock_to_Q max="200e-12" port="mem_sp.data" clock="clk"/>
 <T_clock_to_Q max="200e-12" port="mem_sp.we" clock="clk"/>

 <!-- Internal combinational delay -->
 <delay_constant max="800e-12" in_port="mem_sp.addr" out_port="mem_sp.out"/>
 <delay_constant max="800e-12" in_port="mem_sp.data" out_port="mem_sp.out"/>
 <delay_constant max="800e-12" in_port="mem_sp.we" out_port="mem_sp.out"/>
</pb_type>

Sequential block (with internal paths)

Some primitives represent more complex architecture primitives, which have timing paths contained completely within the block.

The model below specifies a sequential single-port RAM.
The ports we, addr, and data are sequential inputs, while the port out is a sequential output.
clk is the common clock.

[image: ../../../_images/seq_sp_ram.svg]
Fig. 70 Sequential single port ram

<model name="single_port_ram_seq">
 <input_ports>
 <port name="we" clock="clk" combinational_sink_ports="out"/>
 <port name="addr" clock="clk" combinational_sink_ports="out"/>
 <port name="data" clock="clk" combinational_sink_ports="out"/>
 <port name="clk" is_clock="1"/>
 </input_ports>
 <output_ports>
 <port name="out" clock="clk"/>
 </output_ports>
</model>

Similarly to Mixed Sequential/Combinational Block the pb_type defines the input register timing:

	external input register setup time (50ps)

	internal input register clock-to-q time (200ps)

Since the output port out is sequential we also define the:

	internal output register setup time (60ps)

	external output register clock-to-q time (300ps)

The combinational delay between the input and output registers is set to 740ps.

Note the internal path from the input to output registers can limit the maximum operating frequency.
In this case the internal path delay is 1ns (200ps + 740ps + 60ps) limiting the maximum frequency to 1 GHz.

<pb_type name="mem_sp" blif_model=".subckt single_port_ram_seq" num_pb="1">
 <input name="addr" num_pins="9"/>
 <input name="data" num_pins="64"/>
 <input name="we" num_pins="1"/>
 <output name="out" num_pins="64"/>
 <clock name="clk" num_pins="1"/>

 <!-- External input register timing -->
 <T_setup value="50e-12" port="mem_sp.addr" clock="clk"/>
 <T_setup value="50e-12" port="mem_sp.data" clock="clk"/>
 <T_setup value="50e-12" port="mem_sp.we" clock="clk"/>

 <!-- Internal input register timing -->
 <T_clock_to_Q max="200e-12" port="mem_sp.addr" clock="clk"/>
 <T_clock_to_Q max="200e-12" port="mem_sp.data" clock="clk"/>
 <T_clock_to_Q max="200e-12" port="mem_sp.we" clock="clk"/>

 <!-- Internal combinational delay -->
 <delay_constant max="740e-12" in_port="mem_sp.addr" out_port="mem_sp.out"/>
 <delay_constant max="740e-12" in_port="mem_sp.data" out_port="mem_sp.out"/>
 <delay_constant max="740e-12" in_port="mem_sp.we" out_port="mem_sp.out"/>

 <!-- Internal output register timing -->
 <T_setup value="60e-12" port="mem_sp.out" clock="clk"/>

 <!-- External output register timing -->
 <T_clock_to_Q max="300e-12" port="mem_sp.out" clock="clk"/>
</pb_type>

Sequential block (with internal paths and combinational input)

A primitive may have a mix of sequential and combinational inputs.

The model below specifies a mostly sequential single-port RAM.
The ports addr, and data are sequential inputs, while the port we is a combinational input.
The port out is a sequential output.
clk is the common clock.

[image: ../../../_images/seq_comb_sp_ram.svg]
Fig. 71 Sequential single port ram with a combinational input

 <model name="single_port_ram_seq_comb">
 <input_ports>
 <port name="we" combinational_sink_ports="out"/>
 <port name="addr" clock="clk" combinational_sink_ports="out"/>
 <port name="data" clock="clk" combinational_sink_ports="out"/>
 <port name="clk" is_clock="1"/>
 </input_ports>
 <output_ports>
 <port name="out" clock="clk"/>
 </output_ports>
 </model>

We use register delays similar to Sequential block (with internal paths).
However we also specify the purely combinational delay between the combinational we input and sequential output out (800ps).
Note that the setup time of the output register still effects the we to out path for an effective delay of 860ps.

<pb_type name="mem_sp" blif_model=".subckt single_port_ram_seq_comb" num_pb="1">
 <input name="addr" num_pins="9"/>
 <input name="data" num_pins="64"/>
 <input name="we" num_pins="1"/>
 <output name="out" num_pins="64"/>
 <clock name="clk" num_pins="1"/>

 <!-- External input register timing -->
 <T_setup value="50e-12" port="mem_sp.addr" clock="clk"/>
 <T_setup value="50e-12" port="mem_sp.data" clock="clk"/>

 <!-- Internal input register timing -->
 <T_clock_to_Q max="200e-12" port="mem_sp.addr" clock="clk"/>
 <T_clock_to_Q max="200e-12" port="mem_sp.data" clock="clk"/>

 <!-- External combinational delay -->
 <delay_constant max="800e-12" in_port="mem_sp.we" out_port="mem_sp.out"/>

 <!-- Internal combinational delay -->
 <delay_constant max="740e-12" in_port="mem_sp.addr" out_port="mem_sp.out"/>
 <delay_constant max="740e-12" in_port="mem_sp.data" out_port="mem_sp.out"/>

 <!-- Internal output register timing -->
 <T_setup value="60e-12" port="mem_sp.out" clock="clk"/>

 <!-- External output register timing -->
 <T_clock_to_Q max="300e-12" port="mem_sp.out" clock="clk"/>
</pb_type>

Multi-clock Sequential block (with internal paths)

It is also possible for a sequential primitive to have multiple clocks.

The following model represents a multi-clock simple dual-port sequential RAM with:

	one write port (addr1 and data1, we1) controlled by clk1, and

	one read port (addr2 and data2) controlled by clk2.

[image: ../../../_images/multiclock_dp_ram.svg]
Fig. 72 Multi-clock sequential simple dual port ram

<model name="multiclock_dual_port_ram">
 <input_ports>
 <!-- Write Port -->
 <port name="we1" clock="clk1" combinational_sink_ports="data2"/>
 <port name="addr1" clock="clk1" combinational_sink_ports="data2"/>
 <port name="data1" clock="clk1" combinational_sink_ports="data2"/>
 <port name="clk1" is_clock="1"/>

 <!-- Read Port -->
 <port name="addr2" clock="clk2" combinational_sink_ports="data2"/>
 <port name="clk2" is_clock="1"/>
 </input_ports>
 <output_ports>
 <!-- Read Port -->
 <port name="data2" clock="clk2" combinational_sink_ports="data2"/>
 </output_ports>
</model>

On the pb_type the input and output register timing is defined similarly to Sequential block (with internal paths), except multiple clocks are used.

<pb_type name="mem_dp" blif_model=".subckt multiclock_dual_port_ram" num_pb="1">
 <input name="addr1" num_pins="9"/>
 <input name="data1" num_pins="64"/>
 <input name="we1" num_pins="1"/>
 <input name="addr2" num_pins="9"/>
 <output name="data2" num_pins="64"/>
 <clock name="clk1" num_pins="1"/>
 <clock name="clk2" num_pins="1"/>

 <!-- External input register timing -->
 <T_setup value="50e-12" port="mem_dp.addr1" clock="clk1"/>
 <T_setup value="50e-12" port="mem_dp.data1" clock="clk1"/>
 <T_setup value="50e-12" port="mem_dp.we1" clock="clk1"/>
 <T_setup value="50e-12" port="mem_dp.addr2" clock="clk2"/>

 <!-- Internal input register timing -->
 <T_clock_to_Q max="200e-12" port="mem_dp.addr1" clock="clk1"/>
 <T_clock_to_Q max="200e-12" port="mem_dp.data1" clock="clk1"/>
 <T_clock_to_Q max="200e-12" port="mem_dp.we1" clock="clk1"/>
 <T_clock_to_Q max="200e-12" port="mem_dp.addr2" clock="clk2"/>

 <!-- Internal combinational delay -->
 <delay_constant max="740e-12" in_port="mem_dp.addr1" out_port="mem_dp.data2"/>
 <delay_constant max="740e-12" in_port="mem_dp.data1" out_port="mem_dp.data2"/>
 <delay_constant max="740e-12" in_port="mem_dp.we1" out_port="mem_dp.data2"/>
 <delay_constant max="740e-12" in_port="mem_dp.addr2" out_port="mem_dp.data2"/>

 <!-- Internal output register timing -->
 <T_setup value="60e-12" port="mem_dp.data2" clock="clk2"/>

 <!-- External output register timing -->
 <T_clock_to_Q max="300e-12" port="mem_dp.data2" clock="clk2"/>
</pb_type>

Clock Generators

Some blocks (such as PLLs) generate clocks on-chip.
To ensure that these generated clocks are identified as clock sources, the associated model output port should be marked with is_clock="1".

As an example consider the following simple PLL model:

<model name="simple_pll">
 <input_ports>
 <port name="in_clock" is_clock="1"/>
 </input_ports>
 <output_ports>
 <port name="out_clock" is_clock="1"/>
 </output_ports>
</model>

The port named in_clock is specified as a clock sink, since it is an input port with is_clock="1" set.

The port named out_clock is specified as a clock generator, since it is an output port with is_clock="1" set.

Note

Clock generators should not be the combinational sinks of primitive input ports.

Consider the following example netlist:

.subckt simple_pll \
 in_clock=clk \
 out_clock=clk_pll

Since we have specified that simple_pll.out_clock is a clock generator (see above), the user must specify what the clock relationship is between the input and output clocks.
This information must be either specified in the SDC file (if no SDC file is specified VPR’s default timing constraints will be used instead).

Note

VPR has no way of determining what the relationship is between the clocks of a black-box primitive.

Consider the case where the simple_pll above creates an output clock which is 2 times the frequency of the input clock.
If the input clock period was 10ns then the SDC file would look like:

create_clock clk -period 10
create_clock clk_pll -period 5 #Twice the frequency of clk

It is also possible to specify in SDC that there is a phase shift between the two clocks:

create_clock clk -waveform {0 5} -period 10 #Equivalent to 'create_clock clk -period 10'
create_clock clk_pll -waveform {0.2 2.7} -period 5 #Twice the frequency of clk with a 0.2ns phase shift

Clock Buffers & Muxes

Some architectures contain special primitives for buffering or controling clocks.
VTR supports modelling these using the is_clock attritube on the model to differentiate between ‘data’ and ‘clock’ signals, allowing users to control how clocks are traced through these primitives.

When VPR traces through the netlist it will propagate clocks from clock inputs to the downstream combinationally connected pins.

Clock Buffers/Gates

Consider the following black-box clock buffer with an enable:

.subckt clkbufce \
 in=clk3 \
 enable=clk3_enable \
 out=clk3_buf

We wish to have VPR understand that the in port of the clkbufce connects to the out port, and that as a result the nets clk3 and clk3_buf are equivalent.

This is accomplished by tagging the in port as a clock (is_clock="1"), and combinationally connecting it to the out port (combinational_sink_ports="out"):

<model name="clkbufce">
 <input_ports>
 <port name="in" combinational_sink_ports="out" is_clock="1"/>
 <port name="enable" combinational_sink_ports="out"/>
 </input_ports>
 <output_ports>
 <port name="out"/>
 </output_ports>
</model>

With the corresponding pb_type:

<pb_type name="clkbufce" blif_model="clkbufce" num_pb="1">
 <clock name="in" num_pins="1"/>
 <input name="enable" num_pins="1"/>
 <output name="out" num_pins="1"/>
 <delay_constant max="10e-12" in_port="clkbufce.in" out_port="clkbufce.out"/>
 <delay_constant max="5e-12" in_port="clkbufce.enable" out_port="clkbufce.out"/>
</pb_type>

Notably, although the enable port is combinationally connected to the out port it will not be considered as a potential clock since it is not marked with is_clock="1".

Clock Muxes

Another common clock control block is a clock mux, which selects from one of several potential clocks.

For instance, consider:

.subckt clkmux \
 clk1=clka \
 clk2=clkb \
 sel=select \
 clk_out=clk_downstream

which selects one of two input clocks (clk1 and clk2) to be passed through to (clk_out), controlled on the value of sel.

This could be modelled as:

<model name="clkmux">
 <input_ports>
 <port name="clk1" combinational_sink_ports="clk_out" is_clock="1"/>
 <port name="clk2" combinational_sink_ports="clk_out" is_clock="1"/>
 <port name="sel" combinational_sink_ports="clk_out"/>
 </input_ports>
 <output_ports>
 <port name="clk_out"/>
 </output_ports>
</model>

<pb_type name="clkmux" blif_model="clkmux" num_pb="1">
 <clock name="clk1" num_pins="1"/>
 <clock name="clk2" num_pins="1"/>
 <input name="sel" num_pins="1"/>
 <output name="clk_out" num_pins="1"/>
 <delay_constant max="10e-12" in_port="clkmux.clk1" out_port="clkmux.clk_out"/>
 <delay_constant max="10e-12" in_port="clkmux.clk2" out_port="clkmux.clk_out"/>
 <delay_constant max="20e-12" in_port="clkmux.sel" out_port="clkmux.clk_out"/>
</pb_type>

where both input clock ports clk1 and clk2 are tagged with is_clock="1" and combinationally connected to the clk_out port.
As a result both nets clka and clkb in the netlist would be identified as independent clocks feeding clk_downstream.

Note

Clock propagation is driven by netlist connectivity so if one of the input clock ports (e.g. clk1) was disconnected in the netlist no associated clock would be created/considered.

Clock Mux Timing Constraints

For the clock mux example above, if the user specified the following SDC timing constraints:

create_clock -period 3 clka
create_clock -period 2 clkb

VPR would propagate both clka and clkb through the clock mux.
Therefore the logic connected to clk_downstream would be analyzed for both the clka and clkb constraints.

Most likely (unless clka and clkb are used elswhere) the user should additionally specify:

set_clock_groups -exclusive -group clka -group clkb

Which avoids analyzing paths between the two clocks (i.e. clka -> clkb and clkb -> clka) which are not physically realizable.
The muxing logic means only one clock can drive clk_downstream at any point in time (i.e. the mux enforces that clka and clkb are mutually exclusive).
This is the behaviour of VPR’s default timing constraints.

 Running the Titan Benchmarks

Running the Titan Benchmarks

This tutorial describes how to run the Titan benchmarks with VTR.

Integrating the Titan benchmarks into VTR

The Titan benchmarks take up a large amount of disk space and are not distributed directly with VTR.

The Titan benchmarks can be automatically integrated into the VTR source tree by running the following from the root of the VTR source tree:

$ make get_titan_benchmarks

which downloads and extracts the benchmarks into the VTR source tree:

Warning: A typical Titan release is a ~1GB download, and uncompresses to ~10GB.
Starting download in 15 seconds...
Downloading http://www.eecg.utoronto.ca/~kmurray/titan/titan_release_1.1.0.tar.gz
...
Downloading http://www.eecg.utoronto.ca/~kmurray/titan/titan_release_1.1.0.md5
Verifying checksum
OK
Searching release for benchmarks and architectures...
Extracting titan_release_1.1.0/benchmarks/titan23/sparcT2_core/netlists/sparcT2_core_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/sparcT2_core_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/LU230/netlists/LU230_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/LU230_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/segmentation/netlists/segmentation_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/segmentation_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/openCV/netlists/openCV_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/openCV_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/bitcoin_miner/netlists/bitcoin_miner_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/bitcoin_miner_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/sparcT1_chip2/netlists/sparcT1_chip2_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/sparcT1_chip2_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/mes_noc/netlists/mes_noc_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/mes_noc_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/bitonic_mesh/netlists/bitonic_mesh_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/bitonic_mesh_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/dart/netlists/dart_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/dart_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/cholesky_bdti/netlists/cholesky_bdti_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/cholesky_bdti_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/stereo_vision/netlists/stereo_vision_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/stereo_vision_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/neuron/netlists/neuron_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/neuron_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/gaussianblur/netlists/gaussianblur_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/gaussianblur_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/gsm_switch/netlists/gsm_switch_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/gsm_switch_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/sparcT1_core/netlists/sparcT1_core_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/sparcT1_core_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/des90/netlists/des90_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/des90_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/LU_Network/netlists/LU_Network_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/LU_Network_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/denoise/netlists/denoise_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/denoise_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/stap_qrd/netlists/stap_qrd_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/stap_qrd_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/directrf/netlists/directrf_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/directrf_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/SLAM_spheric/netlists/SLAM_spheric_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/SLAM_spheric_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/minres/netlists/minres_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/minres_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/cholesky_mc/netlists/cholesky_mc_stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/cholesky_mc_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/arch/stratixiv_arch.timing.no_pack_patterns.xml to ./vtr_flow/arch/titan/stratixiv_arch.timing.no_pack_patterns.xml
Extracting titan_release_1.1.0/arch/stratixiv_arch.timing.xml to ./vtr_flow/arch/titan/stratixiv_arch.timing.xml
Extracting titan_release_1.1.0/arch/stratixiv_arch.timing.no_directlink.xml to ./vtr_flow/arch/titan/stratixiv_arch.timing.no_directlink.xml
Extracting titan_release_1.1.0/arch/stratixiv_arch.timing.no_chain.xml to ./vtr_flow/arch/titan/stratixiv_arch.timing.no_chain.xml
Done
Titan architectures: vtr_flow/arch/titan
Titan benchmarks: vtr_flow/benchmarks/titan_blif

Once completed all the Titan benchmark BLIF netlists can be found under $VTR_ROOT/vtr_flow/benchmarks/titan_blif, and the Titan architectures under $VTR_ROOT/vtr_flow/arch/titan.

Note

$VTR_ROOT corresponds to the root of the VTR source tree.

Running benchmarks manually

Once the benchmarks have been integrated into VTR they can be run manually.

For example, the follow uses VPR to implement the neuron benchmark onto the startixiv_arch.timing.xml architecture at a channel width of 300 tracks:

$ vpr $VTR_ROOT/vtr_flow/arch/titan/stratixiv_arch.timing.xml $VTR_ROOT/vtr_flow/benchmarks/titan_blif/neuron_stratixiv_arch_timing.blif --route_chan_width 300

 Post-Implementation Timing Simulation

Post-Implementation Timing Simulation

[image: ../../_images/timing_simulation.png]

Fig. 73 Timing simulation waveform for stereovision3

This tutorial describes how to simulate a circuit which has been implemented by VPR with back-annotated timing delays.

	Back-annotated timing simulation is useful for a variety of reasons:
	
	Checking that the circuit logic is correctly implemented

	Checking that the circuit behaves correctly at speed with realistic delays

	Generating VCD (Value Change Dump) files with realistic delays (e.g. for power estimation)

Generating the Post-Implementation Netlist

For the purposes of this tutorial we will be using the stereovision3 benchmark, and will target the k6_N10_40nm architecture.

First lets create a directory to work in:

$ mkdir timing_sim_tut
$ cd timing_sim_tut

Next we’ll copy over the stereovision3 benchmark netlist in BLIF format and the FPGA architecture description:

$ cp $VTR_ROOT/vtr_flow/benchmarks/vtr_benchmarks_blif/stereovision3.blif .
$ cp $VTR_ROOT/vtr_flow/arch/timing/k6_N10_40nm.xml .

Note

Replace $VTR_ROOT with the root directory of the VTR source tree

Now we can run VPR to implement the circuit onto the k6_N10_40nm architecture.
We also need to provide the vpr --gen_post_synthesis_netlist option to generate the post-implementation netlist and dump the timing information in Standard Delay Format (SDF):

$ vpr k6_N10_40nm.xml stereovision3.blif --gen_post_synthesis_netlist on

Once VPR has completed we should see the generated verilog netlist and SDF:

$ ls *.v *.sdf
sv_chip3_hierarchy_no_mem_post_synthesis.sdf sv_chip3_hierarchy_no_mem_post_synthesis.v

Inspecting the Post-Implementation Netlist

Lets take a quick look at the generated files.

First is a snippet of the verilog netlist:

Listing 20 Verilog netlist snippet

fpga_interconnect \routing_segment_lut_n616_output_0_0_to_lut_n497_input_0_4 (
 .datain(\lut_n616_output_0_0),
 .dataout(\lut_n497_input_0_4)
);

//Cell instances
LUT_K #(
 .K(6),
 .LUT_MASK(64'b0000000000000000000000000000000000100001001000100000000100000010)
) \lut_n452 (
 .in({
 1'b0,
 \lut_n452_input_0_4 ,
 \lut_n452_input_0_3 ,
 \lut_n452_input_0_2 ,
 1'b0,
 \lut_n452_input_0_0 }),
 .out(\lut_n452_output_0_0)
);

DFF #(
 .INITIAL_VALUE(1'b0)
) \latch_top^FF_NODE~387 (
 .D(\latch_top^FF_NODE~387_input_0_0),
 .Q(\latch_top^FF_NODE~387_output_0_0),
 .clock(\latch_top^FF_NODE~387_clock_0_0)
);

Here we see three primitives instantiated:

	fpga_interconnect represent connections between netlist primitives

	LUT_K represent look-up tables (LUTs) (corresponding to .names in the BLIF netlist). Two parameters define the LUTs functionality:

	K the number of inputs, and

	LUT_MASK which defines the logic function.

	DFF represents a D-Flip-Flop (corresponding to .latch in the BLIF netlist).

	The INITIAL_VALUE parameter defines the Flip-Flop’s initial state.

Different circuits may produce other types of netlist primitives corresponding to hardened primitive blocks in the FPGA such as adders, multipliers and single or dual port RAM blocks.

Note

The different primitives produced by VPR are defined in $VTR_ROOT/vtr_flow/primitives.v

Lets now take a look at the Standard Delay Fromat (SDF) file:

Listing 21 SDF snippet

 1(CELL
 2 (CELLTYPE "fpga_interconnect")
 3 (INSTANCE routing_segment_lut_n616_output_0_0_to_lut_n497_input_0_4)
 4 (DELAY
 5 (ABSOLUTE
 6 (IOPATH datain dataout (312.648:312.648:312.648) (312.648:312.648:312.648))
 7)
 8)
 9)
10
11(CELL
12 (CELLTYPE "LUT_K")
13 (INSTANCE lut_n452)
14 (DELAY
15 (ABSOLUTE
16 (IOPATH in[0] out (261:261:261) (261:261:261))
17 (IOPATH in[2] out (261:261:261) (261:261:261))
18 (IOPATH in[3] out (261:261:261) (261:261:261))
19 (IOPATH in[4] out (261:261:261) (261:261:261))
20)
21)
22)
23
24(CELL
25 (CELLTYPE "DFF")
26 (INSTANCE latch_top\^FF_NODE\~387)
27 (DELAY
28 (ABSOLUTE
29 (IOPATH (posedge clock) Q (124:124:124) (124:124:124))
30)
31)
32 (TIMINGCHECK
33 (SETUP D (posedge clock) (66:66:66))
34)
35)

The SDF defines all the delays in the circuit using the delays calculated by VPR’s STA engine from the architecture file we provided.

Here we see the timing description of the cells in Listing 20.

In this case the routing segment routing_segment_lut_n616_output_0_0_to_lut_n497_input_0_4 has a delay of 312.648 ps, while the LUT lut_n452 has a delay of 261 ps from each input to the output.
The DFF latch_top\^FF_NODE\~387 has a clock-to-q delay of 124 ps and a setup time of 66ps.

Creating a Test Bench

In order to simulate a benchmark we need a test bench which will stimulate our circuit (the Device-Under-Test or DUT).

An example test bench which will randomly perturb the inputs is shown below:

Listing 22 The test bench tb.sv.

 1`timescale 1ps/1ps
 2module tb();
 3
 4localparam CLOCK_PERIOD = 8000;
 5localparam CLOCK_DELAY = CLOCK_PERIOD / 2;
 6
 7//Simulation clock
 8logic sim_clk;
 9
 10//DUT inputs
 11logic \top^tm3_clk_v0 ;
 12logic \top^tm3_clk_v2 ;
 13logic \top^tm3_vidin_llc ;
 14logic \top^tm3_vidin_vs ;
 15logic \top^tm3_vidin_href ;
 16logic \top^tm3_vidin_cref ;
 17logic \top^tm3_vidin_rts0 ;
 18logic \top^tm3_vidin_vpo~0 ;
 19logic \top^tm3_vidin_vpo~1 ;
 20logic \top^tm3_vidin_vpo~2 ;
 21logic \top^tm3_vidin_vpo~3 ;
 22logic \top^tm3_vidin_vpo~4 ;
 23logic \top^tm3_vidin_vpo~5 ;
 24logic \top^tm3_vidin_vpo~6 ;
 25logic \top^tm3_vidin_vpo~7 ;
 26logic \top^tm3_vidin_vpo~8 ;
 27logic \top^tm3_vidin_vpo~9 ;
 28logic \top^tm3_vidin_vpo~10 ;
 29logic \top^tm3_vidin_vpo~11 ;
 30logic \top^tm3_vidin_vpo~12 ;
 31logic \top^tm3_vidin_vpo~13 ;
 32logic \top^tm3_vidin_vpo~14 ;
 33logic \top^tm3_vidin_vpo~15 ;
 34
 35//DUT outputs
 36logic \top^tm3_vidin_sda ;
 37logic \top^tm3_vidin_scl ;
 38logic \top^vidin_new_data ;
 39logic \top^vidin_rgb_reg~0 ;
 40logic \top^vidin_rgb_reg~1 ;
 41logic \top^vidin_rgb_reg~2 ;
 42logic \top^vidin_rgb_reg~3 ;
 43logic \top^vidin_rgb_reg~4 ;
 44logic \top^vidin_rgb_reg~5 ;
 45logic \top^vidin_rgb_reg~6 ;
 46logic \top^vidin_rgb_reg~7 ;
 47logic \top^vidin_addr_reg~0 ;
 48logic \top^vidin_addr_reg~1 ;
 49logic \top^vidin_addr_reg~2 ;
 50logic \top^vidin_addr_reg~3 ;
 51logic \top^vidin_addr_reg~4 ;
 52logic \top^vidin_addr_reg~5 ;
 53logic \top^vidin_addr_reg~6 ;
 54logic \top^vidin_addr_reg~7 ;
 55logic \top^vidin_addr_reg~8 ;
 56logic \top^vidin_addr_reg~9 ;
 57logic \top^vidin_addr_reg~10 ;
 58logic \top^vidin_addr_reg~11 ;
 59logic \top^vidin_addr_reg~12 ;
 60logic \top^vidin_addr_reg~13 ;
 61logic \top^vidin_addr_reg~14 ;
 62logic \top^vidin_addr_reg~15 ;
 63logic \top^vidin_addr_reg~16 ;
 64logic \top^vidin_addr_reg~17 ;
 65logic \top^vidin_addr_reg~18 ;
 66
 67
 68//Instantiate the dut
 69sv_chip3_hierarchy_no_mem dut (.*);
 70
 71//Load the SDF
 72initial $sdf_annotate("sv_chip3_hierarchy_no_mem_post_synthesis.sdf", dut);
 73
 74//The simulation clock
 75initial sim_clk = '1;
 76always #CLOCK_DELAY sim_clk = ~sim_clk;
 77
 78//The circuit clocks
 79assign \top^tm3_clk_v0 = sim_clk;
 80assign \top^tm3_clk_v2 = sim_clk;
 81
 82//Randomized input
 83always@(posedge sim_clk) begin
 84 \top^tm3_vidin_llc <= $urandom_range(1,0);
 85 \top^tm3_vidin_vs <= $urandom_range(1,0);
 86 \top^tm3_vidin_href <= $urandom_range(1,0);
 87 \top^tm3_vidin_cref <= $urandom_range(1,0);
 88 \top^tm3_vidin_rts0 <= $urandom_range(1,0);
 89 \top^tm3_vidin_vpo~0 <= $urandom_range(1,0);
 90 \top^tm3_vidin_vpo~1 <= $urandom_range(1,0);
 91 \top^tm3_vidin_vpo~2 <= $urandom_range(1,0);
 92 \top^tm3_vidin_vpo~3 <= $urandom_range(1,0);
 93 \top^tm3_vidin_vpo~4 <= $urandom_range(1,0);
 94 \top^tm3_vidin_vpo~5 <= $urandom_range(1,0);
 95 \top^tm3_vidin_vpo~6 <= $urandom_range(1,0);
 96 \top^tm3_vidin_vpo~7 <= $urandom_range(1,0);
 97 \top^tm3_vidin_vpo~8 <= $urandom_range(1,0);
 98 \top^tm3_vidin_vpo~9 <= $urandom_range(1,0);
 99 \top^tm3_vidin_vpo~10 <= $urandom_range(1,0);
100 \top^tm3_vidin_vpo~11 <= $urandom_range(1,0);
101 \top^tm3_vidin_vpo~12 <= $urandom_range(1,0);
102 \top^tm3_vidin_vpo~13 <= $urandom_range(1,0);
103 \top^tm3_vidin_vpo~14 <= $urandom_range(1,0);
104 \top^tm3_vidin_vpo~15 <= $urandom_range(1,0);
105end
106
107endmodule

The testbench instantiates our circuit as dut at line 69.
To load the SDF we use the $sdf_annotate() system task (line 72) passing the SDF filename and target instance.
The clock is defined on lines 75-76 and the random circuit inputs are generated at the rising edge of the clock on lines 84-104.

Performing Timing Simulation in Modelsim

To perform the timing simulation we will use Modelsim, an HDL simulator from Mentor Graphics.

Note

Other simulators may use different commands, but the general approach will be similar.

It is easiest to write a tb.do file to setup and configure the simulation:

Listing 23 Modelsim do file tb.do. Note that $VTR_ROOT should be replaced with the relevant path.

 1#Enable command logging
 2transcript on
 3
 4#Setup working directories
 5if {[file exists gate_work]} {
 6 vdel -lib gate_work -all
 7}
 8vlib gate_work
 9vmap work gate_work
10
11#Load the verilog files
12vlog -sv -work work {sv_chip3_hierarchy_no_mem_post_synthesis.v}
13vlog -sv -work work {tb.sv}
14vlog -sv -work work {$VTR_ROOT/vtr_flow/primitives.v}
15
16#Setup the simulation
17vsim -t 1ps -L gate_work -L work -voptargs="+acc" +sdf_verbose +bitblast tb
18
19#Log signal changes to a VCD file
20vcd file sim.vcd
21vcd add /tb/dut/*
22vcd add /tb/dut/*
23
24#Setup the waveform viewer
25log -r /tb/*
26add wave /tb/*
27view structure
28view signals
29
30#Run the simulation for 1 microsecond
31run 1us -all

We link together the post-implementation netlist, test bench and VTR primitives on lines 12-14.
The simulation is then configured on line 17, some of the options are worth discussing in more detail:

	+bitblast: Ensures Modelsim interprets the primitives in primitives.v correctly for SDF back-annotation.

Warning

Failing to provide +bitblast can cause errors during SDF back-annotation

	+sdf_verbose: Produces more information about SDF back-annotation, useful for verifying that back-annotation succeeded.

Lastly, we tell the simulation to run on line 31.

Now that we have a .do file, lets launch the modelsim GUI:

$ vsim

and then run our .do file from the internal console:

ModelSim> do tb.do

Once the simulation completes we can view the results in the waveform view as shown in at the top of the page, or process the generated VCD file sim.vcd.

 Utilities

Utilities

	FPGA Assembly (FASM) Output Support
	FASM metadata

	Invoking genfasm

	FASM prefixing

	Simple FASM feature emissions

	Emitting LUTs

	Within tile interconnect features

	Passing parameters through to the FASM Output

	Router Diagnosis Tool

 FPGA Assembly (FASM) Output Support

FPGA Assembly (FASM) Output Support

After VPR has generated a placed and routed design, the genfasm utility can
emit a FASM [https://github.com/SymbiFlow/fasm] file to represent the design at a level detailed enough to allow generation of a bitstream to program a device. This FASM output file is enabled by FASM metadata encoded in the VPR
architecture definition and routing graph. The output FASM file can be
converted into a bitstream format suitable to program the target architecture via architecture specific tooling. Current devices that can be programmed using the vpr + fasm flow include Lattice iCE40 and Xilinx Artix-7 devices, with work on more devices underway. More information on supported devices is available from the Symbiflow [https://symbiflow.github.io] website and an overview of the flow for Artix-7 devices is described in IEEE Micro [MurrayAnsellRothman+20].

FASM metadata

The genfasm utility uses metadata blocks (see Architecture metadata)
attached to the architecture definition and routing graph to emit FASM
features. By adding FASM specific metadata to both the architecture
definition and the routing graph, a FASM file that represents the place and
routed design can be generated.

All metadata tags are ignored when packing, placing and routing. After VPR has
been completed placement, genfasm utility loads the VPR output files
(.net, .place, .route) and then uses the FASM metadata to emit a FASM file.
The following metadata “keys” are recognized by genfasm:

	“fasm_prefix”

	“fasm_features”

	“fasm_type” and “fasm_lut”

	“fasm_mux”

	“fasm_params”

Invoking genfasm

genfasm expects that place and route on the design is completed (e.g.
.net, .place, .route files are present), so ensure that routing is complete
before executing genfasm. genfasm should be invoked in the same
subdirectory as the routing output. The output FASM file will be written to
<blif root>.fasm.

FASM prefixing

FASM feature names has structure through their prefixes. In general the first
part of the FASM feature is the location of the feature, such as the name of
the tile the feature is located in, e.g. INT_L_X5Y6 or CLBLL_L_X10Y12. The
next part is typically an identifier within the tile. For example a CLBLL
tile has two slices, so the next part of the FASM feature name is the slice
identifier, e.g. SLICE_X0 or SLICE_X1.

Now consider the CLBLL_L pb_type. This pb_type is repeated in the grid for
each tile of that type. To allow one pb_type definition to be defined, the
“fasm_prefix” metadata tag is allowed to be attached at the layout level on
the <single> tag. This enables the same pb_type to be used for all CLBLL_L
tiles, and the “fasm_prefix” is prepended to all FASM metadata within that
pb_type. For example:

<single priority="1" type="BLK_TI-CLBLL_L" x="35" y="51">
 <metadata>
 <meta name="fasm_prefix">CLBLL_L_X12Y100</meta>
 </metadata>
</single>
<single priority="1" type="BLK_TI-CLBLL_L" x="35" y="50">
 <metadata>
 <meta name="fasm_prefix">CLBLL_L_X12Y101</meta>
 </metadata>
</single>

“fasm_prefix” tags can also be used within a pb_type to handle repeated
features. For example in the CLB, there are 4 LUTs that can be described by
a common pb_type, except that the prefix changes for each. For example,
consider the FF’s within a CLB. There are 8 FF’s that share a common
structure, except for a prefix change. “fasm_prefix” can be a space
separated list to assign prefixes to the index of the pb_type, rather than
needing to emit N copies of the pb_type with varying prefixes.

<pb_type name="BEL_FF-FDSE_or_FDRE" num_pb="8">
 <input name="D" num_pins="1"/>
 <input name="CE" num_pins="1"/>
 <clock name="C" num_pins="1"/>
 <input name="SR" num_pins="1"/>
 <output name="Q" num_pins="1"/>
 <metadata>
 <meta name="fasm_prefix">AFF BFF CFF DFF A5FF B5FF C5FF D5FF</meta>
 </metadata>
</pb_type>

Construction of the prefix

“fasm_prefix” is accumulated throughout the structure of the architecture
definition. Each “fasm_prefix” is joined together with a period (‘.’), and
then a period is added after the prefix before the FASM feature name.

Simple FASM feature emissions

In cases where a FASM feature needs to be emitted simply via use of a pb_type,
the “fasm_features” tag can be used. If the pb_type (or mode) is selected,
then all “fasm_features” in the metadata will be emitted. Multiple features
can be listed, whitespace separated. Example:

<metadata>
 <meta name="fasm_features">ZRST</meta>
</metadata>

The other place that “fasm_features” is used heavily is on <edge> tags in the
routing graph. If an edge is used in the final routed design, “genfasm” will
emit features attached to the edge. Example:

<edge sink_node="431195" src_node="418849" switch_id="0">
 <metadata>
 <meta name="fasm_features">HCLK_R_X58Y130.HCLK_LEAF_CLK_B_TOP4.HCLK_CK_BUFHCLK7 HCLK_R_X58Y130.ENABLE_BUFFER.HCLK_CK_BUFHCLK7</meta>
 </metadata>
</edge>

In this example, when the routing graph connects node 418849 to 431195, two
FASM features will be emitted:

	HCLK_R_X58Y130.HCLK_LEAF_CLK_B_TOP4.HCLK_CK_BUFHCLK7

	HCLK_R_X58Y130.ENABLE_BUFFER.HCLK_CK_BUFHCLK7

Emitting LUTs

LUTs are a structure that is explicitly understood by VPR. In order to emit
LUTs, two metadata keys must be used, “fasm_type” and “fasm_lut”. “fasm_type”
must be either “LUT” or “SPLIT_LUT”. The “fasm_type” modifies how the
“fasm_lut” key is interpreted. If the pb_type that the metadata is attached
to has no “num_pb” or “num_pb” equals 1, then “fasm_type” can be “LUT”.
“fasm_lut” is then the feature that represents the LUT table storage features,
example:

<metadata>
 <meta name="fasm_type">LUT</meta>
 <meta name="fasm_lut">
 ALUT.INIT[63:0]
 </meta>
</metadata>

FASM LUT metadata must be attached to the <pb_type> at or within the
<mode> tag directly above the <pb_type> with blif_model=".names".
Do note that there is an implicit <mode> tag within intermediate
<pb_type> when no explicit <mode> tag is present. The FASM LUT
metadata tags will not be recognized attached inside of <pb_type>’s higher
above the leaf type.

When specifying a FASM features with more than one bit, explicitly specify the
bit range being set. This is required because “genfasm” does not have access
to the actual bit database, and would otherwise not have the width of the
feature.

When “fasm_type” is “SPLIT_LUT”, “fasm_lut” must specify both the feature that
represents the LUT table storage features and the pb_type path to the LUT
being specified. Example:

<metadata>
 <meta name="fasm_type">SPLIT_LUT</meta>
 <meta name="fasm_lut">
 ALUT.INIT[31:0] = BEL_LT-A5LUT[0]
 ALUT.INIT[63:32] = BEL_LT-A5LUT[1]
 </meta>
</metadata>

In this case, the LUT in pb_type BEL_LT-A5LUT[0] will use INIT[31:0], and the
LUT in pb_type BEL_LT-A5LUT[1] will use INIT[63:32].

Within tile interconnect features

When a tile has interconnect feature, e.g. output muxes, the “fasm_mux” tag
should be attached to the interconnect tag, likely the <direct> or
<mux> tags. From the perspective of genfasm, the <direct> and
<mux> tags are equivalent. The syntax for the “fasm_mux” newline
separated relationship between mux input wire names and FASM features.
Example:

<mux name="D5FFMUX" input="BLK_IG-COMMON_SLICE.DX BLK_IG-COMMON_SLICE.DO5" output="BLK_BB-SLICE_FF.D5[3]" >
 <metadata>
 <meta name="fasm_mux">
 BLK_IG-COMMON_SLICE.DO5 : D5FFMUX.IN_A
 BLK_IG-COMMON_SLICE.DX : D5FFMUX.IN_B
 </meta>
 </metadata>
</mux>

The above mux connects input BLK_IG-COMMON_SLICE.DX or BLK_IG-COMMON_SLICE.DO5
to BLK_BB-SLICE_FF.D5[3]. When VPR selects BLK_IG-COMMON_SLICE.DO5 for the
mux, “genfasm” will emit D5FFMUX.IN_A, etc.

There is not a requirement that all inputs result in a feature being set.
In cases where some mux selections result in no feature being set, use “NULL”
as the feature name. Example:

<mux name="CARRY_DI3" input="BLK_IG-COMMON_SLICE.DO5 BLK_IG-COMMON_SLICE.DX" output="BEL_BB-CARRY[2].DI" >
 <metadata>
 <meta name="fasm_mux">
 BLK_IG-COMMON_SLICE.DO5 : CARRY4.DCY0
 BLK_IG-COMMON_SLICE.DX : NULL
 </meta>
 </metadata>
</mux>

The above examples all used the <mux> tag. The “fasm_mux” metadata key
can also be used with the <direct> tag in the same way, example:

<direct name="WA7" input="BLK_IG-SLICEM.CX" output="BLK_IG-SLICEM_MODES.WA7">
 <metadata>
 <meta name="fasm_mux">
 BLK_IG-SLICEM.CX = WA7USED
 </meta>
 </metadata>
</direct>

If multiple FASM features are required for a mux, they can be specified using
comma’s as a seperator. Example:

<mux name="D5FFMUX" input="BLK_IG-COMMON_SLICE.DX BLK_IG-COMMON_SLICE.DO5" output="BLK_BB-SLICE_FF.D5[3]" >
 <metadata>
 <meta name="fasm_mux">
 BLK_IG-COMMON_SLICE.DO5 : D5FFMUX.IN_A
 BLK_IG-COMMON_SLICE.DX : D5FFMUX.IN_B, D5FF.OTHER_FEATURE
 </meta>
 </metadata>
</mux>

Passing parameters through to the FASM Output

In many cases there are parameters that need to be passed directly from the
input Extended BLIF (.eblif) to the FASM file. These can be passed into a FASM
feature via the “fasm_params” key. Note that care must be taken to have the
“fasm_params” metadata be attached to pb_type that the packer uses, the
pb_type with the blif_model= “.subckt”.

The “fasm_params” value is a newline separated list of FASM features to eblif
parameters. Example:

<metadata>
 <meta name="fasm_params">
 INIT[31:0] = INIT_00
 INIT[63:32] = INIT_01
 </meta>
</metadata>

The FASM feature is on the left hand side of the equals. When setting a
parameter with multiple bits, the bit range must be specified. If the
parameter is a single bit, the bit range is not required, but can be supplied
for clarity. The right hand side is the parameter name from eblif. If the
parameter name is not found in the eblif, that FASM feature will not be
emitted.

No errors or warnings will be generated for unused parameters from eblif or
unused mappings between eblif parameters and FASM parameters to allow for
flexibility in the synthesis output. This does mean it is important to check
spelling of the metadata, and create tests that the mapping is working as
expected.

Also note that “genfasm” will not accept “x” (unknown/don’t care) or “z”
(high impedence) values in parameters. Prior to emitting the eblif for place
and route, ensure that all parameters that will be mapped to FASM have a
valid “1” or “0”.

 Router Diagnosis Tool

Router Diagnosis Tool

The Router Diagnosis tool (route_diag) is an utility that helps developers understand the issues related to the routing phase of VPR.
Instead of running the whole routing step, route_diag performs one step of routing, aimed at analyzing specific connections between a SINK/SOURCE nodes pair.
Moreover, it is able also to profile all the possible paths of a given SOURCE node.

To correctly run the utility tool, the user needs to compile VTR with the VTR_ENABLE_DEBUG_LOGGING set to ON and found in the CMakeLists.txt [https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/01ff7e174d9d53753a2f981d7be0052b612b5874/CMakeLists.txt#L36] configuration file.

The tool is compiled with all the other targets when running the full build of VtR. It is also possible, though, to build the route_diag utility standalone, by running the following command:

make route_diag

To use the Route Diagnosis tool, the users has different parameters at disposal:

	
--sink_rr_node <int>

	Specifies the SINK RR NODE part of the pair that needs to be analyzed

	
--source_rr_node <int>

	Specifies the SOURCE RR NODE part of the pair that needs to be analyzed

	
--router_debug_sink_rr <int>

	Controls when router debugging is enabled for the specified sink RR.

	For values >= 0, the value is taken as the sink RR Node ID for which to enable router debug output.

	For values < 0, sink-based router debug output is disabled.

The Router Diagnosis tool must be provided at least with the RR GRAPH and the architecture description file to correctly function.

 Developer Guide

Developer Guide

	Contribution Guidelines
	Common Scenarios
	I have a question

	I found a bug!

	It would be great if VTR supported …

	I have a bug-fix/feature I’d like to include in VTR

	The Details
	Enhancing Documentation

	How do I build the documentation?

	Filling Bug Reports

	Filling Enhancement Requests

	Submitting Code to VTR

	Making Pull Requests

	Commit Procedures

	Commit Messages and Structure
	Commit Messages

	Commit Structure

	Code Formatting
	Large Scale Reformatting

	Python Linting

	Running Tests
	Tests
	vtr_reg_basic

	vtr_reg_strong

	vtr_reg_nightly_test1-N

	vtr_reg_weekly

	Running in a large cluster using SLURM

	Continuous integration (CI)
	Re-run CI Tests

	Odin Functionality Tests

	Unit Tests

	Evaluating Quality of Result (QoR) Changes
	General QoR Evaluation Principles
	Key QoR Metrics

	Benchmark Selection

	Fairly measuring tool run-time

	Collecting QoR Measurements
	Example: VTR Benchmarks QoR Measurement

	Example: Titan Benchmarks QoR Measurement
	Running and Integrating the Titan Benchmarks with VTR

	Example: NoC Benchmarks QoR Measurements
	Running and Integrating the NoC Benchmarks with VTR

	Example: Koios Benchmarks QoR Measurement

	Example: Extracting QoR Data from CI Runs

	Comparing QoR Measurements
	QoR Comparison Gotchas

	Example QoR Comparison

	Automated QoR Comparison Script

	Generating New QoR Golden Result

	Adding Tests
	Adding a test to vtr_reg_strong

	Debugging Aids
	Sanitizers

	Valgrind

	Assertion Levels

	GDB Pretty Printers
	STL Pretty Printers

	VTR Pretty Printers

	RR (Record Replay) Debugger

	Speeding up the edit-compile-test cycle

	Speeding Compilation

	Profiling VTR

	External Subtrees
	Updating an existing Subtree

	Adding a new Subtree

	Subtree Rational

	Finding Bugs with Coverity
	Browsing Defects

	Submitting a build

	No files emitted

	Release Procedures
	General Principles

	Checklist

	Sphinx API Documentation for C/C++ Projects
	Create Doxyfile

	Breathe Configuration

	Create RST with API Documentation

	Generate the Documentation

	Documenting VTR Code with Doxygen
	Documenting Code
	Block Comments

	One-line Comments Before an Element

	One-line Comments After an Element Member

	Documenting Files

	Validation of Doxygen Comments (Updating API Reference)

	Additional Resources

	Developer Tutorials
	New Developer Tutorial
	Overview

	Environment Setup

	Background Reading

	Setup VTR

	Use VTR

	Open the Black Box

	Submitting Changes and Regression Testing

	Timing Graph Debugging Tutorial
	Generating a GraphViz DOT file of the Entire Timing Graph

	Generating a GraphViz DOT file of a subset of the Timing Graph

	Cross-referencing Node IDs with VPR Timing Reports

	VPR UI and Graphics

	VTR Support Resources

	VTR License

 Contribution Guidelines

Contribution Guidelines

Thanks for considering contributing to VTR!
Here are some helpful guidelines to follow.

Common Scenarios

I have a question

If you have questions about VTR take a look at our Support Resources.

If the answer to your question wasn’t in the documentation (and you think it should have been), consider enhancing the documentation.
That way someone (perhaps your future self!) will be able to quickly find the answer in the future.

I found a bug!

While we strive to make VTR reliable and robust, bugs are inevitable in large-scale software projects.

Please file a detailed bug report.
This ensures we know about the problem and can work towards fixing it.

It would be great if VTR supported …

VTR has many features and is highly flexible.
Make sure you’ve checkout out all our Support Resources to see if VTR already supports what you want.

If VTR does not support your use case, consider filling an enhancement.

I have a bug-fix/feature I’d like to include in VTR

Great! Submitting bug-fixes and features is a great way to improve VTR.
See the guidlines for submitting code.

The Details

Enhancing Documentation

Enhancing documentation is a great way to start contributing to VTR.

You can edit the documentation [https://docs.verilogtorouting.org] directly by clicking the Edit on GitHub link of the relevant page, or by editing the re-structured text (.rst) files under doc/src.

Generally it is best to make small incremental changes.
If you are considering larger changes its best to discuss them first (e.g. file a bug or enhancement).

Once you’ve made your enhancements open a pull request to get your changes considered for inclusion in the documentation.

How do I build the documentation?

The documentation can be built by using the command make html in the $VTR_ROOT/doc directory and you can view it in a web browser by loading the file at $VTR_ROOT/_build/html/index.html. More information on building
the documentation can be found on the README on GitHub [https://github.com/verilog-to-routing/vtr-verilog-to-routing/tree/master/doc].

Filling Bug Reports

First, search for existing issues [https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues?&=] to see if the bug has already been reported.

If no bug exists you will need to collect key pieces of information.
This information helps us to quickly reproduce (and hopefully fix) the issue:

	What behaviour you expect

How you think VTR should be working.

	What behaviour you are seeing

What VTR actually does on your system.

	Detailed steps to re-produce the bug

This is key to getting your bug fixed.

Provided detailed steps to reproduce the bug, including the exact commands to reproduce the bug.
Attach all relevant files (e.g. FPGA architecture files, benchmark circuits, log files).

If we can’t re-produce the issue it is very difficult to fix.

	Context about what you are trying to achieve

Sometimes VTR does things in a different way than you expect.
Telling us what you are trying to accomplish helps us to come up with better real-world solutions.

	Details about your environment

Tell us what version of VTR you are using (e.g. the output of vpr --version), which Operating System and compiler you are using, or any other relevant information about where or how you are building/running VTR.

Once you’ve gathered all the information open an Issue [https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues/new?template=bug_report.md] on our issue tracker.

If you know how to fix the issue, or already have it coded-up, please also consider submitting the fix.
This is likely the fastest way to get bugs fixed!

Filling Enhancement Requests

First, search existing issues [https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues] to see if your enhancement request overlaps with an existing Issue.

If not feature request exists you will need to describe your enhancement:

	New behaviour

How your proposed enhancement will work (from a user’s perspective).

	Contrast with current behaviour

How will your enhancement differ from the current behaviour (from a user’s perspective).

	Potential Implementation

Describe (if you have some idea) how the proposed enhancement would be implemented.

	Context

What is the broader goal you are trying to accomplish? How does this enhancement help?
This allows us to understand why this enhancement is beneficial, and come up with the best real-world solution.

VTR developers have limited time and resources, and will not be able to address all feature requests.
Typically, simple enhancements, and those which are broadly useful to a wide group of users get higher priority.

Features which are not generally useful, or useful to only a small group of users will tend to get lower priority.
(Of course coding the enhancement yourself is an easy way to bypass this challenge).

Once you’ve gathered all the information open an Issue [https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues/new?template=feature_request.md] on our issue tracker.

Submitting Code to VTR

VTR welcomes external contributions.

In general changes that are narrowly focused (e.g. small bug fixes) are easier to review and include in the code base.

Large changes, such as substantial new features or significant code-refactoring are more challenging to review.
It is probably best to file an enhancement first to discuss your approach.

Additionally, new features which are generally useful are much easier to justify adding to the code base, whereas features useful in only a few specialized cases are more difficult to justify.

Once your fix/enahcement is ready to go, start a pull request.

Making Pull Requests

It is assumed that by opening a pull request to VTR you have permission to do so, and the changes are under the relevant License.
VTR does not require a Contributor License Agreement (CLA) or formal Developer Certificate of Origin (DCO) for contributions.

Each pull request should describe it’s motivation and context (linking to a relevant Issue for non-trivial changes).

Code-changes should also describe:

	The type of change (e.g. bug-fix, feature)

	How it has been tested

	What tests have been added

All new features must have tests added which exercise the new features.
This ensures any future changes which break your feature will be detected.
It is also best to add tests when fixing bugs, for the same reason

See Adding Tests for details on how to create new regression tests.
If you aren’t sure what tests are needed, ask a maintainer.

	How the feature has been documented

Any new user-facing features should be documented in the public documentation, which is in .rst format under doc/src, and served at https://docs.verilogtorouting.org

Once everything is ready create a pull request [https://github.com/verilog-to-routing/vtr-verilog-to-routing/pulls].

Tips for Pull Requests
The following are general tips for making your pull requests easy to review (and hence more likely to be merged):

	Keep changes small

Large change sets are difficult and time-consuming to review.
If a change set is becoming too large, consider splitting it into smaller pieces; you’ll probably want to file an issue to discuss things first.

	Do one thing only

All the changes and commits in your pull request should be relevant to the bug/feature it addresses.
There should be no unrelated changes (e.g. adding IDE files, re-formatting unchanged code).

Unrelated changes make it difficult to accept a pull request, since it does more than what the pull request described.

	Match existing code style
When modifying existing code, try match the existing coding style.
This helps to keep the code consistent and reduces noise in the pull request (e.g. by avoiding re-formatting changes), which makes it easier to review and more likely to be merged.

 Commit Procedures

Commit Procedures

For general guidance on contributing to VTR see Submitting Code to VTR.

The actual machanics of submitting code are outlined below.

However they differ slightly depending on whether you are:

	an internal developer (i.e. you have commit access to the main VTR repository at github.com/verilog-to-routing/vtr-verilog-to-routing) or,

	an (external developer) (i.e. no commit access).

The overall approach is similar, but we call out the differences below.

	Setup a local repository on your development machine.

a. External Developers

	Create a ‘fork’ of the VTR repository.

Usually this is done on GitHub, giving you a copy of the VTR repository (i.e. github.com/<username>/vtr-verilog-to-routing, where <username> is your GitHub username) to which you have commit rights.
See About forks [https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-forks] in the GitHub documentation.

	Clone your ‘fork’ onto your local machine.

For example, git clone git@github.com:<username>/vtr-verilog-to-routing.git, where <username> is your GitHub username.

b. Internal Developers

	Clone the main VTR repository onto your local machine.

For example, git clone git@github.com:verilog-to-routing/vtr-verilog-to-routing.git.

	Move into the cloned repository.

For example, cd vtr-verilog-to-routing.

	Create a branch, based off of master to work on.

For example, git checkout -b my_awesome_branch master, where my_awesome_branch is some helpful (and descriptive) name you give you’re branch.
Please try to pick descriptive branch names!

	Make your changes to the VTR code base.

	Test your changes to ensure they work as intended and have not broken other features.

At the bare minimum it is recommended to run:

make #Rebuild the code
./run_reg_test.py vtr_reg_basic vtr_reg_strong #Run tests

See Running Tests for more details.

Also note that additional code formatting checks, and tests will be run when you open a Pull Request.

	Commit your changes (i.e. git add followed by git commit).

Please try to use good commit messages!

See Commit Messages and Structure for details.

	Push the changes to GitHub.

For example, git push origin my_awesome_branch.

a. External Developers

Your code changes will now exist in your branch (e.g. my_awesome_branch) within your fork (e.g. github.com/<username>/vtr-verilog-to-routing/tree/my_awesome_branch, where <username> is your GitHub username)

b. Internal Developers

Your code changes will now exist in your branch (e.g. my_awesome_branch) within the main VTR repository (i.e. github.com/verilog-to-routing/vtr-verilog-to-routing/tree/my_awesome_branch)

	Create a Pull Request (PR) to request your changes be merged into VTR.

	Navigate to your branch on GitHub

a. External Developers

Navigate to your branch within your fork on GitHub (e.g. https://github.com/<username/vtr-verilog-to-routing/tree/my_awesome_branch, where <username> is your GitHub username, and my_awesome_branch is your branch name).

b. Internal Developers

Navigate to your branch on GitHub (e.g. https://github.com/verilog-to-routing/vtr-verilog-to-routing/tree/my_awesome_branch, where my_awesome_branch is your branch name).

	Select the New pull request button.

a. External Developers

If prompted, select verilog-to-routing/vtr-verilog-to-routing as the base repository.

Commit Messages and Structure

Commit Messages

Commit messages are an important part of understanding the code base and its history.
It is therefore extremely important to provide the following information in the commit message:

	What is being changed?

	Why is this change occurring?

The diff of changes included with the commit provides the details of what is actually changed, so only a high-level description of what is being done is needed.
However a code diff provides no insight into why the change is being made, so this extremely helpful context can only be encoded in the commit message.

The preferred convention in VTR is to structure commit messages as follows:

Header line: explain the commit in one line (use the imperative)

More detailed explanatory text. Explain the problem that this commit
is solving. Focus on why you are making this change as opposed to how
(the code explains that). Are there side effects or other unintuitive
consequences of this change? Here's the place to explain them.

If necessary. Wrap lines at some reasonable point (e.g. 74 characters,
or so) In some contexts, the header line is treated as the subject
of the commit and the rest of the text as the body. The blank line
separating the summary from the body is critical (unless you omit
the body entirely); various tools like `log`, `shortlog` and `rebase`
can get confused if you run the two together.

Further paragraphs come after blank lines.

 - Bullet points are okay, too

 - Typically a hyphen or asterisk is used for the bullet, preceded
 by a single space, with blank lines in between, but conventions
 vary here

You can also put issue tracker references at the bottom like this:

Fixes: #123
See also: #456, #789

(based off of here [https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html], and here [https://github.com/torvalds/subsurface-for-dirk/blob/master/README.md#contributing]).

Commit messages do not always need to be long, so use your judgement.
More complex or involved changes with wider ranging implications likely deserve longer commit messages than fixing a simple typo.

It is often helpful to phrase the first line of a commit as an imperative/command written as if to tell the repository what to do (e.g. Update netlist data structure comments, Add tests for feature XYZ, Fix bug which ...).

To provide quick context, some VTR developers also tag the first line with the main part of the code base effected, some common ones include:

	vpr: for the VPR place and route tool (vpr/)

	flow: VTR flow architectures, scripts, tests, … (vtr_flow/)

	archfpga: for FPGA architecture library (libs/libarchfpga)

	vtrutil: for common VTR utilities (libs/libvtrutil)

	doc: Documentation (doc/, *.md, …)

	infra: Infrastructure (CI, .github/, …)

Commit Structure

Generally, you should strive to keep commits atomic (i.e. they do one logical change to the code).
This often means keeping commits small and focused in what they change.
Of course, a large number of miniscule commits is also unhelpful (overwhelming and difficult to see the structure), and sometimes things can only be done in large changes – so use your judgement.
A reasonable rule of thumb is to try and ensure VTR will still compile after each commit.

For those familiar with history re-writing features in git (e.g. rebase) you can sometimes use these to clean-up your commit history after the fact.
However these should only be done on private branches, and never directly on master.

Code Formatting

Some parts of the VTR code base (e.g. VPR, libarchfpga, libvtrutil) have C/C++ code formatting requirements which are checked automatically by regression tests.
If your code changes are not compliant with the formatting, you can run:

make format

from the root of the VTR source tree.
This will automatically reformat your code to be compliant with formatting requirements (this requires the clang-format tool to be available on your system).

Python code must also be compliant with the formatting. To format Python code, you can run:

make format-py

from the root of the VTR source tree (this requires the black tool to be available on your system).

Large Scale Reformatting

For large scale reformatting (should only be performed by VTR maintainers) the script dev/autoformat.py can be used to reformat the C/C++ code and commit it as ‘VTR Robot’, which keeps the revision history clearer and records metadata about reformatting commits (which allows git hyper-blame to skip such commits). The --python option can be used for large scale formatting of Python code.

Python Linting

Python files are automatically checked using pylint to ensure they follow established Python conventions. You can run pylint on the entire repository by running ./dev/pylint_check.py. Certain files which were created before we adopted Python lint checking are grandfathered and are not checked. To check all files, provide the --check_grandfathered argument. You can also manually check individual files using ./dev/pylint_check.py <path_to_file1> <path_to_file2>

Running Tests

VTR has a variety of tests which are used to check for correctness, performance and Quality of Result (QoR).

Tests

There are 4 main regression testing suites:

vtr_reg_basic

~1 minute serial

Goal: Fast functionality check

Feature Coverage: Low

Benchmarks: A few small and simple circuits

Architectures: A few simple architectures

This regression test is not suitable for evaluating QoR or performance.
Its primary purpose is to make sure the various tools do not crash/fail in the basic VTR flow.

QoR checks in this regression test are primarily ‘canary’ checks to catch gross degradations in QoR.
Occasionally, code changes can cause QoR failures (e.g. due to CAD noise – particularly on small benchmarks); usually such failures are not a concern if the QoR differences are small.

vtr_reg_strong

~20 minutes serial, ~15 minutes with -j4

Goal: Broad functionality check

Feature Coverage: High

Benchmarks: A few small circuits, with some special benchmarks to exercise specific features

Architectures: A variety of architectures, including special architectures to exercise specific features

This regression test is not suitable for evaluating QoR or performance.
Its primary purpose is try and achieve high functionality coverage.

QoR checks in this regression test are primarily ‘canary’ checks to catch gross degradations in QoR.
Occasionally, changes can cause QoR failures (e.g. due to CAD noise – particularly on small benchmarks); usually such failures are not a concern if the QoR differences are small.

vtr_reg_nightly_test1-N

Goal: Most QoR and Performance evaluation

Feature Coverage: Medium

Architectures: A wider variety of architectures

Benchmarks: Small-large size, diverse. Includes:

	VTR benchmarks

	Titan benchmarks except gaussian_blur (which has the longest run time)

	Koios benchmarks

	Various special benchmarks and tests for functionality

QoR checks in these regression suites are aimed at evaluating quality and run-time of the VTR flow.
As a result any QoR failures are a concern and should be investigated and understood.

Note:

These suites comprise a single large suite, vtr_reg_nightly and should be run together to test nightly level regression. They are mostly similar in benchmark coverage interms of size and diversity however each suite tests some unique benchmarks in addition to the VTR benchmarks. Each vtr_reg_nightly suite runs on a different server (in parallel), so by having N such test suites we speed up CI by a factor of N. Currently the runtime of each suite is capped at 6 hours, so if the runtime exceeds six hours a new vtr_reg_nightly suite (i.e. N+1) should be created.

 Sphinx API Documentation for C/C++ Projects

Sphinx API Documentation for C/C++ Projects

The Sphinx API documentation for VTR C/C++ projects is created using
Doxygen and Breathe plugin. Doxygen is a standard tool for generating
documentation from annotated code. It is used to generate XML output that can
then be parsed by the Breathe plugin, which provides the RST directives used to
embed the code comments into the Sphinx documentation.

Every VPR C/C++ project requires a few steps that have to be completed,
to generate the Sphinx documentation:

	Create doxyfile for the project

	Update the Breathe config

	Create RST files with the API description using Breathe directives

	Generate the project documentation

Create Doxyfile

A doxyfile a Doxygen configuration file that provides all the necessary
information about the documented project. It is used to generate Doxygen
output in the chosen format.

The configuration includes the specification of input files, output directory,
generated documentation formats, and much more. The config for a particular
VPR project should be saved in the <vtr-verilog-to-routing>/doc/_doxygen
directory. The doxyfile should be named as <key>.dox, where <key> is
a breathe_projects dictionary key associated with the VPR project.

The minimal doxyfile should contain only the configuration
values that are not set by default. As mentioned before, the Breathe plugin
expects the XML input. Therefore the GENERATE_XML option should be turned on.
Below there is a content of vpr.dox file content, which contains
the VPR Doxygen configuration:

PROJECT_NAME = "Verilog to Routing - VPR"
OUTPUT_DIRECTORY = ../_build/doxygen/vpr
FULL_PATH_NAMES = NO
OPTIMIZE_OUTPUT_FOR_C = YES
EXTRACT_ALL = YES
EXTRACT_PRIVATE = YES
EXTRACT_STATIC = YES
WARN_IF_UNDOCUMENTED = NO
INPUT = ../../vpr
RECURSIVE = YES
GENERATE_HTML = NO
GENERATE_LATEX = NO
GENERATE_XML = YES

The general Doxyfile template can be generated using:

doxygen -g template.dox

Breathe Configuration

Breathe plugin is responsible for parsing the XML file generated
by the Doxygen. It provides the convenient RST directives that allow to
embed the read documentation into the Sphinx documentation.

To add the new project to the Sphinx API generation mechanism, you have to
update the breathe_projects dictionary in the Sphinx conf.py file.
The dictionary consist of key-value pairs which describe the project.
The key is related to the project name that will be used in the Breathe plugin
directives. The value associated with the key points to the directory where
the XML Doxygen output is generated.

Example of this configuration structure is presented below:

breathe_projects = {
 "vpr" : "../_build/doxygen/vpr/xml",
 "abc" : "../_build/doxygen/abc/xml",
 "ace2" : "../_build/doxygen/ace2/xml",
 "odin_ii" : "../_build/doxygen/odin_ii/xml",
 "blifexplorer" : "../_build/doxygen/blifexplorer/xml",
}

More information about the Breathe plugin can be found in the
Breathe Documentation [https://breathe.readthedocs.io/en/latest/].

Create RST with API Documentation

To generate the Sphinx API documentation, you should use the directives
provided by the Breathe plugin. A complete list of Breathe directives
can be found in the Directives & Config Variables [https://breathe.readthedocs.io/en/latest/directives.html] section of the
Breathe Documentation [https://breathe.readthedocs.io/en/latest/].

Example of doxygenclass directive used for the VPR project is presented below:

.. doxygenclass:: VprContext
 :project: vpr
 :members:

Generate the Documentation

Currently, the Doxygen is set up to run automatically whenever
the documentation is regenerated. The Doxygen XML generation is skipped
when the Doxygen is not installed on your machine or when the
SKIP_DOXYGEN=True environment variable is set.

The Doxygen is being run for every project described in
the breathe_projects dictionary. Therefore it is essential to keep
the same name of the project name key and the doxyfile name.

 Documenting VTR Code with Doxygen

Documenting VTR Code with Doxygen

VTR uses Doxygen and Sphinx for generating code documentation. Doxygen is used
to parse a codebase, extract code comments, and save them into an XML file.
The XML is then read by the Sphinx Breathe plugin, which converts it
to an HTML available publicly in the project documentation. The documentation
generated with Sphinx can be found in the API Reference section.

This note presents how to document source code in the VTR project
and check whether Doxygen can parse the created description. Code
conventions presented below were chosen arbitrarily for the project,
from many more options available in Doxygen. To read more about the tool,
visit the official Doxygen documentation [https://www.doxygen.nl/index.html].

Documenting Code

There are three basic types of Doxygen code comments used in the VTR documentation:

	block comments

	one-line comments before a code element

	one-line comments after an element member

In most cases, a piece of documentation should be placed before a code
element. Comments after an element should be used only for documenting
members of enumeration types, structures, and unions.

Block Comments

You should use Doxygen block comments with both brief and detailed
descriptions to document code by default. As the name suggests, a brief
description should be a one-liner with general information about
the code element. A detailed description provides more specific
information about the element, its usage, or implementation details.
In the case of functions and methods, information about parameters and
returned value comes after the detailed description. Note that brief
and detailed descriptions have to be separated with at least one empty line.

Here is an example of a Doxygen block comment:

/**
 * @brief This is a brief function description
 *
 * This is a detailed description. It should be separated from
 * the brief description with one blank line.
 *
 * @param a A description of a
 * @param b A description of b
 *
 * @return A return value description
 */
int my_func(int a, int b) {
 return a + b;
}

General guidelines for using Doxygen block comments:

	A block-comment block has to start with the /**, otherwise
Doxygen will not recognize it. All the comment lines have to be
preceded by an asterisk. All the asterisks have to create a straight
vertical line.

	Brief and detailed descriptions have to be separated with one
empty line.

	A detailed description and a parameter list should be separated with
one empty line.

	A parameter list should be indented one level. All the parameter
descriptions should be aligned together.

	A returned value description should be separated with one empty line
from either a detailed or a parameter description.

One-line Comments Before an Element

One-line comments can be used instead of the block comments described above,
only if a brief description is sufficient for documenting the particular code
element. Usually, this is the case with global variables and defines.

Here is an example of a one-line Doxygen comment (before a code element):

/// @brief This is one-line documentation comment
int var = 0;

General guidelines for using Doxygen one-line comments (before a code element):

	A one-line comment before an element has to start with ///,
otherwise Doxygen will not recognize it.

	Since this style of code comments should be used only for
brief descriptions, it should contain a @brief tag.

	One-line comments should not be overused. They are acceptable for
single variables and defines, but more complicated elements like classes and
structures should be documented more carefully with Doxygen block
comments.

One-line Comments After an Element Member

There is another type of one-line code comments used to document members
of enumeration types, structures, and unions. In those situations, the whole
element should be documented in a standard way using a Doxygen block comment.
However, the particular element members should be described after
they appear in the code with the one-line comments.

Here is an example of a one-line Doxygen comment (after an element member):

/**
 * @brief This is a brief enum description
 *
 * This is a detailed description. It should be separated from
 * the brief description with one blank line
 */
enum seasons {
 spring = 3, ///< Describes spring enum value
 summer, ///< Describes summer enum value
 autumn = 7, ///< Describes autumn enum value
 winter ///< Describes winter enum value
};

General guidelines for using Doxygen one-line comments (after an element member):

	One-line code comment after an element member has to start with
///<, otherwise Doxygen will not recognize it.

	This comment style should be used together with a Doxygen block
comment for describing the whole element, before the members’ description.

Documenting Files

All files that contain the source code should be documented with
a Doxygen-style header. The file description in Doxygen is similar to
code element description, and should be placed at the beginning of the file.
The comment should contain information about an author, date of the document
creation, and a description of functionalities introduced in the file.

Here is an example of file documentation:

/**
 * @file
 * @author John Doe
 * @date 2020-09-03
 * @brief This is a brief document description
 *
 * This is a detailed description. It should be separated from
 * the brief description with one blank line
 */

General suggestions about a Doxygen file comments:

	A file comment has to start with the @file tag,
otherwise it will not be recognized by Doxygen.

	The @file, @author, @date, and @brief tags should form
a single group of elements. A detailed description (if available)
has to be placed one empty line after the brief description.

	A file comment should consist of at least the @file and @brief
tags.

Validation of Doxygen Comments (Updating API Reference)

Validation of Doxygen code comments might be time-consuming since it
requires setting the whole Doxygen project using Doxygen configuration
files (doxyfiles). One solution to that problem is to use the configuration
created for generating the official VTR documentation. The following steps
will show you how to add new code comments to the Sphinx API Reference,
available in the VTR documentation:

	Ensure that the documented project has a doxyfile, and it is added to
breathe configuration. All the doxyfiles used by the Sphinx documentation
are placed in <vtr_root>/doc/_doxygen (For details, check
Sphinx API Documentation for C/C++ Projects)
This will ensure that Doxygen XMLs will be created for that project
during the Sphinx documentation building process.

	Check that the <vtr_root>/doc/src/api/<project_name> directory with
a index.rst file exists. If not, create both the directory and the
index file. Here is an example of the index.rst file for the VPR project.

VPR API
=======

.. toctree::
 :maxdepth: 1

 contexts
 netlist

Note

Do not forget about adding the index file title. The ==== marks
should be of the same length as the title.

	Create a RST file, which will contain the references to the Doxygen
code comments. Sphinx uses the Breathe plugin for extracting Doxygen
comments from the generated XML files. The simplest check can be done by
dumping all the Doxygen comments from the single file with
a ..doxygenfile :: directive.

Assuming that your RST file name is myrst.rst, and you created it to check
the Doxygen comments in the mycode.cpp file within the vpr project,
the contents of the file might be the following:

=====
MyRST
=====

.. doxygenfile:: mycode.cpp
 :project: vpr

Note

A complete list of Breathe directives can be found in the
Breathe documentation [https://breathe.readthedocs.io/en/latest/]

	Add the newly created RST file to the index.rst. In this example, that
will lead to the following change in the index.rst:

VPR API
=======

.. toctree::
 :maxdepth: 1

 contexts
 netlist
 myrst

	Generate the Sphinx documentation by using make html command inside
the <vtr_root>/doc/ directory.

	The new section should be available in the API Reference. To verify that
open the <vtr_root>/doc/_build/html/index.html with your browser and
check the API Reference section. If the introduced code comments are
unavailable, you can analyze the Sphinx build log.

Additional Resources

	Doxygen documentation [https://www.doxygen.nl/index.html]

	Breathe documentation [https://breathe.readthedocs.io/en/latest/]

 Developer Tutorials

Developer Tutorials

	New Developer Tutorial
	Overview

	Environment Setup

	Background Reading

	Setup VTR

	Use VTR

	Open the Black Box

	Submitting Changes and Regression Testing

	Timing Graph Debugging Tutorial
	Generating a GraphViz DOT file of the Entire Timing Graph

	Generating a GraphViz DOT file of a subset of the Timing Graph

	Cross-referencing Node IDs with VPR Timing Reports

	VPR UI and Graphics

 New Developer Tutorial

New Developer Tutorial

Overview

Welcome to the Verilog-to-Routing (VTR) Project. This project is an open-source, international, collaboration towards a comprehensive FPGA architecture exploration system that includes CAD tools, benchmarks, transistor-optimized architecture files, and documentation, along with support to make this all fit together and work. The purpose of this tutorial is to equip you, the new developer, with the tools and understanding that you need to begin making a useful contribution to this project.

While you are going through this tutorial, please record down things that should be changed. Whether it is the tutorial itself, documentation, or other parts of the VTR project. Your thoughts are valuable and welcome because fresh eyes help evaluate whether or not our work is clearly presented.

Environment Setup

Log into your workstation/personal computer. Check your account for general features such as internet, printing, git, etc. If there are problems at this stage, talk to your advisor to get this setup.

If you are not familiar with development on Linux, this is the time to get up to speed. Look up online tutorials on general commands, basic development using Makefiles, etc.

Background Reading

Read the first two chapters of “Architecture and CAD for deep-submicron FPGAs” by Vaughn Betz, et al. This is a great introduction to the topic of FPGA CAD and architecture. Note though that this book is old so it only covers a small core of what the VTR project is currently capable of.

Read chapters 1 to 5 of “FPGA Architecture: Survey and Challenges” by Ian Kuon et al.

Review material learned with fellow colleagues.

Setup VTR

Use git to clone a copy of VTR from the GitHub repository:

https://github.com/verilog-to-routing/vtr-verilog-to-routing

Build the project by running the make command

Run ./run_quick_test.pl to check that the build worked

Follow the Quick Start Guilde, and Basic Design Flow Tutorial found in the VTR Documentation (docs.verilogtorouting.org).
These tutorials will allow you to run a circuit through the entire flow and read the statistics gathered from that run.

Use VTR

Create your own custom Verilog file. Create your own custom architecture file using one of the existing architecture files as a template. Use VTR to map that circuit that you created to that architecture that you created. The VTR documentation, to be found at the https:///docs.verilogtorouting.org will prove useful. You may also wish to look at the following links for descriptions of the language used inside the architecture files:

	Architecture Description and Packing: http://www.eecg.utoronto.ca/~jluu/publications/luu_vpr_fpga2011.pdf

	Classical Soft Logic Block Example: http://www.eecg.utoronto.ca/vpr/utfal_ex1.html

Perform a simple architecture experiment. Run an experiment that varies Fc_in from 0.01 to 1.00 on the benchmarks ch_intrinsics, or1200, and sha. Use tasks/timing as your template. Graph the geometric average of minimum channel width and critical path delay for these three benchmarks across your different values of Fc_in. Review the results with your colleagues and/or advisor.

Open the Black Box

At this stage, you have gotten a taste of how an FPGA architect would go about using VTR. As a developer though, you need a much deeper understanding of how this tool works. The purpose of this section is to have you to learn the details of the VTR CAD flow by having you manually do what the scripts do.

Using the custom Verilog circuit and architecture created in the previous step, directly run Odin II on it to generate a blif netlist. You may need to skim the odin_ii/README.rst and the vtr_flow/scripts/run_vtr_flow.py.

Using the output netlist of Odin II, run ABC to generate a technology-mapped blif file. You may need to skim the ABC homepage (http://www.eecs.berkeley.edu/~alanmi/abc/).

Run the ABC program from regular terminal (bash shell)
$VTR_ROOT/abc abc

Using the ABC shell to read and write blif file
abc 01> read_blif Odin_II_output.blif
abc 01> write_blif abc_output.blif

Using the output of ABC and your architecture file, run VPR to complete the mapping of a user circuit to a target architecture. You may need to consult the VPR User Manual.

Run the VPR program
$VTR_ROOT/vpr vpr architecture.xml abc_output.blif

Read the VPR section of the online documentation.

Submitting Changes and Regression Testing

Read README.developers.md in the base directory of VTR. Code changes rapidly so please help keep this up to date if you see something that is out of date.

Make your first change to git by modifying README.md and pushing it. I recommend adding your name to the list of contributors. If you have nothing to modify, just add/remove a line of whitespace at the bottom of the file.

Now that you have completed the tutorial, you should have a general sense of what the VTR project is about and how the different parts work together. It’s time to talk to your advisor to get your first assignment.

 Timing Graph Debugging Tutorial

Timing Graph Debugging Tutorial

When developing VPR or creating/calibrating the timing characteristics of a new architectural model it can be helpful to look ‘inside’ at VPR’s timing graph and analysis results.

Warning

This is a very low-level tutorial suitable for power-users and VTR developers

Generating a GraphViz DOT file of the Entire Timing Graph

One approach is to have VPR generate a GraphViz DOT file, which visualizes the structure of the timing graph, and the analysis results.
This is enabled by running VPR with vpr --echo_file set to on.
This will generate a set of .dot files in the current directory representing the timing graph, delays, and results of Static Timing Analysis (STA).

$ vpr $VTR_ROOT/vtr_flow/arch/timing/EArch.xml $VTR_ROOT/vtr_flow/benchmarks/blif/multiclock/multiclock.blif --echo_file on

$ ls *.dot
timing_graph.place_final.echo.dot timing_graph.place_initial.echo.dot timing_graph.pre_pack.echo.dot

The .dot files can then be visualized using a tool like xdot which draws an interactive version of the timing graph.

$ xdot timing_graph.place_final.echo.dot

Warning

On all but the smallest designs the full timing graph .dot file is too large to visualize with xdot. See the next section for how to show only a subset of the timing graph.

Which will bring up an interactive visualization of the graph:

[image: ../../../_images/multiclock_timing_graph_dot.png]

Fig. 74 Full timing graph visualized with xdot on a very small multi-clock circuit.

Where each node in the timing graph is labeled

Node(X) (TYPE)

Where Node(X) (e.g. Node(3)) represents the ID of the timing graph node, and (TYPE) (e.g. OPIN) is the type of node in the graph.

Each node is also annotated with timing information (produced by STA) like

DATA_ARRIVAL
Domain(1) to * from Node(16)
time: 5.2143e-10

DATA_ARRIVAL
Domain(2) to * from Node(20)
time: 6.9184e-10

DATA_REQUIRED
Domain(1) to Domain(1) for Node(24)
time: -2.357e-10

SLACK
Domain(1) to Domain(1) for Node(24)
time: -5.45e-10

where the first line of each entry is the type of timing information (e.g. data arrival time, data required time, slack),
the second line indicates the related launching and capture clocks (with * acting as a wildcard) and the relevant timing graph node which originated the value,
and the third line is the actual time value (in seconds).

The edges in the timing graph are also annoated with their Edge IDs and delays.
Special edges related to setup/hold (tsu, thld) and clock-to-q delays (tcq) of sequential elements (e.g. Flip-Flops) are also labeled and drawn with different colors.

Generating a GraphViz DOT file of a subset of the Timing Graph

For most non-trivial designs the entire timing graph is too large and difficult to visualize.

To assist this you can generate a DOT file for a subset of the timing graph with vpr --echo_dot_timing_graph_node

$ vpr $VTR_ROOT/vtr_flow/arch/timing/EArch.xml $VTR_ROOT/vtr_flow/benchmarks/blif/multiclock/multiclock.blif --echo_file on --echo_dot_timing_graph_node 23

Running xdot timing_graph.place_final.echo.dot now shows the only the subset of the timing graph which fans-in or fans-out of the specified node (in this case node 23).

[image: ../../../_images/multiclock_timing_graph_dot_node_23.png]

Fig. 75 Subset of the timing graph which fans in and out of node 23.

Cross-referencing Node IDs with VPR Timing Reports

The DOT files only label timing graph nodes with their node IDs.
When debugging it is often helpful to correlate these with what are seen in timing reports.

To do this, we need to have VPR generate more detailed timing reports which have additional debug information.
This can be done with vpr --timing_report_detail set to debug:

$ vpr $VTR_ROOT/vtr_flow/arch/timing/EArch.xml $VTR_ROOT/vtr_flow/benchmarks/blif/multiclock/multiclock.blif --timing_report_detail debug

$ ls report_timing*
report_timing.hold.rpt report_timing.setup.rpt

Viewing report_timing.setup.rpt:

#Path 6
Startpoint: FFB.Q[0] (.latch at (1,1) tnode(15) clocked by clk2)
Endpoint : FFD.D[0] (.latch at (1,1) tnode(25) clocked by clk2)
Path Type : setup

Point Incr Path
--
clock clk2 (rise edge) 0.000 0.000
clock source latency 0.000 0.000
clk2.inpad[0] (.input at (3,2) tnode(4)) 0.000 0.000
| (intra 'io' routing) 0.042 0.042
| (inter-block routing:global net) 0.000 0.042
| (intra 'clb' routing) 0.000 0.042
FFB.clk[0] (.latch at (1,1) tnode(9)) 0.000 0.042
| (primitive '.latch' Tcq_max) 0.124 0.166
FFB.Q[0] (.latch at (1,1) tnode(15)) [clock-to-output] 0.000 0.166
| (intra 'clb' routing) 0.120 0.286
to_FFD.in[1] (.names at (1,1) tnode(21)) 0.000 0.286
| (primitive '.names' combinational delay) 0.235 0.521
to_FFD.out[0] (.names at (1,1) tnode(23)) 0.000 0.521
| (intra 'clb' routing) 0.000 0.521
FFD.D[0] (.latch at (1,1) tnode(25)) 0.000 0.521
data arrival time 0.521

clock clk2 (rise edge) 0.000 0.000
clock source latency 0.000 0.000
clk2.inpad[0] (.input at (3,2) tnode(4)) 0.000 0.000
| (intra 'io' routing) 0.042 0.042
| (inter-block routing:global net) 0.000 0.042
| (intra 'clb' routing) 0.000 0.042
FFD.clk[0] (.latch at (1,1) tnode(8)) 0.000 0.042
clock uncertainty 0.000 0.042
cell setup time -0.066 -0.024
data required time -0.024
--
data required time -0.024
data arrival time -0.521
--
slack (VIOLATED) -0.545

We can see that the elements corresponding to specific timing graph nodes are labeled with tnode(X).
For instance:

to_FFD.out[0] (.names at (1,1) tnode(23)) 0.000 0.521

shows the netlist pin named to_FFD.out[0] is tnode(23), which corresponds to Node(23) in the DOT file.

 VPR UI and Graphics

VPR UI and Graphics

VPR’s UI is created with GTK, and actively maintained/edited through the use of Glade and a main.ui file. We prefer to not use code initializations of Gtk Buttons/UI objects, and instead make them with Glade.
This allows for better organized menus and visual editing of the UI. Please consult the attached guide for Glade: <Link Glade/Gtk quickstart> (WIP as of August 24th, 2022).

When connecting a button to its function, place it in an appropriate function depending on the drop down menu it will go in. Button setups are done in ui_setup.cpp/h and callback functions are in draw_toggle_functions.cpp/h.

VPR Graphics are drawn using the EZGL graphics library, which is a wrapper around the GTK graphics library (which is used for the UI). EZGL Documentation is found here: http://ug251.eecg.utoronto.ca/ece297s/ezgl_doc/index.html and GTK documentation is found here: https://docs.gtk.org/gtk3/

Make sure to test the UI when you edit it. Ensure that the graphics window opens (using the –disp on command) and click around the UI to ensure the buttons still work. Test all phases (Placement -> Routing) as the UI changes between them.

 VTR Support Resources

VTR Support Resources

For support using VPR please use these resources:

	Check the VTR Documentation: https://docs.verilogtorouting.org

The VTR documentation includes:

	Overviews of what VTR is, and how the flow fits together

	Tutorials on using VTR

	Detailed descriptions of tools and their command-line options

	Descriptions of the file-formats used by VTR

	Contact the VTR users mailing list: vtr-users@googlegroups.com

The mailing list includes developers and users of VTR.
If you have a specific usage case not covered by the documentation, someone on the mailing list may be able to help.

	If you’ve found a bug or have an idea for an enhancement consider filing an issue. See here for more details.

 VTR License

VTR License

The software package “VTR” includes the software tools ODIN II, ABC, and VPR as
well as additional benchmarks, documentation, libraries and scripts. The authors
of the various components of VTR retain their ownership of their tools.

	Unless otherwise noted (in particular ABC, the benchmark circuits and some libraries),
all software, documents, and scripts in VTR, follows the standard MIT license described
here [http://www.opensource.org/licenses/mit-license.php] copied below for
your convenience:

The MIT License (MIT)

Copyright 2012 VTR Developers

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

	Terms and conditions for ABC is found
here [http://www.eecs.berkeley.edu/~alanmi/abc/copyright.htm] copied below
for your convenience:

Copyright (c) The Regents of the University of California. All rights reserved.

Permission is hereby granted, without written agreement and without license or
royalty fees, to use, copy, modify, and distribute this software and its
documentation for any purpose, provided that the above copyright notice and the
following two paragraphs appear in all copies of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN “AS IS” BASIS,
AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

The benchmark circuits are all open source but each have their own
individual terms and conditions which are listed in the source code of each
benchmark.

Subject to these conditions, the software is provided free of charge to all
interested parties.

If you do decide to use this tool, please reference our work as references are
important in academia.

Donations in the form of research grants to promote further research and
development on the tools will be gladly accepted, either anonymously or with
attribution on our future publications.

 VTR Change Log

VTR Change Log

Note that changes from release candidates (e.g. v8.0.0-rc1, v8.0.0-rc2) are included/repeated in the final release (e.g. v8.0.0) change log.

Unreleased

The following are changes which have been implemented in the VTR master branch but have not yet been included in an official release.

Added

Changed

Fixed

Deprecated

Removed

v8.0.0 - 2020-03-24

Added

	Support for arbitrary FPGA device grids/floorplans

	Support for clustered blocks with width > 1

	Customizable connection-block and switch-blocks patterns (controlled from FPGA architecture file)

	Fan-out dependent routing mux delays

	VPR can generate/load a routing architecture (routing resource graph) in XML format

	VPR can load routing from a .route file

	VPR can performing analysis (STA/Power/Area) independently from optimization (via vpr --analysis)

	VPR supports netlist primitives with multiple clocks

	VPR can perform hold-time (minimum delay) timing analysis

	Minimum delays can be annotated in the FPGA architecture file

	Flow supports formal verification of circuit implementation against input netlist

	Support for generating FASM to drive bitstream generators

	Routing predictor which predicts and aborts impossible routings early (saves significant run-time during minimum channel width search)

	Support for minimum routable channel width ‘hints’ (reduces minimum channel width search run-time if accurate)

	Improved VPR debugging/verbosity controls

	VPR can perform basic netlist cleaning (e.g. sweeping dangling logic)

	VPR graphics visualizations:

	Critical path during placement/routing

	Cluster pin utilization heatmap

	Routing utilization heatmap

	Routing resource cost heatmaps

	Placement macros

	VPR can route constant nets

	VPR can route clock nets

	VPR can load netlists in extended BLIF (eBLIF) format

	Support for generating post-placement timing reports

	Improved router ‘map’ lookahead which adapts to routing architecture structure

	Script to upgrade legacy architecture files (vtr_flow/scripts/upgrade_arch.py)

	Support for Fc overrides which depend on both pin and target wire segment type

	Support for non-configurable switches (shorts, inline-buffers) used to model structures like clock-trees and non-linear wires (e.g. ‘L’ or ‘T’ shapes)

	Various other features since VTR 7

Changed

	VPR will exit with code 1 on errors (something went wrong), and code 2 when unable to implement a circuit (e.g. unroutable)

	VPR now gives more complete help about command-line options (vpr -h)

	Improved a wide variety of error messages

	Improved STA timing reports (more details, clearer format)

	VPR now uses Tatum as its STA engine

	VPR now detects missmatched architecture (.xml) and implementation (.net/.place/.route) files more robustly

	Improved router run-time and quality through incremental re-routing and improved handling of high-fanout nets

	The timing edges within each netlist primitive must now be specified in the section of the architecture file

 Contact

Contact

Mailing Lists

VTR maintains several mailing lists.
Most users will be interested in VTR Users and VTR Announce.

	VTR Announce [https://groups.google.com/forum/#!forum/vtr-announce]

VTR release announcements (low traffic)

	VTR Users [https://groups.google.com/forum/#!forum/vtr-users]: vtr-users@googlegroups.com

Discussions about using the VTR project.

	VTR Devel [https://groups.google.com/forum/#!forum/vtr-devel]: vtr-devel@googlegroups.com

Discussions about VTR development.

	VTR Commits [https://groups.google.com/forum/#!forum/vtr-commits]:

Revision Control Commits to the VTR project.

Issue Tracker

Please file bugs on our issue tracker [https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues].

Pull Requests are welcome!

 Glossary

Glossary

	$VTR_ROOT
	The directory containing the root of the VTR source tree.

For instance, if you extracted/cloned the VTR source into /home/myusername/vtr, your $VTR_ROOT would be /home/myusername/vtr.

	MWTA
	Minimum Width Transitor Area (MWTA) is a simple process technology independent unit for measuring circuit area.
It corresponds to the size the smallest (minimum width) transistor area.

For example, a 1x (unit-sized) CMOS inverter consists of two minimum width transistors (a PMOS pull-up, and NMOS pull-down).

For more details see [BRM99] (the original presentation of the MWTA model), and [CB13] (an updated MWTA model).

 Publications & References

Publications & References

[Xilinx Inc12]
Virtex-6 FPGA Configurable Logic Block User Guide. Xilinx Inc, ug364 edition, feb 2012. URL: http://www.xilinx.com/support/documentation/user_guides/ug364.pdf.

[Abb19]
Mustafa Abbas. System level communication challenges of large fpgas. Master's thesis, University of Toronto, 2019. URL: https://tspace.library.utoronto.ca/bitstream/1807/97807/3/Abbas_Mustafa_S_201911_MSc_thesis.pdf.

[ABR+21]
Aman Arora, Andrew Boutros, Daniel Rauch, Aishwarya Rajen, Aatman Borda, Seyed A. Damghani, Samidh Mehta, Sangram Kate, Pragnesh Patel, Kenneth B. Kent, Vaughn Betz, and Lizy K. John. Koios: a deep learning benchmark suite for fpga architecture and cad research. In International Conference on Field Programmable Logic and Applications (FPL). 2021.

[BR97a]
V. Betz and J. Rose. Cluster-based logic blocks for fpgas: area-efficiency vs. input sharing and size. In Custom Integrated Circuits Conference, 551–554. 1997. doi:10.1109/CICC.1997.606687 [https://doi.org/10.1109/CICC.1997.606687].

[Bet98]
Vaughn Betz. Architecture and CAD for the Speed and Area Optimization of FPGAs. PhD thesis, University of Toronto, 1998.

[BR96a]
Vaughn Betz and Jonathan Rose. Directional bias and non-uniformity in fpga global routing architectures. In Proceedings of the 1996 IEEE/ACM International Conference on Computer-aided Design, ICCAD '96, 652–659. Washington, DC, USA, 1996. IEEE Computer Society. doi:10.1109/ICCAD.1996.571342 [https://doi.org/10.1109/ICCAD.1996.571342].

[BR96b]
Vaughn Betz and Jonathan Rose. On biased and non-uniform global routing architectures and cad tools for fpgas. CSRI Technical Report 358, University of Toronto, 1996. URL: http://www.eecg.toronto.edu/~vaughn/papers/techrep.pdf.

[BR97b]
Vaughn Betz and Jonathan Rose. Vpr: a new packing, placement and routing tool for fpga research. In Proceedings of the 7th International Workshop on Field-Programmable Logic and Applications, FPL '97, 213–222. London, UK, 1997. Springer-Verlag. doi:10.1007/3-540-63465-7_226 [https://doi.org/10.1007/3-540-63465-7_226].

[BR00]
Vaughn Betz and Jonathan Rose. Automatic generation of fpga routing architectures from high-level descriptions. In Int. Symp. on Field Programmable Gate Arrays, FPGA, 175–184. New York, NY, USA, 2000. ACM. doi:10.1145/329166.329203 [https://doi.org/10.1145/329166.329203].

[BRM99]
Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Architecture and CAD for Deep-Submicron FPGAs. Kluwer Academic Publishers, mar 1999. ISBN 0792384601.

[BFRV92]
S. Brown, R. Francis, J. Rose, and Z. Vranesic. Field-Programmable Gate Arrays. Kluwer Academic Publishers, 1992. ISBN 978-0-7923-9248-4.

[CWW96]
Yao-Wen Chang, D. F. Wong, and C. K. Wong. Universal switch modules for fpga design. ACM Trans. Des. Autom. Electron. Syst., 1(1):80–101, January 1996. doi:10.1145/225871.225886 [https://doi.org/10.1145/225871.225886].

[CB13]
C. Chiasson and V. Betz. Coffe: fully-automated transistor sizing for fpgas. In 2013 International Conference on Field-Programmable Technology (FPT), volume, 34–41. Dec 2013. doi:10.1109/FPT.2013.6718327 [https://doi.org/10.1109/FPT.2013.6718327].

[CCMB07]
S. Cho, S. Chatterjee, A. Mishcenko, and R. Brayton. Efficient fpga mapping using priority cuts. In FPGA. 2007.

[CD94]
J. Cong and Y. Ding. Flowmap: an optimal technology mapping algorithm for delay optimization in lookup-table based fpga designs. Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, 13(1):1–12, Jan 1994. doi:10.1109/43.273754 [https://doi.org/10.1109/43.273754].

[FBC08]
R. Fung, V. Betz, and W. Chow. Slack allocation and routing to improve fpga timing while repairing short-path violations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 27(4):686–697, April 2008. doi:10.1109/TCAD.2008.917585 [https://doi.org/10.1109/TCAD.2008.917585].

[HYL+09]
Chun Hok Ho, Chi Wai Yu, Philip Leong, Wayne Luk, and Steven J. E. Wilton. Floating-point fpga: architecture and modeling. IEEE Trans. Very Large Scale Integr. Syst., 17(12):1709–1718, December 2009. doi:10.1109/TVLSI.2008.2006616 [https://doi.org/10.1109/TVLSI.2008.2006616].

[JKGS10]
P. Jamieson, K. Kent, F. Gharibian, and L. Shannon. Odin ii-an open-source verilog hdl synthesis tool for cad research. In International Symposium on Field-Programmable Custom Computing Machines, 149–156. 2010. doi:10.1109/FCCM.2010.31 [https://doi.org/10.1109/FCCM.2010.31].

[KTK23]
V. Betz K. Talaei Khoozani, A. Ahmadian Dehkordi. Titan 2.0: enabling open-source cad evaluation with a modern architecture capture. International Conference on Field-Programmable Logic and Applications, 2023.

[LW06]
Julien Lamoureux and Steven J. E. Wilton. Activity estimation for field-programmable gate arrays. In International Conference on Field Programmable Logic and Applications, 1–8. 2006. doi:10.1109/FPL.2006.311199 [https://doi.org/10.1109/FPL.2006.311199].

[LLTY04]
G. Lemieux, E. Lee, M. Tom, and A. Yu. Direction and single-driver wires in fpga interconnect. In International Conference on Field-Programmable Technology, 41–48. 2004. doi:10.1109/FPT.2004.1393249 [https://doi.org/10.1109/FPT.2004.1393249].

[LAK+14]
Jason Luu, Nooruddin Ahmed, Kenneth B. Kent, Jason Anderson, Jonathan Rose, Vaughn Betz, Jeffrey Goeders, Michael Wainberg, Andrew Somerville, Thien Yu, Konstantin Nasartschuk, Miad Nasr, Sen Wang, and Tim Liu. VTR 7.0: Next Generation Architecture and CAD System for FPGAs. ACM Transactions on Reconfigurable Technology and Systems, 7(2):1–30, jun 2014. doi:10.1145/2617593 [https://doi.org/10.1145/2617593].

[LAR11]
Jason Luu, Jason Anderson, and Jonathan Rose. Architecture description and packing for logic blocks with hierarchy, modes and complex interconnect. In Proceedings of the 19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA '11, 227–236. New York, NY, USA, 2011. ACM. doi:10.1145/1950413.1950457 [https://doi.org/10.1145/1950413.1950457].

[LKJ+09]
Jason Luu, Ian Kuon, Peter Jamieson, Ted Campbell, Andy Ye, Wei Mark Fang, and Jonathan Rose. Vpr 5.0: fpga cad and architecture exploration tools with single-driver routing, heterogeneity and process scaling. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA '09, 133–142. New York, NY, USA, 2009. ACM. doi:10.1145/1508128.1508150 [https://doi.org/10.1145/1508128.1508150].

[MBR99]
A Marquardt, V. Betz, and J. Rose. Using cluster-based logic blocks and timing-driven packing to improve fpga speed and density. In FPGA, 37–46. 1999. doi:10.1145/296399.296426 [https://doi.org/10.1145/296399.296426].

[MBR00]
Alexander Marquardt, Vaughn Betz, and Jonathan Rose. Timing-driven placement for fpgas. In Proceedings of the 2000 ACM/SIGDA Eighth International Symposium on Field Programmable Gate Arrays, FPGA '00, 203–213. New York, NY, USA, 2000. ACM. doi:10.1145/329166.329208 [https://doi.org/10.1145/329166.329208].

[MZB20]
K. E. Murray, S. Zhong, and V. Betz. Air: a fast but lazy timing-driven fpga router. In To appear in Asia Pacific Design Automation Conference (ASP-DAC). 2020. doi: [https://doi.org/].

[MWL+13]
K.E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz. Titan: enabling large and complex benchmarks in academic cad. In Field Programmable Logic and Applications (FPL), 2013 23rd International Conference on, 1–8. Sept 2013. doi:10.1109/FPL.2013.6645503 [https://doi.org/10.1109/FPL.2013.6645503].

[MWL+15]
Kevin E. Murray, Scott Whitty, Suya Liu, Jason Luu, and Vaughn Betz. Timing-driven titan: enabling large benchmarks and exploring the gap between academic and commercial cad. ACM Trans. Reconfigurable Technol. Syst., 8(2):10:1–10:18, March 2015. doi:10.1145/2629579 [https://doi.org/10.1145/2629579].

[Pet16]
Oleg Petelin. Cad tools and architectures for improved fpga interconnect. Master's thesis, University of Toronto, 2016. URL: http://hdl.handle.net/1807/75854.

[PHMB07]
J. Pistorius, M. Hutton, A. Mishcenko, and R. Brayton. Benchmarking method and designs targeting logic synthesis for fpgas. In IWLS, 230–237. 2007.

[RLY+12]
Jonathan Rose, Jason Luu, Chi Wai Yu, Opal Densmore, Jeffrey Goeders, Andrew Somerville, Kenneth B. Kent, Peter Jamieson, and Jason Anderson. The vtr project: architecture and cad for fpgas from verilog to routing. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA '12, 77–86. New York, NY, USA, 2012. ACM. doi:10.1145/2145694.2145708 [https://doi.org/10.1145/2145694.2145708].

[SG]
Berkeley Logic Synthesis and Verification Group. Abc: a system for sequential synthesis and verification. URL: http://www.eecs.berkeley.edu/~alanmi/abc/.

[Wil97]
S. Wilton. Architectures and Algorithms for Field-Programmable Gate Arrays with Embedded Memories. PhD thesis, University of Toronto, 1997. URL: http://www.ece.ubc.ca/~stevew/publications.html.

[Wol]
Clifford Wolf. Yosys open syynthesis suite. URL: http://www.clifford.at/yosys/about.html.

[Yan91]
S. Yang. Logic Synthesis and Optimization Benchmarks User Guide 3.0. Technical Report, MCNC, 1991.

[YLS92]
H. Youssef, R. B. Lin, and E. Shragowitz. Bounds on net delays for vlsi circuits. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 39(11):815–824, Nov 1992. doi:10.1109/82.204129 [https://doi.org/10.1109/82.204129].

[MurrayAnsellRothman+20]
K. E. Murray, T. Ansell, K. Rothman, A. Comodi, M. Elgammal, and V. Betz. Symbiflow & vpr: an open-source design flow for commercial and novel fpgas. IEEE Micro, ():1–1, 2020.

 VPR API

VPR API

	Contexts

	Netlist mapping

	Netlists

	Route Tree

	Routing Resource Graph

 Contexts

Contexts

Classes

	
class VprContext : public Context

	This object encapsulates VPR’s state.

There is typically a single instance which is accessed via the global variable g_vpr_ctx (see globals.h/.cpp).

It is divided up into separate sub-contexts of logically related data structures.

Each sub-context can be accessed via member functions which return a reference to the sub-context:
	The default the member function (e.g. device()) return an const (immutable) reference providing read-only access to the context. This should be the preferred form, as the compiler will detect unintentional state changes.

	The ‘mutable’ member function (e.g. mutable_device()) will return a non-const (mutable) reference allowing modification of the context. This should only be used on an as-needed basis.

Typical usage in VPR would be to call the appropriate accessor to get a reference to the context of interest, and then operate on it.

For example if we were performing an action which required access to the current placement, we would do:

void my_analysis_algorithm() {
 //Get read-only access to the placement
 auto& place_ctx = g_vpr_ctx.placement();

 //Do something that depends on (but does not change)
 //the current placement...

}

If we needed to modify the placement (e.g. we were implementing another placement algorithm) we would do:

void my_placement_algorithm() {
 //Get read-write access to the placement
 auto& place_ctx = g_vpr_ctx.mutable_placement();

 //Do something that modifies the placement
 //...
}

Note

The returned contexts are not copyable, so they must be taken by reference.

Structures

	
struct AtomContext : public Context

	State relating to the atom-level netlist.

This should contain only data structures related to user specified netlist being implemented by VPR onto the target device.

Public Functions

	
inline AtomContext()

	constructor

In the constructor initialize the list of pack molecules to nullptr and defines a custom deletor for it

Public Members

	
AtomNetlist nlist

	Atom netlist.

	
AtomLookup lookup

	Mappings to/from the Atom Netlist to physically described .blif models.

	
std::multimap<AtomBlockId, t_pack_molecule*> atom_molecules

	The molecules associated with each atom block.

This map is loaded in the pre-packing stage and freed at the very end of vpr flow run. The pointers in this multimap is shared with list_of_pack_molecules.

	
std::unique_ptr<t_pack_molecule, decltype(&free_pack_molecules)> list_of_pack_molecules

	A linked list of all the packing molecules that are loaded in pre-packing stage.

Is is useful in freeing the pack molecules at the destructor of the Atom context using free_pack_molecules.

	
struct ClusteringContext : public Context

	State relating to clustering.

This should contain only data structures that describe the current clustering/packing, or related clusterer/packer algorithmic state.

Public Members

	
ClusteredNetlist clb_nlist

	New netlist class derived from Netlist.

	
struct Context

	A Context is collection of state relating to a particular part of VPR.

This is a base class who’s only purpose is to disable copying of contexts. This ensures that attempting to use a context by value (instead of by reference) will result in a compilation error.

No data or member functions should be defined in this class!

Subclassed by AtomContext, ClusteringContext, ClusteringHelperContext, DeviceContext, FloorplanningContext, NocContext, PackingMultithreadingContext, PlacementContext, PlacerContext, PlacerMoveContext, PlacerRuntimeContext, PlacerTimingContext, PowerContext, RoutingContext, TimingContext, VprContext

	
struct DeviceContext : public Context

	State relating the device.

This should contain only data structures describing the targeted device.

Public Members

	
DeviceGrid grid

	The device grid.

This represents the physical layout of the device. To get the physical tile at each location (layer_num, x, y) the helper functions in this data structure should be used.

	
bool has_multiple_equivalent_tiles

	Boolean that indicates whether the architecture implements an N:M physical tiles to logical blocks mapping.

	
t_chan_width chan_width

	chan_width is for x|y-directed channels; i.e. between rows

	
std::vector<t_rr_rc_data> rr_rc_data

	Fly-weighted Resistance/Capacitance data for RR Nodes.

	
std::vector<std::vector<RRNodeId>> rr_non_config_node_sets

	Sets of non-configurably connected nodes.

	
std::unordered_map<RRNodeId, int> rr_node_to_non_config_node_set

	Reverse look-up from RR node to non-configurably connected node set (index into rr_non_config_node_sets)

	
int virtual_clock_network_root_idx

	rr_node idx that connects to the input of all clock network wires

Useful for two stage clock routing XXX: currently only one place to source the clock networks so only storing a single value

	
std::vector<std::map<int, int>> switch_fanin_remap

	switch_fanin_remap is only used for printing out switch fanin stats (the -switch_stats option)

array index: [0..(num_arch_switches-1)]; map key: num of all possible fanin of that type of switch on chip map value: remapped switch index (index in rr_switch_inf)

	
std::string read_rr_graph_filename

	Name of rrgraph file read (if any).

Used to determine when reading rrgraph if file is already loaded.

	
struct PlacementContext : public Context

	State relating to placement.

This should contain only data structures that describe the current placement, or related placer algorithm state.

Public Members

	
vtr::vector_map<ClusterBlockId, t_block_loc> block_locs

	Clustered block placement locations.

	
vtr::vector_map<ClusterPinId, int> physical_pins

	Clustered pin placement mapping with physical pin.

	
GridBlock grid_blocks

	Clustered block associated with each grid location (i.e. inverse of block_locs)

	
std::vector<t_pl_macro> pl_macros

	The pl_macros array stores all the placement macros (usually carry chains).

	
t_compressed_block_grids compressed_block_grids

	Compressed grid space for each block type.

Used to efficiently find logically ‘adjacent’ blocks of the same block type even though the may be physically far apart Indexed with logical block type index: [0…num_logical_block_types-1] -> logical block compressed grid

	
std::string placement_id

	SHA256 digest of the .place file.

Used for unique identification and consistency checking

	
bool f_placer_debug = false

	Use during placement to print extra debug information. It is set to true based on the number assigned to placer_debug_net or placer_debug_block parameters in the command line.

	
bool cube_bb = false

	Set this variable to ture if the type of the bounding box used in placement is of the type cube. If it is false, it would mean that per-layer bounding box is used. For the 2D architecture, the cube bounding box would be used.

	
struct PowerContext : public Context

	State relating to power analysis.

This should contain only data structures related to power analysis, or related power analysis algorithmic state.

Public Members

	
std::unordered_map<AtomNetId, t_net_power> atom_net_power

	Atom net power info.

	
struct RoutingContext : public Context

	State relating to routing.

This should contain only data structures that describe the current routing implementation, or related router algorithmic state.

Public Members

	
vtr::dynamic_bitset<RRNodeId> non_configurable_bitset

	Information about whether a node is part of a non-configurable set.

(i.e. connected to others with non-configurable edges like metal shorts that can’t be disabled) Stored in a single bit per rr_node for efficiency bit value 0: node is not part of a non-configurable set bit value 1: node is part of a non-configurable set Initialized once when RoutingContext is initialized, static throughout invocation of router

	
t_net_routing_status net_status

	Information about current routing status of each net.

	
vtr::vector<ParentNetId, t_bb> route_bb

	Limits area within which each net must be routed.

	
std::string routing_id

	SHA256 digest of the .route file.

Used for unique identification and consistency checking

	
vtr::Cache<std::tuple<e_router_lookahead, std::string, std::vector<t_segment_inf>>, RouterLookahead> cached_router_lookahead_

	Cache of router lookahead object.

Cache key: (lookahead type, read lookahead (if any), segment definitions).

	
struct TimingContext : public Context

	State relating to timing.

This should contain only data structures related to timing analysis, or related timing analysis algorithmic state.

Public Members

	
std::shared_ptr<tatum::TimingGraph> graph

	The current timing graph.

This represents the timing dependencies between pins of the atom netlist

	
std::shared_ptr<tatum::TimingConstraints> constraints

	The current timing constraints, as loaded from an SDC file (or set by default).

These specify how timing analysis is performed (e.g. target clock periods)

 Netlist mapping

Netlist mapping

As shown in the previous section, there are multiple levels of abstraction (multiple netlists) in VPR which are the ClusteredNetlist and the AtomNetlist. To fully use these netlists, we provide some functions to map between them.

In this section, we will state how to map between the atom and clustered netlists.

Block Id

Atom block Id to Cluster block Id

To get the block Id of a cluster in the ClusteredNetlist from the block Id of one of its atoms in the AtomNetlist:

	Using AtomLookUp class

ClusterBlockId clb_index = g_vpr_ctx.atom().lookup.atom_clb(atom_blk_id);

	Using re_cluster_util.h helper functions

ClusterBlockId clb_index = atom_to_cluster(atom_blk_id);

Cluster block Id to Atom block Id

To get the block Ids of all the atoms in the AtomNetlist that are packed in one cluster block in ClusteredNetlist:

	Using ClusterAtomLookup class

ClusterAtomsLookup cluster_lookup;
std::vector<AtomBlockId> atom_ids = cluster_lookup.atoms_in_cluster(clb_index);

	Using re_cluster_util.h helper functions

std::vector<AtomBlockId> atom_ids = cluster_to_atoms(clb_index);

Net Id

Atom net Id to Cluster net Id

To get the net Id in the ClusteredNetlist from its Id in the AtomNetlist, use AtomLookup class as follows

ClusterNetId clb_net = g_vpr_ctx.atom().lookup.clb_net(atom_net);

Cluster net Id to Atom net Id

To get the net Id in the AtomNetlist from its Id in the ClusteredNetlist, use AtomLookup class as follows

ClusterNetId atom_net = g_vpr_ctx.atom().lookup.atom_net(clb_net);

 Netlists

Netlists

Netlist

Overview

The netlist logically consists of several different components: Blocks, Ports, Pins and Nets Each component in the netlist has a unique template identifier (BlockId, PortId, PinId, NetId) used to retrieve information about it. In this implementation these ID’s are unique throughout the netlist (i.e. every port in the netlist has a unique ID, even if the ports share a common type).

Block

A Block is the primitive netlist element (a node in the netlist hyper-graph). Blocks have various attributes (a name, a type etc.) and are associated with sets of input/output/clock ports.

Block related information can be retrieved using the block_*() member functions.

Pins

Pins define single-bit connections between a block and a net.

Pin related information can be retrieved using the pin_*() member functions.

Nets

Nets represent the connections between blocks (the edges of the netlist hyper-graph). Each net has a single driver pin, and a set of sink pins.

Net related information can be retrieved using the net_*() member functions.

Ports

A Port is a (potentially multi-bit) group of pins.

For example, the two operands and output of an N-bit adder would logically be grouped as three ports. Ports have a specified bit-width which defines how many pins form the port.

Port related information can be retrieved using the port_*() member functions.

Usage

The following provides usage examples for common use-cases.

Walking the netlist

To iterate over the whole netlist use the blocks() and/or nets() member functions: Netlist netlist;

 //... initialize the netlist

 //Iterate over all the blocks
 for(BlockId blk_id : netlist.blocks()) {
 //Do something with each block
 }

 //Iterate over all the nets
 for(NetId net_id : netlist.nets()) {
 //Do something with each net
 }

 To retrieve information about a netlist component call one of the associated member functions: //Print out each block's name
 for(BlockId blk_id : netlist.blocks()) {

 //Get the block name
 const std::string& block_name = netlist.block_name(blk_id);

 //Print it
 printf("Block: %s\n", block_name.c_str());
 }

 Note that the member functions are associated with the type of component (e.g. block_name() yields the name of a block, net_name() yields the name of a net).

Tracing cross-references

It is common to need to trace the netlist connectivity. The Netlist allows this to be done efficiently by maintaining cross-references between the various netlist components.

The following diagram shows the main methods and relationships between netlist components: +---------+ pin_block()
 | |<--------------------------+
 | Block | |
 | |-----------------------+ |
 +---------+ block_pins() | |
 | ^ v |
 | | +---------+ net_pins() +---------+
 | | | |<-------------| |
block_ports() | | port_block() | Pin | | Net |
 | | | |------------->| |
 | | +---------+ pin_net() +---------+
 v | ^ |
 +---------+ port_pins() | |
 | |-----------------------+ |
 | Port | |
 | |<--------------------------+
 +---------+ pin_port()

Note that methods which are plurals (e.g. net_pins()) return multiple components.

As an example consider the case where we wish to find all the blocks associated with a particular net: NetId net_id;

 //... Initialize net_id with the net of interest

 //Iterate through each pin on the net to get the associated port
 for(PinId pin_id : netlist.net_pins(net_id)) {

 //Get the port associated with the pin
 PortId port_id = netlist.pin_port(pin_id);

 //Get the block associated with the port
 BlockId blk_id = netlist.port_block(port_id);

 //Print out the block name
 const std::string& block_name = netlist.block_name(blk_id);
 printf("Associated block: %s\n", block_name.c_str());
 }

 Netlist also defines some convenience functions for common operations to avoid tracking the intermediate IDs if they are not needed. The following produces the same result as above: NetId net_id;

 //... Initialize net_id with the net of interest

 //Iterate through each pin on the net to get the associated port
 for(PinId pin_id : netlist.net_pins(net_id)) {

 //Get the block associated with the pin (bypassing the port)
 BlockId blk_id = netlist.pin_block(pin_id);

 //Print out the block name
 const std::string& block_name = netlist.block_name(blk_id);
 printf("Associated block: %s\n", block_name.c_str());
 }

As another example, consider the inverse problem of identifying the nets connected as inputs to a particular block: BlkId blk_id;

 //... Initialize blk_id with the block of interest

 //Iterate through the ports
 for(PortId port_id : netlist.block_input_ports(blk_id)) {

 //Iterate through the pins
 for(PinId pin_id : netlist.port_pins(port_id)) {
 //Retrieve the net
 NetId net_id = netlist.pin_net(pin_id);

 //Get its name
 const std::string& net_name = netlist.net_name(net_id);
 printf("Associated net: %s\n", net_name.c_str());
 }
 }

 Here we used the block_input_ports() method which returned an iterable range of all the input ports associated with blk_id. We then used the port_pins() method to get iterable ranges of all the pins associated with each port, from which we can find the associated net.

Often port information is not relevant so this can be further simplified by iterating over a block’s pins directly (e.g. by calling one of the block_*_pins() functions): BlkId blk_id;

 //... Initialize blk_id with the block of interest

 //Iterate over the blocks ports directly
 for(PinId pin_id : netlist.block_input_pins(blk_id)) {

 //Retrieve the net
 NetId net_id = netlist.pin_net(pin_id);

 //Get its name
 const std::string& net_name = netlist.net_name(net_id);
 printf("Associated net: %s\n", net_name.c_str());
 }

 Note the use of range-based-for loops in the above examples; it could also have written (more verbosely) using a conventional for loop and explicit iterators as follows: BlkId blk_id;

 //... Initialize blk_id with the block of interest

 //Iterate over the blocks ports directly
 auto pins = netlist.block_input_pins(blk_id);
 for(auto pin_iter = pins.begin(); pin_iter != pins.end(); ++pin_iter) {

 //Retrieve the net
 NetId net_id = netlist.pin_net(*pin_iter);

 //Get its name
 const std::string& net_name = netlist.net_name(net_id);
 printf("Associated net: %s\n", net_name.c_str());
 }

Creating the netlist

The netlist can be created by using the create_*() member functions to create individual Blocks/Ports/Pins/Nets.

For instance to create the following netlist (where each block is the same type, and has an input port ‘A’ and output port ‘B’): ----------- net1 -----------
 | block_1 |-------------------->| block_2 |
 ----------- | -----------
 |
 | -----------
 ---------->| block_3 |

 We could do the following: const t_model* blk_model = //Initialize the block model appropriately

 Netlist netlist("my_netlist"); //Initialize the netlist with name 'my_netlist'

 //Create the first block
 BlockId blk1 = netlist.create_block("block_1", blk_model);

 //Create the first block's output port
 // Note that the input/output/clock type of the port is determined
 // automatically from the block model
 PortId blk1_out = netlist.create_port(blk1, "B");

 //Create the net
 NetId net1 = netlist.create_net("net1");

 //Associate the net with blk1
 netlist.create_pin(blk1_out, 0, net1, PinType::DRIVER);

 //Create block 2 and hook it up to net1
 BlockId blk2 = netlist.create_block("block_2", blk_model);
 PortId blk2_in = netlist.create_port(blk2, "A");
 netlist.create_pin(blk2_in, 0, net1, PinType::SINK);

 //Create block 3 and hook it up to net1
 BlockId blk3 = netlist.create_block("block_3", blk_model);
 PortId blk3_in = netlist.create_port(blk3, "A");
 netlist.create_pin(blk3_in, 0, net1, PinType::SINK);

Modifying the netlist

The netlist can also be modified by using the remove_*() member functions. If we wanted to remove block_3 from the netlist creation example above we could do the following: //Mark blk3 and any references to it invalid
 netlist.remove_block(blk3);

 //Compress the netlist to actually remove the data associated with blk3
 // NOTE: This will invalidate all client held IDs (e.g. blk1, blk1_out, net1, blk2, blk2_in)
 netlist.compress();

 The resulting netlist connectivity now looks like: ----------- net1 -----------
 | block_1 |-------------------->| block_2 |
 ----------- -----------

 Note that until compress() is called any ‘removed’ elements will have invalid IDs (e.g. BlockId::INVALID()). As a result after calling remove_block() (which invalidates blk3) we then called compress() to remove the invalid IDs.

Also note that compress() is relatively slow. As a result avoid calling compress() after every call to a remove_*() function, and instead batch up calls to remove_*() and call compress() only after a set of modifications have been applied.

Verifying the netlist

Particularly after construction and/or modification it is a good idea to check that the netlist is in a valid and consistent state. This can be done with the verify() member function: netlist.verify()

 If the netlist is not valid verify() will throw an exception, otherwise it returns true.

Invariants

The Netlist maintains stronger invariants if the netlist is in compressed form.

Netlist is compressed (‘not dirty’)

If the netlist is compressed (i.e. !is_dirty(), meaning there have been NO calls to remove_*() since the last call to compress()) the following invariant will hold:
	Any range returned will contain only valid IDs

In practise this means the following conditions hold:
	Blocks will not contain empty ports/pins (e.g. ports with no pin/net connections)

	Ports will not contain pins with no associated net

	Nets will not contain invalid sink pins

This means that no error checking for invalid IDs is needed if simply iterating through netlist (see below for some exceptions).

NOTE: you may still encounter invalid IDs in the following cases:
	net_driver() will return an invalid ID if the net is undriven

	port_pin()/port_net() will return an invalid ID if the bit index corresponds to an unconnected pin

Netlist is NOT compressed (‘dirty’)

If the netlist is not compressed (i.e. is_dirty(), meaning there have been calls to remove_*() with no subsequent calls to compress()) then the invariant above does not hold.

Any range may return invalid IDs. In practise this means,
	Blocks may contain invalid ports/pins

	Ports may contain invalid pins

	Pins may not have a valid associated net

	Nets may contain invalid sink pins

Implementation Details

The netlist is stored in Struct-of-Arrays format rather than the more conventional Array-of-Structs. This improves cache locality by keeping component attributes of the same type in contiguous memory. This prevents unneeded member data from being pulled into the cache (since most code accesses only a few attributes at a time this tends to be more efficient).

Clients of this class pass nearly-opaque IDs (BlockId, PortId, PinId, NetId, StringId) to retrieve information. The ID is internally converted to an index to retrieve the required value from it’s associated storage.

By using nearly-opaque IDs we can change the underlying data layout as need to optimize performance/memory, without disrupting client code.

Strings

To minimize memory usage, we store each unique string only once in the netlist and give it a unique ID (StringId). Any references to this string then make use of the StringId.

In particular this prevents the (potentially large) strings from begin duplicated multiple times in various look-ups, instead the more space efficient StringId is duplicated.

Note that StringId is an internal implementation detail and should not be exposed as part of the public interface. Any public functions should take and return std::string’s instead.

Block pins/Block ports data layout

The pins/ports for each block are stored in a similar manner, for brevity we describe only pins here.

The pins for each block (i.e. PinId’s) are stored in a single vector for each block (the block_pins_ member). This allows us to iterate over all pins (i.e. block_pins()), or specific subsets of pins (e.g. only inputs with block_input_pins()).

To accomplish this all pins of the same group (input/output/clock) are located next to each other. An example is shown below, where the block has n input pins, m output pins and k clock pins.

 | ipin_1 | ipin_2 | ... | ipin_n | opin_1 | opin_2 | ... | opin_m | clock_pin_1 | clock_pin_2 | ... | clock_pin_k |

 ^ ^ ^ ^
 | | | |
begin opin_begin clock_pin_begin end

Provided we know the internal dividing points (i.e. opin_begin and clock_pin_begin) we can easily build the various ranges of interest: all pins : [begin, end)
 input pins : [begin, opin_begin)
 output pins: [opin_begin, clock_pin_begin)
 clock pins : [clock_pin_begin, end)

 Since any reallocation would invalidate any iterators to these internal dividers, we separately store the number of input/output/clock pins per block (i.e. in block_num_input_pins_, block_num_output_pins_ and block_num_clock_pins_). The internal dividers can then be easily calculated (e.g. see block_output_pins()), even if new pins are inserted (provided the counts are updated).

Adding data to the netlist

The Netlist should contain only information directly related to the netlist state (i.e. netlist connectivity). Various mappings to/from elements (e.g. what CLB contains an atom block), and algorithmic state (e.g. if a net is routed) do NOT constitute netlist state and should NOT be stored here.

Such implementation state should be stored in other data structures (which may reference the Netlist’s IDs).

The netlist state should be immutable (i.e. read-only) for most of the CAD flow.

Interactions with other netlists

Currently, the AtomNetlist and ClusteredNetlist are both derived from Netlist. The AtomNetlist has primitive specific details (t_model, TruthTable), and handles all operations with the atoms. The ClusteredNetlist contains information on the CLB (Clustered Logic Block) level, which includes the physical description of the blocks (t_logical_block_type), as well as the internal hierarchy and wiring (t_pb/t_pb_route).

The calling-conventions of the functions in the AtomNetlist and ClusteredNetlist is as follows:

Functions where the derived class (Atom/Clustered) calls the base class (Netlist) create_*()

Functions where the base class calls the derived class (Non-Virtual Interface idiom as described https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Non-Virtual_Interface) remove_*() clean_*() validate_*_sizes() shrink_to_fit() The derived functions based off of the virtual functions have suffix *_impl()

	
template<typename BlockId = ParentBlockId, typename PortId = ParentPortId, typename PinId = ParentPinId, typename NetId = ParentNetId>
class Netlist

	
Public Functions

	
const std::string &netlist_name() const

	Retrieve the name of the netlist.

	
const std::string &netlist_id() const

	Retrieve the unique identifier for this netlist This is typically a secure digest of the input file.

	
bool verify() const

	Sanity check for internal consistency (throws an exception on failure)

	
bool is_dirty() const

	Returns true if the netlist has invalid entries due to modifications (e.g. from remove_*() calls)

	
bool is_compressed() const

	Returns true if the netlist has no invalid entries due to modifications (e.g. from remove_*() calls)

Note

This is a convenience method which is the logical inverse of is_dirty()

	
bool net_is_ignored(const NetId id) const

	Returns whether the net is ignored i.e. not routed.

	
bool net_is_global(const NetId id) const

	Returns whether the net is global.

	
void print_stats() const

	Item counts and container info (for debugging)

	
const std::string &block_name(const BlockId blk_id) const

	Returns the name of the specified block.

	
bool block_is_combinational(const BlockId blk_id) const

	Returns true if the block is purely combinational (i.e. no input clocks and not a primary input.

	
attr_range block_attrs(const BlockId blk_id) const

	Returns a range of all attributes associated with the specified block.

	
param_range block_params(const BlockId blk_id) const

	Returns a range of all parameters associated with the specified block.

	
pin_range block_pins(const BlockId blk_id) const

	Returns a range of all pins associated with the specified block.

	
pin_range block_input_pins(const BlockId blk_id) const

	Returns a range of all input pins associated with the specified block.

	
pin_range block_output_pins(const BlockId blk_id) const

	Returns a range of all output pins associated with the specified block.

Note

This is typically only data pins, but some blocks (e.g. PLLs) can produce outputs which are clocks.

	
pin_range block_clock_pins(const BlockId blk_id) const

	Returns a range of all clock pins associated with the specified block.

	
port_range block_ports(const BlockId blk_id) const

	Returns a range of all ports associated with the specified block.

	
port_range block_input_ports(const BlockId blk_id) const

	Returns a range consisting of the input ports associated with the specified block.

	
port_range block_output_ports(const BlockId blk_id) const

	Returns a range consisting of the output ports associated with the specified block.

Note

This is typically only data ports, but some blocks (e.g. PLLs) can produce outputs which are clocks.

	
port_range block_clock_ports(const BlockId blk_id) const

	Returns a range consisting of the input clock ports associated with the specified block.

	
void remove_block(const BlockId blk_id)

	Removes a block from the netlist. This will also remove the associated ports and pins.

	Parameters:

	blk_id – The block to be removed

	
const std::string &port_name(const PortId port_id) const

	Returns the name of the specified port.

	
BlockId port_block(const PortId port_id) const

	Returns the block associated with the specified port.

	
pin_range port_pins(const PortId port_id) const

	Returns the set of valid pins associated with the port.

	
PinId port_pin(const PortId port_id, const BitIndex port_bit) const

	Returns the pin (potentially invalid) associated with the specified port and port bit index.

Note

This function is a synonym for find_pin()

	Parameters:

	
	port_id – The ID of the associated port

	port_bit – The bit index of the pin in the port

	
NetId port_net(const PortId port_id, const BitIndex port_bit) const

	Returns the net (potentially invalid) associated with the specified port and port bit index.

	Parameters:

	
	port_id – The ID of the associated port

	port_bit – The bit index of the pin in the port

	
BitIndex port_width(const PortId port_id) const

	Returns the width (number of bits) in the specified port.

	
PortType port_type(const PortId port_id) const

	Returns the type of the specified port.

	
void remove_port(const PortId port_id)

	Removes a port from the netlist.

The port’s pins are also marked invalid and removed from any associated nets

	Parameters:

	port_id – The ID of the port to be removed

	
std::string pin_name(const PinId pin_id) const

	Returns the constructed name (derived from block and port) for the specified pin.

	
PinType pin_type(const PinId pin_id) const

	Returns the type of the specified pin.

	
NetId pin_net(const PinId pin_id) const

	Returns the net associated with the specified pin.

	
int pin_net_index(const PinId pin_id) const

	Returns the index of the specified pin within it’s connected net.

	
PortId pin_port(const PinId pin_id) const

	Returns the port associated with the specified pin.

	
BitIndex pin_port_bit(const PinId pin_id) const

	Returns the port bit index associated with the specified pin.

	
BlockId pin_block(const PinId pin_id) const

	Returns the block associated with the specified pin.

	
PortType pin_port_type(const PinId pin_id) const

	Returns the port type associated with the specified pin.

	
bool pin_is_constant(const PinId pin_id) const

	Returns true if the pin is a constant (i.e. its value never changes)

	
void remove_pin(const PinId pin_id)

	Removes a pin from the netlist.

The pin is marked invalid, and removed from any assoicated nets

	Parameters:

	pin_id – The pin_id of the pin to be removed

	
const std::string &net_name(const NetId net_id) const

	Returns the name of the specified net.

	
pin_range net_pins(const NetId net_id) const

	Returns a range consisting of all the pins in the net (driver and sinks)

The first element in the range is the driver (and may be invalid) The remaining elements (potentially none) are the sinks

	
PinId net_pin(const NetId net_id, int net_pin_index) const

	Returns the net_pin_index’th pin of the specified net.

	
BlockId net_pin_block(const NetId net_id, int net_pin_index) const

	Returns the block associated with the net_pin_index’th pin of the specified net.

	
PinId net_driver(const NetId net_id) const

	Returns the (potentially invalid) net driver pin.

	
BlockId net_driver_block(const NetId net_id) const

	Returns the (potentially invalid) net driver block.

	
pin_range net_sinks(const NetId net_id) const

	Returns a (potentially empty) range consisting of net’s sink pins.

	
bool net_is_constant(const NetId net_id) const

	Returns true if the net is driven by a constant pin (i.e. its value never changes)

	
void remove_net(const NetId net_id)

	Removes a net from the netlist.

This will mark the net’s pins as having no associated.

	Parameters:

	net_id – The net to be removed

	
void remove_net_pin(const NetId net_id, const PinId pin_id)

	Removes a connection betwen a net and pin.

The pin is removed from the net and the pin will be marked as having no associated net

	Parameters:

	
	net_id – The net from which the pin is to be removed

	pin_id – The pin to be removed from the net

	
block_range blocks() const

	Returns a range consisting of all blocks in the netlist.

	
port_range ports() const

	Returns a range consisting of all ports in the netlist.

	
net_range nets() const

	Returns a range consisting of all nets in the netlist.

	
pin_range pins() const

	Returns a range consisting of all pins in the netlist.

	
BlockId find_block(const std::string &name) const

	Returns the BlockId of the specified block or BlockId::INVALID() if not found.

	Parameters:

	name – The name of the block

	
BlockId find_block_by_name_fragment(const std::string &name_substring) const

	Finds a block where the block’s name contains the provided input name as a substring. The intented use is to find the block id of a hard block without knowing its name in the netlist. Instead the block’s module name in the HDL design can be used as it will be a substring within its full name in the netlist.

For example, suppose a RAM block was named in the netlist as “top|alu|test_ram|out”. The user instantiated the ram module in the HDL design as “test_ram”. So instead of going through the netlist and finding the ram block’s full name, this function can be used by just providing the module name “test_ram” and using this substring to match the blocks name in the netlist and retrieving its block id. If no blocks matched to input pattern then an invalid block id is returned.

This function runs in linear time (O(N)) as it goes over all the cluster blocks in the netlist. Additionally, if there are multiple blocks that contain the provided input as a substring, then the first block found is returned.

NOTE: This function tries to find blocks by checking for substrings. The clustered netlist class defines another version of this function that find blocks by checking for a pattern match, meaning that the input is a pattern string and the pattern is looked for ine each block name.

	Parameters:

	name_substring – A substring of a block name for which an ID needs

to be found.

	Returns:

	A cluster block id representing a unique cluster block that matched to the input string pattern.

	
PortId find_port(const BlockId blk_id, const std::string &name) const

	Returns the PortId of the specifed port if it exists or PortId::INVALID() if not.

Note

This method is typically less efficient than searching by a t_model_port With the overloaded AtomNetlist method

	Parameters:

	
	blk_id – The ID of the block who’s ports will be checked

	name – The name of the port to look for

	
NetId find_net(const std::string &name) const

	Returns the NetId of the specified net or NetId::INVALID() if not found.

	Parameters:

	name – The name of the net

	
PinId find_pin(const PortId port_id, BitIndex port_bit) const

	Returns the PinId of the specified pin or PinId::INVALID() if not found.

	Parameters:

	
	port_id – The ID of the associated port

	port_bit – The bit index of the pin in the port

	
PinId find_pin(const std::string name) const

	Returns the PinId of the specified pin or PinId::INVALID() if not found.

Note

This method is SLOW, O(num_pins) — avoid if possible

	Parameters:

	name – The name of the pin

	
void set_pin_net(const PinId pin, PinType pin_type, const NetId net)

	Add the specified pin to the specified net as pin_type.

Automatically removes any previous net connection for this pin.

	Parameters:

	
	pin – The pin to add

	pin_type – The type of the pin (i.e. driver or sink)

	net – The net to add the pin to

	
void set_pin_is_constant(const PinId pin_id, const bool value)

	Mark a pin as being a constant generator.

There are some cases where a pin can not be identified as a is constant until after the full netlist has been built; so we expose a way to mark existing pins as constants.

	Parameters:

	
	pin_id – The pin to be marked

	value – The boolean value to set the pin_is_constant attribute

	
void set_block_name(const BlockId blk_id, const std::string new_name)

	Re-name a block.

	Parameters:

	
	blk_id – : The block to be renamed

	new_name – : The new name for the specified block

	
void set_block_attr(const BlockId blk_id, const std::string &name, const std::string &value)

	Set a block attribute.

	Parameters:

	
	blk_id – The block to which the attribute is attached

	name – The name of the attribute to set

	value – The new value for the specified attribute on the specified block

	
void set_block_param(const BlockId blk_id, const std::string &name, const std::string &value)

	Set a block parameter.

	Parameters:

	
	blk_id – The block to which the parameter is attached

	name – The name of the parameter to set

	value – The new value for the specified parameter on the specified block

	
void set_net_is_ignored(NetId net_id, bool state)

	Sets the flag in net_ignored_ = state.

	Parameters:

	
	net_id – The Net Id

	state – true(false): net should(shouldn’t) be ignored

	
void set_net_is_global(NetId net_id, bool state)

	Sets the flag in net_is_global_ = state.

	
void merge_nets(const NetId driver_net, const NetId sink_net)

	Merges sink_net into driver_net.

After merging driver_net will contain all the sinks of sink_net

	Parameters:

	
	driver_net – The net which includes the driver pin

	sink_net – The target net to be merged into driver_net (must have no driver pin)

	
IdRemapper remove_and_compress()

	Wrapper for remove_unused() & compress()

This function should be used in the case where a netlist is fully modified

	
void remove_unused()

	This should be called after completing a series of netlist modifications (e.g. removing blocks/ports/pins/nets).

Marks netlist components which have become redundant due to other removals (e.g. ports with only invalid pins) as invalid so they will be destroyed during compress()

	
IdRemapper compress()

	Compresses the netlist, removing any invalid and/or unreferenced blocks/ports/pins/nets.

Note

this invalidates all existing IDs!

Clustered Netlist

Overview

The ClusteredNetlist is derived from the Netlist class, and contains some separate information on Blocks, Pins, and Nets. It does not make use of Ports.

Blocks

The pieces of unique block information are: block_pbs_: Physical block describing the clustering and internal hierarchy structure of each CLB. block_types_: The type of physical block the block is mapped to, e.g. logic block, RAM, DSP (Can be user-defined types). block_nets_: Based on the block’s pins (indexed from [0…num_pins - 1]), lists which pins are used/unused with the net using it. block_pin_nets_: Returns the index of a pin relative to the net, when given a block and a pin’s index on that block (from the type descriptor). Differs from block_nets_.

Differences between block_nets_ & block_pin_nets_

 +-----------+
0-->| |-->3
1-->| Block |-->4
2-->| |-->5
 +-----------+

block_nets_ tracks all pins on a block, and returns the ClusterNetId to which a pin is connected to. If the pin is unused/open, ClusterNetId::INVALID() is stored.

block_pin_nets_ tracks whether the nets connected to the block are drivers/receivers of that net. Driver/receiver nets are determined by the pin_class of the block’s pin. A net connected to a driver pin in the block has a 0 is stored. A net connected to a receiver has a counter (from [1…num_sinks - 1]).

The net is connected to multiple blocks. Each block_pin_nets_ has a unique number in that net.

E.g. +-----------+ +-----------+
0-->| |-->3 Net A 0-->| |-->3
1-->| Block 1 |---4---------->1-->| Block 2 |-->4
2-->| |-->5 2-->| |-->5
 +-----------+ | +-----------+
 |
 | +-----------+
 | | |-->1
 0-->| Block 3 |
 | |-->2
 +-----------+

In the example, Net A is driven by Block 1, and received by Blocks 2 & 3. For Block 1, block_pin_nets_ of pin 4 returns 0, as it is the driver. For Block 2, block_pin_nets_ of pin 1 returns 1 (or 2), non-zero as it is a receiver. For Block 3, block_pin_nets_ of pin 0 returns 2 (or 1), non-zero as it is also a receiver.

The block_pin_nets_ data structure exists for quick indexing, rather than using a linear search with the available functions from the base Netlist, into the net_delay_ structure in the PostClusterDelayCalculator of inter_cluster_delay(). net_delay_ is a 2D array, where the indexing scheme is [net_id] followed by [pin_index on net].

Pins

The only piece of unique pin information is: logical_pin_index_

Example of logical_pin_index_

Given a ClusterPinId, logical_pin_index_ will return the index of the pin within its block relative to the t_logical_block_type (logical description of the block).

 +-----------+
0-->|O X|-->3
1-->|O Block O|-->4
2-->|X O|-->5 (e.g. ClusterPinId = 92)
 +-----------+

The index skips over unused pins, e.g. CLB has 6 pins (3 in, 3 out, numbered [0…5]), where the first two ins, and last two outs are used. Indices [0,1] represent the ins, and [4,5] represent the outs. Indices [2,3] are unused. Therefore, logical_pin_index_[92] = 5.

Implementation

For all create_* functions, the ClusteredNetlist will wrap and call the Netlist’s version as it contains additional information that the base Netlist does not know about.

All functions with suffix *_impl() follow the Non-Virtual Interface (NVI) idiom. They are called from the base Netlist class to simplify pre/post condition checks and prevent Fragile Base Class (FBC) problems.

Refer to netlist.h for more information.

	
class ClusteredNetlist : public Netlist<ClusterBlockId, ClusterPortId, ClusterPinId, ClusterNetId>

	
Public Functions

	
ClusteredNetlist(std::string name = "", std::string id = "")

	Constructs a netlist.

	Parameters:

	
	name – the name of the netlist (e.g. top-level module)

	id – a unique identifier for the netlist (e.g. a secure digest of the input file)

	
t_pb *block_pb(const ClusterBlockId id) const

	Returns the physical block.

	
t_logical_block_type_ptr block_type(const ClusterBlockId id) const

	Returns the type of CLB (Logic block, RAM, DSP, etc.)

	
const std::vector<ClusterBlockId> &blocks_per_type(const t_logical_block_type &blk_type) const

	Returns the blocks with the specific block types in the netlist.

	
ClusterNetId block_net(const ClusterBlockId blk_id, const int pin_index) const

	Returns the net of the block attached to the specific pin index.

	
int block_pin_net_index(const ClusterBlockId blk_id, const int pin_index) const

	Returns the count on the net of the block attached.

	
ClusterPinId block_pin(const ClusterBlockId blk, const int logical_pin_index) const

	Returns the logical pin Id associated with the specified block and logical pin index.

	
bool block_contains_primary_output(const ClusterBlockId blk) const

	Returns true if the specified block contains a primary output (e.g. BLIF .output primitive)

	
int pin_logical_index(const ClusterPinId pin_id) const

	Returns the logical pin index (i.e. pin index on the t_logical_block_type) of the cluster pin.

	
int net_pin_logical_index(const ClusterNetId net_id, int net_pin_index) const

	Finds the net_index’th net pin (e.g. the 6th pin of the net) and returns the logical pin index (i.e. pin index on the t_logical_block_type) of the block to which the pin belongs.

	Parameters:

	
	net_id – The net

	net_pin_index – The index of the pin in the net

	
ClusterBlockId create_block(const char *name, t_pb *pb, t_logical_block_type_ptr type)

	Create or return an existing block in the netlist.

	Parameters:

	
	name – The unique name of the block

	pb – The physical representation of the block

	type – The type of the CLB

	
ClusterPortId create_port(const ClusterBlockId blk_id, const std::string &name, BitIndex width, PortType type)

	Create or return an existing port in the netlist.

	Parameters:

	
	blk_id – The block the port is associated with

	name – The name of the port (must match the name of a port in the block’s model)

	width – The width (number of bits) of the port

	type – The type of the port (INPUT, OUTPUT, or CLOCK)

	
ClusterPinId create_pin(const ClusterPortId port_id, BitIndex port_bit, const ClusterNetId net_id, const PinType pin_type, int pin_index, bool is_const = false)

	Create or return an existing pin in the netlist.

	Parameters:

	
	port_id – The port this pin is associated with

	port_bit – The bit index of the pin in the port

	net_id – The net the pin drives/sinks

	pin_type – The type of the pin (driver/sink)

	pin_index – The index of the pin relative to its block, excluding OPEN pins)

	is_const – Indicates whether the pin holds a constant value (e. g. vcc/gnd)

	
ClusterNetId create_net(const std::string &name)

	Create an empty, or return an existing net in the netlist.

	Parameters:

	name – The unique name of the net

	
ClusterBlockId find_block_by_name_fragment(const std::string &name_pattern, const std::vector<ClusterBlockId> &cluster_block_candidates) const

	Given a name of a block and vector of possible cluster blocks that are candidates to match the block name, go through the vector of cluster blocks and return the id of the block where the block name matches the provided name.

Given a string pattern representing a block name and a vector of poissble cluster blocks that are candidates to match to the block name pattern, go through the vector of cluster blocks and return the id of the block where the block name matches to the provided input pattern.

The intented use is to find the block id of a hard block without knowing its name in the netlist. Instead a pattern can be created that we know the block’s name will match to. Generally, we expect the pattern to be constructed using the block’s module name in the HDL design, since we can expect the netlist name of the block to include the module name within it.

For example, suppose a RAM block was named in the netlist as “top|alu|test_ram|out”. The user instantiated the ram module in the HDL design as “test_ram”. So instead of going through the netlist and finding the ram block’s full name, this function can be used by just providing the string pattern as “.*test_ram.*”. We know that the module name should be somewhere within the string, so the pattern we provide says that the netlist name of the block contains arbritary characters then the module name and then some other arbritary characters after. This pattern will then be used to match to the block in the netlist. The matched cluster block id is returned, and if no block matched to the input string then an invalid block id is returned.

The function here additionally requires a vector of possible cluster blocks that can match to the input pattern. This vector can be the entire netlist or a subset. For example, if the intended use is to find hard blocks, it is quite inefficient to go through all the blocks to find a matching one. Instead, a a filtered vector can be passed that is a subset of the entire netlist and can only contain blocks of a certain logical block type (blocks that can be placed on a specific hard block). The idea here is that the filtered vector should be considereably smaller that a vector of every block in the netlist and this should help improve run time.

This function runs in linear time (O(N)) as it goes over the vector of ‘cluster_block_candidates’. ‘cluster_block_candidates’ could be the whole netlist or a subset as explained above. Additionally, if there are multiple blocks that match to the provided input pattern, then the first block found is returned.

	Parameters:

	
	name_pattern – A regex string pattern that can be used to match to

a clustered block name within the netlist.

	cluster_block_candidates – A vector of clustered block ids that represent a subset of the clustered netlist. The blocks in this vector will be used to compare and match to the input string pattern.

	Returns:

	A cluster block id representing a unique cluster block that matched to the input string pattern.

Atom Netlist

Overview

The AtomNetlist is derived from the Netlist class, and contains information on the primitives. This includes basic components (Blocks, Ports, Pins, & Nets), and physical descriptions (t_model) of the primitives.

Most of the functionality relevant to components and their accessors/cross-accessors is implemented in the Netlist class. Refer to netlist.(h|tpp) for more information.

Components

There are 4 components in the Netlist: Blocks, Ports, Pins, and Nets. Each component has a unique ID in the netlist, as well as various associations to their related components (e.g. A pin knows which port it belongs to, and what net it connects to)

Blocks

Blocks refer to the atoms (AKA primitives) that are in the the netlist. Each block contains input/output/clock ports. Blocks have names, and various functionalities (LUTs, FFs, RAMs, …) Each block has an associated t_model, describing the physical properties.

Ports

Ports are composed of a set of pins that have specific directionality (INPUT, OUTPUT, or CLOCK). The ports in the AtomNetlist are respective to the atoms. (i.e. the AtomNetlist does not contain ports of a Clustered Logic Block). Each port has an associated t_model_port, describing the physical properties.

Pins

Pins are single-wire input/outputs. They are part of a port, and are connected to a single net.

Nets

Nets in the AtomNetlist track the wiring connections between the atoms.

Models

There are two main models, the primitive itself (t_model) and the ports of that primitive (t_model_ports). The models are created from the architecture file, and describe the physical properties of the atom.

Truth Table

The AtomNetlist also contains a TruthTable for each block, which indicates what the LUTs contain.

Implementation

For all create_* functions, the AtomNetlist will wrap and call the Netlist’s version as it contains additional information that the base Netlist does not know about.

All functions with suffix *_impl() follow the Non-Virtual Interface (NVI) idiom. They are called from the base Netlist class to simplify pre/post condition checks and prevent Fragile Base Class (FBC) problems.

Refer to netlist.h for more information.

	
class AtomNetlist : public Netlist<AtomBlockId, AtomPortId, AtomPinId, AtomNetId>

	
Public Functions

	
AtomNetlist(std::string name = "", std::string id = "")

	Constructs a netlist.

	Parameters:

	
	name – the name of the netlist (e.g. top-level module)

	id – a unique identifier for the netlist (e.g. a secure digest of the input file)

	
AtomBlockType block_type(const AtomBlockId id) const

	Returns the type of the specified block.

	
const t_model *block_model(const AtomBlockId id) const

	Returns the model associated with the block.

	
const TruthTable &block_truth_table(const AtomBlockId id) const

	Returns the truth table associated with the block.

For LUTs the truth table stores the single-output cover representing the logic function.

For FF/Latches there is only a single entry representing the initial state

Note

This is only non-empty for LUTs and Flip-Flops/latches.

	
const t_model_ports *port_model(const AtomPortId id) const

	Returns the model port of the specified port or nullptr if not.

	Parameters:

	id – The ID of the port to look for

	
AtomPortId find_atom_port(const AtomBlockId blk_id, const t_model_ports *model_port) const

	Returns the AtomPortId of the specifed port if it exists or AtomPortId::INVALID() if not.

Note

This method is typically more efficient than searching by name

	Parameters:

	
	blk_id – The ID of the block who’s ports will be checked

	model_port – The port model to look for

	
AtomBlockId find_atom_pin_driver(const AtomBlockId blk_id, const t_model_ports *model_port, const BitIndex port_bit) const

	Returns the AtomBlockId of the atom driving the specified pin if it exists or AtomBlockId::INVALID() if not.

	Parameters:

	
	blk_id – The ID of the block whose ports will be checked

	model_port – The port model to look for

	port_bit – The pin number in this port

	
std::unordered_set<std::string> net_aliases(const std::string net_name) const

	Returns the a set of aliases relative to the net name.

If no aliases are found, returns a set with the original net name.

	Parameters:

	net_name – name of the net from which the aliases are extracted

	
AtomBlockId create_block(const std::string name, const t_model *model, const TruthTable truth_table = TruthTable())

	Create or return an existing block in the netlist.

	Parameters:

	
	name – The unique name of the block

	model – The primitive type of the block

	truth_table – The single-output cover defining the block’s logic function The truth_table is optional and only relevant for LUTs (where it describes the logic function) and Flip-Flops/latches (where it consists of a single entry defining the initial state).

	
AtomPortId create_port(const AtomBlockId blk_id, const t_model_ports *model_port)

	Create or return an existing port in the netlist.

	Parameters:

	
	blk_id – The block the port is associated with

	model_port – The model port the port is associated with

	
AtomPinId create_pin(const AtomPortId port_id, BitIndex port_bit, const AtomNetId net_id, const PinType pin_type, bool is_const = false)

	Create or return an existing pin in the netlist.

	Parameters:

	
	port_id – The port this pin is associated with

	port_bit – The bit index of the pin in the port

	net_id – The net the pin drives/sinks

	pin_type – The type of the pin (driver/sink)

	is_const – Indicates whether the pin holds a constant value (e. g. vcc/gnd)

	
AtomNetId create_net(const std::string name)

	Create an empty, or return an existing net in the netlist.

	Parameters:

	name – The unique name of the net

	
AtomNetId add_net(const std::string name, AtomPinId driver, std::vector<AtomPinId> sinks)

	Create a completely specified net from specified driver and sinks.

	Parameters:

	
	name – The name of the net (Note: must not already exist)

	driver – The net’s driver pin

	sinks – The net’s sink pins

	
void add_net_alias(const std::string net_name, std::string alias_net_name)

	Adds a value to the net aliases set for a given net name in the net_aliases_map.

If there is no key/value pair in the net_aliases_map, creates a new set and adds it to the map.

	Parameters:

	
	net_name – The net to be added to the map

	alias_net_name – The alias of the assigned clock net id

 Route Tree

Route Tree

RouteTree

Overview

A RouteTree holds a root RouteTreeNode and exposes top level operations on the tree, such as RouteTree::update_from_heap() and RouteTree::prune().

Routing itself is not done using this representation. The route tree is pushed to the heap with ConnectionRouterInterface::timing_driven_route_connection_from_route_tree() and the newly found path is committed via RouteTree::update_from_heap(). The timing data is updated with RouteTree::reload_timing() where required.

Each net in the netlist given to the router has a single RouteTree, which is kept in RoutingContext::route_trees.

Usage

A RouteTree either requires a RRNodeId or a ParentNetId (as the source node) to construct: RouteTree tree(inet);
 // ...

 RouteTrees cannot be manually updated. The only way to extend them is to first route a connection and then update from the resulting heap. std::tie(found_path, cheapest) = router.timing_driven_route_connection_from_route_tree(tree.root(), ...);
 if (found_path)
 std::tie(std::ignore, rt_node_of_sink) = tree.update_from_heap(&cheapest, ...);

 Congested paths in a tree can be pruned using RouteTree::prune(). This is done between iterations to keep only the legally routed section. Note that updates to a tree require an update to the global occupancy state via pathfinder_update_cost_from_route_tree(). RouteTree::prune() depends on this global data to find congestions, so the flow to prune a tree is somewhat convoluted: RouteTree tree2 = tree;
 // Prune the copy (using congestion data before subtraction)
 vtr::optional<RouteTree&> pruned_tree2 = tree2.prune(connections_inf);

 // Subtract congestion using the non-pruned original
 pathfinder_update_cost_from_route_tree(tree.root(), -1);

 if (pruned_tree2) { // Partially pruned
 // Add back congestion for the pruned route tree
 pathfinder_update_cost_from_route_tree(pruned_tree2.value().root(), 1);
 ...
 } else { // Fully destroyed
 ...

 Most usage of RouteTree outside of the router requires iterating through existing routing. Both RouteTree and RouteTreeNode exposes functions to traverse the tree.

To iterate over all nodes in the tree: RouteTree& tree = route_ctx.route_trees[inet].value();

 for (auto& node: tree.all_nodes()) {
 // ...
 }

 This will walk the tree in depth-first order. Breadth-first traversal would require recursion: const RouteTreeNode& root = tree.root();

 for (auto& child: root.child_nodes()) {
 // recurse...
 }

 To walk a node’s subtree in depth-first order: for (auto& node: root.all_nodes()) { // doesn't include root!
 // ...
 }

 RouteTree::find_by_rr_id() finds the RouteTreeNode for a given RRNodeId. Note that RRNodeId isn’t a unique key for SINK nodes and therefore an external lookup (generated from sink nodes returned by RouteTree::update_from_heap()) or a search may be required to find a certain SINK.

When the occupancy and timing data is up to date, a tree can be sanity checked using RouteTree::is_valid().

	
class RouteTree

	Top level route tree used in timing analysis and keeping routing state.

Contains the root node and a lookup from RRNodeIds to RouteTreeNode&s in the tree.

Public Functions

	
RouteTree(RRNodeId inode)

	Return a RouteTree initialized to inode. Note that prune() won’t work on a RouteTree initialized this way (see _net_id comments)

	
RouteTree(ParentNetId inet)

	Return a RouteTree initialized to the source of nets[inet]. Use this constructor where possible (needed for prune() to work)

	
std::tuple<vtr::optional<const RouteTreeNode&>, vtr::optional<const RouteTreeNode&>> update_from_heap(t_heap *hptr, int target_net_pin_index, SpatialRouteTreeLookup *spatial_rt_lookup, bool is_flat)

	Add the most recently finished wire segment to the routing tree, and update the Tdel, etc. numbers for the rest of the routing tree. hptr is the heap pointer of the SINK that was reached, and target_net_pin_index is the net pin index corresponding to the SINK that was reached. This routine returns a tuple: RouteTreeNode of the branch it adds to the route tree and RouteTreeNode of the SINK it adds to the routing. Locking operation: only one thread can update_from_heap() a RouteTree at a time.

Add the most recently finished wire segment to the routing tree, and update the Tdel, etc. numbers for the rest of the routing tree. hptr is the heap pointer of the SINK that was reached, and target_net_pin_index is the net pin index corresponding to the SINK that was reached. This routine returns a tuple: RouteTreeNode of the branch it adds to the route tree and RouteTreeNode of the SINK it adds to the routing.

	
void reload_timing(vtr::optional<RouteTreeNode&> from_node = vtr::nullopt)

	Reload timing values (R_upstream, C_downstream, Tdel). Can take a RouteTreeNode& to do an incremental update. Note that update_from_heap already does this, but prune() doesn’t. Locking operation: only one thread can reload_timing() for a RouteTree at a time.

Reload timing values (R_upstream, C_downstream, Tdel). Can take a RouteTreeNode& to do an incremental update. Note that update_from_heap already calls this.

	
vtr::optional<const RouteTreeNode&> find_by_rr_id(RRNodeId rr_node) const

	Get the RouteTreeNode corresponding to the RRNodeId. Returns nullopt if not found. SINK nodes may be added to the tree multiple times. In that case, this will return the last one added. Use find_by_isink for a more accurate lookup.

	
inline vtr::optional<const RouteTreeNode&> find_by_isink(int isink) const

	Get the sink RouteTreeNode associated with the isink. Will probably segfault if the tree is not constructed with a ParentNetId.

	
inline constexpr size_t num_sinks(void) const

	Get the number of sinks in associated net.

	
bool is_valid(void) const

	Check the consistency of this route tree. Looks for:
	invalid parent-child links

	invalid timing values

	congested SINKs Returns true if OK.

	
bool is_uncongested(void) const

	Check if the tree has any overused nodes (-> the tree is congested). Returns true if not congested.

Check if the tree has any overused nodes (-> the tree is congested). Returns true if not congested

	
void print(void) const

	Print information about this route tree to stdout.

	
vtr::optional<RouteTree&> prune(CBRR &connections_inf, std::vector<int> *non_config_node_set_usage = nullptr)

	Prune overused nodes from the tree. Also prune unused non-configurable nodes if non_config_node_set_usage is provided (see get_non_config_node_set_usage) Returns nullopt if the entire tree is pruned. Locking operation: only one thread can prune() a RouteTree at a time.

Prune a route tree of illegal branches - when there is at least 1 congested node on the path to a sink Returns nullopt if the entire tree has been pruned. Updates “is_isink_reached” lookup! After prune(), if a sink is marked as reached in the lookup, it is reached legally.

Note: does not update R_upstream/C_downstream

	
void freeze(void)

	Remove all sinks and mark the remaining nodes as un-expandable. This is used after routing a clock net. TODO: is this function doing anything? Try running without it Locking operation: only one thread can freeze() a RouteTree at a time.

Remove all sinks and mark the remaining nodes as un-expandable. This is used after routing a clock net. TODO: is this function doing anything? Try running without it

	
std::vector<int> get_non_config_node_set_usage(void) const

	Count configurable edges to non-configurable node sets. (rr_nonconf_node_sets index -> int) Required when using prune() to remove non-configurable nodes.

	
inline constexpr iterable all_nodes(void) const

	Get an iterable for all nodes in this RouteTree.

	
inline constexpr const RouteTreeNode &root(void) const

	Get a reference to the root RouteTreeNode.

	
inline constexpr const vtr::dynamic_bitset &get_is_isink_reached(void) const

	Get a lookup which contains the “isink reached state”. It’s a 1-indexed! bitset of “pin indices”. True if the nth sink has been reached, false otherwise. If you call it before prune() and after routing, there’s no guarantee on whether the reached sinks are reached legally. Another catch is that vtr::dynamic_bitsets don’t know their size, so keep tree.num_sinks()+1 as a limit when iterating over this.

	
inline constexpr reached_isink_range get_reached_isinks(void) const

	Get reached isinks: 1-indexed pin indices enumerating the sinks in this net. “Reached” means “reached legally” if you call this after prune() and not before any routing. Otherwise it doesn’t guarantee legality. Builds and returns a value: use get_is_isink_reached directly if you want speed.

	
inline constexpr remaining_isink_range get_remaining_isinks(void) const

	Get remaining (not routed (legally?)) isinks: 1-indexed pin indices enumerating the sinks in this net. Caveats in get_reached_isinks() apply.

	
template<bool sink_state>
class IsinkIterator

	Iterator implementation for remaining or reached isinks. Goes over [1..num_sinks] and only returns a value when the sink state is right

RouteTreeNode

	
class RouteTreeNode

	A single route tree node.

Structure describing one node in a RouteTree.

Public Functions

	
RouteTreeNode(RRNodeId inode, RRSwitchId parent_switch, RouteTreeNode *parent)

	This struct makes little sense outside the context of a RouteTree. This constructor is only public for compatibility purposes.

	
inline constexpr iterable<const RouteTreeNode&> child_nodes(void) const

	Traverse child nodes.

	
inline constexpr vtr::optional<const RouteTreeNode&> parent(void) const

	Get parent node if exists. (nullopt if not)

	
inline constexpr rec_iterable<const RouteTreeNode&> all_nodes(void) const

	Traverse the subtree under this node in depth-first order. Doesn’t include this node.

	
void print(void) const

	Print information about this subtree to stdout.

	
inline constexpr bool is_leaf(void) const

	Is this node a leaf?

True if the next node after this is not its child (we jumped up to the next branch) or if it’s null. The RouteTree functions keep the books for this.

Public Members

	
RRNodeId inode

	ID of the rr_node that corresponds to this node.

	
RRSwitchId parent_switch

	Switch type driving this node (by its parent).

	
bool re_expand

	Should this node be put on the heap as part of the partial routing to act as a source for subsequent connections?

	
float Tdel

	Time delay for the signal to get from the net source to this node. Includes the time to go through this node.

	
float R_upstream

	Total upstream resistance from this node to the net source, including any device_ctx.rr_nodes[].R of this node.

	
float C_downstream

	Total downstream capacitance from this node. That is, the total C of the subtree rooted at the current node, including the C of the current node.

	
int net_pin_index

	Net pin index associated with the node. This value ranges from 1 to fanout [1..num_pins-1]. For cases when different speed paths are taken to the same SINK for different pins, inode cannot uniquely identify each SINK, so the net pin index guarantees an unique identification for each SINK node. For non-SINK nodes and for SINK nodes with no associated net pin index, (i.e. special SINKs like the source of a clock tree which do not correspond to an actual netlist connection), the value for this member should be set to OPEN (-1).

Friends

	
inline friend bool operator==(const RouteTreeNode &lhs, const RouteTreeNode &rhs)

	Equality operator. For now, just compare the addresses

	
template<class Iterator>
class Iterable

	Provide begin and end fns when iterating on this tree. .child_nodes() returns Iterable<RTIterator> while .all_nodes() returns Iterable<RTRecIterator>

	
template<class ref>
class RTIterator

	Iterator implementation for child_nodes(). Walks using _next_sibling ptrs. At the end of the child list, the ptr points up to where the parent’s subtree ends, so we know where to stop

	
template<class ref>
class RTRecIterator

	Recursive iterator implementation for a RouteTreeNode. This walks over all child nodes of a given node without a stack or recursion: we keep the nodes in depth-first order in the linked list managed by RouteTree. Nodes know where their subtree ends, so we can just walk the _next ptrs until we find that

 Routing Resource Graph

Routing Resource Graph

RRGraphView

	
class RRGraphView

	
Public Functions

	
inline size_t num_nodes() const

	Return number of nodes. This function is inlined for runtime optimization.

	
inline bool empty() const

	Is the RR graph currently empty?

	
inline vtr::StrongIdRange<RREdgeId> edge_range(RRNodeId id) const

	Returns a range of RREdgeId’s belonging to RRNodeId id. If this range is empty, then RRNodeId id has no edges.

	
inline t_rr_type node_type(RRNodeId node) const

	Get the type of a routing resource node. This function is inlined for runtime optimization.

	
inline const char *node_type_string(RRNodeId node) const

	Get the type string of a routing resource node. This function is inlined for runtime optimization.

	
inline short node_capacity(RRNodeId node) const

	Get the capacity of a routing resource node. This function is inlined for runtime optimization.

	
inline Direction node_direction(RRNodeId node) const

	Get the direction of a routing resource node. This function is inlined for runtime optimization. Direction::INC: wire driver is positioned at the low-coordinate end of the wire. Direction::DEC: wire_driver is positioned at the high-coordinate end of the wire. Direction::BIDIR: wire has multiple drivers, so signals can travel either way along the wire Direction::NONE: node does not have a direction, such as IPIN/OPIN.

	
inline const std::string &node_direction_string(RRNodeId node) const

	Get the direction string of a routing resource node. This function is inlined for runtime optimization.

	
inline float node_C(RRNodeId node) const

	Get the capacitance of a routing resource node. This function is inlined for runtime optimization.

	
inline float node_R(RRNodeId node) const

	Get the resistance of a routing resource node. This function is inlined for runtime optimization.

	
inline int16_t node_rc_index(RRNodeId node) const

	Get the rc_index of a routing resource node. This function is inlined for runtime optimization.

	
inline t_edge_size node_fan_in(RRNodeId node) const

	Get the fan in of a routing resource node. This function is inlined for runtime optimization.

	
inline short node_xlow(RRNodeId node) const

	Get the minimum x-coordinate of a routing resource node. This function is inlined for runtime optimization.

	
inline short node_xhigh(RRNodeId node) const

	Get the maximum x-coordinate of a routing resource node. This function is inlined for runtime optimization.

	
inline short node_ylow(RRNodeId node) const

	Get the minimum y-coordinate of a routing resource node. This function is inlined for runtime optimization.

	
inline short node_yhigh(RRNodeId node) const

	Get the maximum y-coordinate of a routing resource node. This function is inlined for runtime optimization.

	
inline short node_layer(RRNodeId node) const

	Get the layer num of a routing resource node. This function is inlined for runtime optimization.

	
inline short node_ptc_twist(RRNodeId node) const

	Get the ptc number twist of a routing resource node. This function is inlined for runtime optimization.

	
inline RREdgeId node_first_edge(RRNodeId node) const

	Get the first out coming edge of resource node. This function is inlined for runtime optimization.

	
inline RREdgeId node_last_edge(RRNodeId node) const

	Get the last out coming edge of resource node. This function is inlined for runtime optimization.

	
inline int node_length(RRNodeId node) const

	Get the length (number of grid tile units spanned by the wire, including the endpoints) of a routing resource node. node_length() only applies to CHANX or CHANY and is always a positive number This function is inlined for runtime optimization.

	
inline bool node_is_initialized(RRNodeId node) const

	Check if routing resource node is initialized. This function is inlined for runtime optimization.

	
inline bool nodes_are_adjacent(RRNodeId chanx_node, RRNodeId chany_node) const

	Check if two routing resource nodes are adjacent (must be a CHANX and a CHANY). This function is used for error checking; it checks if two nodes are physically adjacent (could be connected) based on their geometry. It does not check the routing edges to see if they are, in fact, possible to connect in the current routing graph. This function is inlined for runtime optimization.

	
inline bool node_is_inside_bounding_box(RRNodeId node, vtr::Rect<int> bounding_box) const

	Check if node is within bounding box. To return true, the RRNode must be completely contained within the specified bounding box, with the edges of the bounding box being inclusive. This function is inlined for runtime optimization.

	
inline bool x_in_node_range(int x, RRNodeId node) const

	Check if x is within x-range spanned by the node, inclusive of its endpoints. This function is inlined for runtime optimization.

	
inline bool y_in_node_range(int y, RRNodeId node) const

	Check if y is within y-range spanned by the node, inclusive of its endpoints. This function is inlined for runtime optimization.

	
inline const std::string node_coordinate_to_string(RRNodeId node) const

	Get string of information about routing resource node. The string will contain the following information. type, side, x_low, x_high, y_low, y_high, length, direction, segment_name, layer num This function is inlined for runtime optimization.

	
inline bool is_node_on_specific_side(RRNodeId node, e_side side) const

	Check whether a routing node is on a specific side. This function is inlined for runtime optimization.

	
inline const char *node_side_string(RRNodeId node) const

	Get the side string of a routing resource node. This function is inlined for runtime optimization.

	
inline short edge_switch(RRNodeId id, t_edge_size iedge) const

	Get the switch id that represents the iedge’th outgoing edge from a specific node TODO: We may need to revisit this API and think about higher level APIs, like switch_delay()

	
inline RRNodeId edge_src_node(const RREdgeId edge_id) const

	Get the source node for the specified edge.

	
inline RRNodeId edge_sink_node(RRNodeId id, t_edge_size iedge) const

	Get the destination node for the iedge’th edge from specified RRNodeId. This method should generally not be used, and instead first_edge and last_edge should be used.

	
inline bool edge_is_configurable(RRNodeId id, t_edge_size iedge) const

	Detect if the edge is a configurable edge (controlled by a programmable routing multipler or a tri-state switch).

	
inline t_edge_size num_configurable_edges(RRNodeId node) const

	Get the number of configurable edges. This function is inlined for runtime optimization.

	
inline t_edge_size num_non_configurable_edges(RRNodeId node) const

	Get the number of non-configurable edges. This function is inlined for runtime optimization.

	
inline edge_idx_range configurable_edges(RRNodeId node) const

	A configurable edge represents a programmable switch between routing resources, which could be a multiplexer a tri-state buffer a pass gate This API gets ID range for configurable edges. This function is inlined for runtime optimization.

	
inline edge_idx_range non_configurable_edges(RRNodeId node) const

	A non-configurable edge represents a hard-wired connection between routing resources, which could be a non-configurable buffer that can not be turned off a short metal connection that can not be turned off This API gets ID range for non-configurable edges. This function is inlined for runtime optimization.

	
inline edge_idx_range edges(const RRNodeId &id) const

	Get outgoing edges for a node. This API is designed to enable range-based loop to walk through the outgoing edges of a node Example: RRGraphView rr_graph; // A dummny rr_graph for a short example RRNodeId node; // A dummy node for a short example for (RREdgeId edge : rr_graph.edges(node)) { // Do something with the edge }.

	
inline t_edge_size num_edges(RRNodeId node) const

	Get the number of edges. This function is inlined for runtime optimization.

	
inline int node_ptc_num(RRNodeId node) const

	The ptc_num carries different meanings for different node types (true in VPR RRG that is currently supported, may not be true in customized RRG) CHANX or CHANY: the track id in routing channels OPIN or IPIN: the index of pins in the logic block data structure SOURCE and SINK: the class id of a pin (indicating logic equivalence of pins) in the logic block data structure

Note

 This API is very powerful and developers should not use it unless it is necessary, e.g the node type is unknown. If the node type is known, the more specific routines, node_pin_num(), node_track_num()and node_class_num(), for different types of nodes should be used.

	
inline int node_pin_num(RRNodeId node) const

	Get the pin num of a routing resource node. This is designed for logic blocks, which are IPIN and OPIN nodes. This function is inlined for runtime optimization.

	
inline int node_track_num(RRNodeId node) const

	Get the track num of a routing resource node. This is designed for routing tracks, which are CHANX and CHANY nodes. This function is inlined for runtime optimization.

	
inline int node_class_num(RRNodeId node) const

	Get the class num of a routing resource node. This is designed for routing source and sinks, which are SOURCE and SINK nodes. This function is inlined for runtime optimization.

	
inline RRIndexedDataId node_cost_index(RRNodeId node) const

	Get the cost index of a routing resource node. This function is inlined for runtime optimization.

	
inline const t_segment_inf &rr_segments(RRSegmentId seg_id) const

	Return detailed routing segment information with a given id*.

Note

The routing segments here may not be exactly same as those defined in architecture file. They have been adapted to fit the context of routing resource graphs.

	
inline size_t num_rr_segments() const

	Return the number of rr_segments in the routing resource graph.

	
inline const vtr::vector<RRSegmentId, t_segment_inf> &rr_segments() const

	Return a read-only list of rr_segments for queries from client functions

	
inline const t_rr_switch_inf &rr_switch_inf(RRSwitchId switch_id) const

	Return the switch information that is categorized in the rr_switch_inf with a given id rr_switch_inf is created to minimize memory footprint of RRGraph classs While the RRG could contain millions (even much larger) of edges, there are only a limited number of types of switches. Hence, we use a flyweight pattern to store switch-related information that differs only for types of switches (switch type, drive strength, R, C, etc.). Each edge stores the ids of the switch that implements it so this additional information can be easily looked up.

Note

All the switch-related information, such as R, C, should be placed in rr_switch_inf but NOT directly in the edge-related data of RRGraph. If you wish to create a new data structure to represent switches between routing resources, please follow the flyweight pattern by linking your switch ids to edges only!

	
inline size_t num_rr_switches() const

	Return the number of rr_segments in the routing resource graph.

	
inline const vtr::vector<RRSwitchId, t_rr_switch_inf> &rr_switch() const

	Return the rr_switch_inf_ structure for queries from client functions.

	
inline const RRSpatialLookup &node_lookup() const

	Return the fast look-up data structure for queries from client functions.

	
inline const t_rr_graph_storage &rr_nodes() const

	Return the node-level storage structure for queries from client functions.

	
inline MetadataStorage<int> rr_node_metadata_data() const

	.. warning:: The Metadata should stay as an independent data structure than rest of the internal data, e.g., node_lookup!

	
inline bool validate_node(RRNodeId node_id) const

	brief Validate that edge data is partitioned correctly

Note

This function is used to validate the correctness of the routing resource graph in terms of graph attributes. Strongly recommend to call it when you finish the building a routing resource graph. If you need more advance checks, which are related to architecture features, you should consider to use the check_rr_graph() function or build your own check_rr_graph() function.

RRGraphBuilder

The builder does not own the storage but it serves a virtual protocol for
	node_storage: store the node list

	node_lookup: store a fast look-up for the nodes

Note

	This is the only data structure allowed to modify a routing resource graph

	
class RRGraphBuilder

	
Public Functions

	
t_rr_graph_storage &rr_nodes()

	Return a writable object for rr_nodes.

	
RRSpatialLookup &node_lookup()

	Return a writable object for update the fast look-up of rr_node.

	
MetadataStorage<int> &rr_node_metadata()

	Return a writable object for the meta data on the nodes.

.. warning:: The Metadata should stay as an independent data structure than rest of the internal data, e.g., node_lookup!

	
MetadataStorage<std::tuple<int, int, short>> &rr_edge_metadata()

	Return a writable object for the meta data on the edge.

	
inline size_t rr_node_metadata_size() const

	Return the size for rr_node_metadata.

	
inline size_t rr_edge_metadata_size() const

	Return the size for rr_edge_metadata.

	
inline vtr::flat_map<int, t_metadata_dict>::const_iterator find_rr_node_metadata(const int &lookup_key) const

	Find the node in rr_node_metadata.

	
inline vtr::flat_map<std::tuple<int, int, short int>, t_metadata_dict>::const_iterator find_rr_edge_metadata(const std::tuple<int, int, short int> &lookup_key) const

	Find the edge in rr_edge_metadata.

	
inline vtr::flat_map<int, t_metadata_dict>::const_iterator end_rr_node_metadata() const

	Return the last node in rr_node_metadata.

	
inline vtr::flat_map<std::tuple<int, int, short int>, t_metadata_dict>::const_iterator end_rr_edge_metadata() const

	Return the last edge in rr_edge_metadata.

	
inline RRSegmentId add_rr_segment(const t_segment_inf &segment_info)

	Add a rr_segment to the routing resource graph. Return an valid id if successful.

	Each rr_segment contains the detailed information of a routing track, which is denoted by a node in CHANX or CHANY type.

It is frequently used by client functions in timing and routability prediction.

	
inline vtr::vector<RRSegmentId, t_segment_inf> &rr_segments()

	Return a writable list of all the rr_segments .. warning:: It is not recommended to use this API unless you have to. The API may be deprecated later, and future APIs will designed to return a specific data from the rr_segments.

TODO

	
inline RRSwitchId add_rr_switch(const t_rr_switch_inf &switch_info)

	Add a rr_switch to the routing resource graph. Return an valid id if successful.

	Each rr_switch contains the detailed information of a routing switch interconnecting two routing resource nodes.

It is frequently used by client functions in timing prediction.

	
inline vtr::vector<RRSwitchId, t_rr_switch_inf> &rr_switch()

	Return a writable list of all the rr_switches .. warning:: It is not recommended to use this API unless you have to. The API may be deprecated later, and future APIs will designed to return a specific data from the rr_switches.

TODO

	
inline void set_node_type(RRNodeId id, t_rr_type type)

	Set the type of a node with a given valid id.

	
void add_node_to_all_locs(RRNodeId node)

	Add an existing rr_node in the node storage to the node look-up.

The node will be added to the lookup for every side it is on (for OPINs and IPINs) and for every (x,y) location at which it exists (for wires that span more than one (x,y)).

This function requires a valid node which has already been allocated in the node storage, with
	a valid node id

	valid geometry information: xlow/ylow/xhigh/yhigh

	a valid node type

	a valid node ptc number

	a valid side (applicable to OPIN and IPIN nodes only

	
void clear()

	Clear all the underlying data storage.

	
void reorder_nodes(e_rr_node_reorder_algorithm reorder_rr_graph_nodes_algorithm, int reorder_rr_graph_nodes_threshold, int reorder_rr_graph_nodes_seed)

	reorder all the nodes Reordering the rr-graph nodes may be helpful in

	Increasing cache locality during routing

	Improving compile time Reorder RRNodeId’s using one of these algorithms:

	DEGREE_BFS: Order by degree primarily, and BFS traversal order secondarily.

	RANDOM_SHUFFLE: Shuffle using the specified seed. Great for testing. The DEGREE_BFS algorithm was selected because it had the best performance of seven existing algorithms here: https://github.com/SymbiFlow/vtr-rrgraph-reordering-tool It might be worth further research, as the DEGREE_BFS algorithm is simple and makes some arbitrary choices, such as the starting node. The re-ordering algorithm (DEGREE_BFS) does not speed up the router on most architectures vs. using the node ordering created by the rr-graph builder in VPR, so it is off by default. The other use of this algorithm is for some unit tests; by changing the order of the nodes in the rr-graph before routing we check that no code depends on the rr-graph node order Nonetheless, it does improve performance ~7% for the SymbiFlow Xilinx Artix 7 graph.

NOTE: Re-ordering will invalidate any references to rr_graph nodes, so this should generally be called before creating such references.

	
inline void set_node_capacity(RRNodeId id, short new_capacity)

	Set capacity of this node (number of routes that can use it).

	
inline void set_node_coordinates(RRNodeId id, short x1, short y1, short x2, short y2)

	Set the node coordinate.

	
inline void set_node_layer(RRNodeId id, short layer)

	Set the node layer (specifies which die the node is located at)

	
inline void set_node_ptc_num(RRNodeId id, int new_ptc_num)

	The ptc_num carries different meanings for different node types (true in VPR RRG that is currently supported, may not be true in customized RRG) CHANX or CHANY: the track id in routing channels OPIN or IPIN: the index of pins in the logic block data structure SOURCE and SINK: the class id of a pin (indicating logic equivalence of pins) in the logic block data structure.

Note

This API is very powerful and developers should not use it unless it is necessary, e.g the node type is unknown. If the node type is known, the more specific routines, set_node_pin_num(), set_node_track_num()and set_node_class_num(), for different types of nodes should be used.

	
inline void set_node_layer(RRNodeId id, int layer)

	set the layer number at which RRNodeId is located at

	
inline void set_node_ptc_twist_incr(RRNodeId id, int twist)

	set the ptc twist increment number for TILEABLE rr graphs (for more information see rr_graph_storage.h twist increment comment)

	
inline void set_node_pin_num(RRNodeId id, int new_pin_num)

	set_node_pin_num() is designed for logic blocks, which are IPIN and OPIN nodes

	
inline void set_node_track_num(RRNodeId id, int new_track_num)

	set_node_track_num() is designed for routing tracks, which are CHANX and CHANY nodes

	
inline void set_node_class_num(RRNodeId id, int new_class_num)

	set_ node_class_num() is designed for routing source and sinks, which are SOURCE and SINK nodes

	
inline void set_node_direction(RRNodeId id, Direction new_direction)

	Set the node direction; The node direction is only available of routing channel nodes, such as x-direction routing tracks (CHANX) and y-direction routing tracks (CHANY). For other nodes types, this value is not meaningful and should be set to NONE.

	
inline void reserve_edges(size_t num_edges)

	Reserve the lists of edges to be memory efficient. This function is mainly used to reserve memory space inside RRGraph, when adding a large number of edges in order to avoid memory fragements.

	
inline void emplace_back_edge(RRNodeId src, RRNodeId dest, short edge_switch, bool remapped)

	emplace_back_edge It adds one edge. This method is efficient if reserve_edges was called with the number of edges present in the graph.

	Parameters:

	remapped – If true, it means the switch id (edge_switch) corresponds to rr switch id. Thus, when the remapped function is called to remap the arch switch id to rr switch id, the edge switch id of this edge shouldn’t be changed. For example, when the intra-cluster graph is built and the rr-graph related to global resources are read from a file, this parameter is true since the intra-cluster switches are also listed in rr-graph file. So, we use that list to use the rr switch id instead of passing arch switch id for intra-cluster edges.

	
inline void emplace_back()

	Append 1 more RR node to the RR graph.

	
inline void alloc_and_load_edges(const t_rr_edge_info_set *rr_edges_to_create)

	alloc_and_load_edges; It adds a batch of edges.

	
inline void set_node_cost_index(RRNodeId id, RRIndexedDataId new_cost_index)

	set_node_cost_index gets the index of cost data in the list of cost_indexed_data data structure It contains the routing cost for different nodes in the RRGraph when used in evaluate different routing paths

	
inline void set_node_rc_index(RRNodeId id, NodeRCIndex new_rc_index)

	Set the rc_index of routing resource node.

	
inline void add_node_side(RRNodeId id, e_side new_side)

	Add the side where the node physically locates on a logic block. Mainly applicable to IPIN and OPIN nodes.

	
inline void remap_rr_node_switch_indices(const t_arch_switch_fanin &switch_fanin)

	It maps arch_switch_inf indicies to rr_switch_inf indicies.

	
inline void mark_edges_as_rr_switch_ids()

	Marks that edge switch values are rr switch indicies.

	
inline size_t count_rr_switches(const std::vector<t_arch_switch_inf> &arch_switch_inf, t_arch_switch_fanin &arch_switch_fanins)

	Counts the number of rr switches needed based on fan in to support mux size dependent switch delays.

	
inline void reserve_nodes(size_t size)

	Reserve the lists of nodes, edges, switches etc. to be memory efficient. This function is mainly used to reserve memory space inside RRGraph, when adding a large number of nodes/edge/switches/segments, in order to avoid memory fragements.

	
inline void resize_nodes(size_t size)

	This function resize node storage to accomidate size RR nodes.

	
inline void resize_ptc_twist_incr(size_t size)

	This function resize node ptc twist increment; Since it is only used for tileable rr-graph, we don’t put it in general resize function.

	
inline void resize_switches(size_t size)

	This function resize rr_switch to accomidate size RR Switch.

	
inline bool validate() const

	Validate that edge data is partitioned correctly.

Note

This function is used to validate the correctness of the routing resource graph in terms of graph attributes. Strongly recommend to call it when you finish the building a routing resource graph. If you need more advance checks, which are related to architecture features, you should consider to use the check_rr_graph() function or build your own check_rr_graph() function.

	
inline void partition_edges()

	Sorts edge data such that configurable edges appears before non-configurable edges.

	
inline void init_fan_in()

	Init per node fan-in data. Should only be called after all edges have been allocated.

Note

This is an expensive, O(N), operation so it should be called once you have a complete rr-graph and not called often.

	
inline void reset_rr_graph_flags()

	Disable the flags which would prevent adding adding extra-resources, when flat-routing is enabled, to the RR Graph.

Note

When flat-routing is enabled, intra-cluster resources are added to the RR Graph after global rosources are already added. This function disables the flags which would prevent adding extra-resources to the RR Graph

RRSpatialLookup

A data structure built to find the id of an routing resource node (rr_node) given information about its physical position and type. The data structure is mostly needed during building a routing resource graph

The data structure allows users to

	Update the look-up with new nodes

	Find the id of a node with given information, e.g., x, y, type etc.

	
class RRSpatialLookup

	
Public Functions

	
RRNodeId find_node(int layer, int x, int y, t_rr_type type, int ptc, e_side side = NUM_SIDES) const

	Returns the index of the specified routing resource node.

This routine also performs error checking to make sure the node in question exists.

Note

All ptcs start at 0 and are positive. Depending on what type of resource this is, ptc can be
	the class number of a common SINK/SOURCE node of grid, starting at 0 and go up to logical_class_inf size - 1 of SOURCEs + SINKs in a grid

	pin number of an input/output pin of a grid. They would normally start at 0 and go to the number of pins on a block at that (layer,x,y) location

	track number of a routing wire in a channel. They would normally go from 0 to channel_width - 1 at that (layer,x,y)

Note

An invalid id will be returned if the node does not exist

Note

For segments (CHANX and CHANY) of length > 1, the segment is given an rr_index based on the (layer,x,y) location at which it starts (i.e. lowest (layer,x,y) location at which this segment exists).

Note

The ‘side’ argument only applies to IPIN/OPIN types, and specifies which side of the grid tile the node should be located on. The value is ignored for non-IPIN/OPIN types

	Parameters:

	
	layer – specified which FPGA die the node is located at (e.g. multi-die(3D) FPGA)

	(x, y) – are the grid location within the FPGA

	rr_type – specifies the type of resource,

	ptc – gives a unique number of resources of that type (e.g. CHANX) at that (layer,x,y).

	
std::vector<RRNodeId> find_channel_nodes(int layer, int x, int y, t_rr_type type) const

	Returns the indices of the specified routing resource nodes, representing routing tracks in a channel.

Note

	Return an empty list if there are no routing channel at the given (layer,x,y) location

	The node list returned only contain valid ids For example, if the 2nd routing track does not exist in a routing channel at (layer,x,y) location, while the 3rd routing track does exist in a routing channel at (layer,x, y) location, the node list will not contain the node for the 2nd routing track, but the 2nd element in the list will be the node for the 3rd routing track

	Parameters:

	
	layer – specified which FPGA die the node is located at (e.g. multi-die(3D) FPGA)

	(x, y) – are the coordinate of the routing channel within the FPGA

	rr_type – specifies the type of routing channel, either x-direction or y-direction

	
std::vector<RRNodeId> find_nodes_at_all_sides(int layer, int x, int y, t_rr_type rr_type, int ptc) const

	Like find_node() but returns all matching nodes on all the sides.

This is particularly useful for getting all instances of a specific IPIN/OPIN at a specific grid tile (layer,x,y).

	
std::vector<RRNodeId> find_grid_nodes_at_all_sides(int layer, int x, int y, t_rr_type rr_type) const

	Returns all matching nodes on all the sides at a specific grid tile (layer,x,y) location.

As this is applicable to grid pins, the type of nodes are limited to SOURCE/SINK/IPIN/OPIN

	
void reserve_nodes(int layer, int x, int y, t_rr_type type, int num_nodes, e_side side = SIDES[0])

	Reserve the memory for a list of nodes at (layer, x, y) location with given type and side.

	
void add_node(RRNodeId node, int layer, int x, int y, t_rr_type type, int ptc, e_side side = SIDES[0])

	Register a node in the fast look-up.

Note

You must have a valid node id to register the node in the lookup

Note

a node added with this call will not create a node in the rr_graph_storage node list You MUST add the node in the rr_graph_storage so that the node is valid

	Parameters:

	
	layer – specified which FPGA die the node is located at (e.g. multi-die(3D) FPGA)

	(x, y) – are the coordinate of the node to be indexable in the fast look-up

	type – is the type of a node

	ptc – is a feature number of a node, which can be
	the class number of a common SINK/SOURCE node of grid,

	pin index in a tile when type is OPIN/IPIN

	track index in a routing channel when type is CHANX/CHANY

	side – is the side of node on the tile, applicable to OPIN/IPIN

	
void mirror_nodes(const int layer, const vtr::Point<int> &src_coord, const vtr::Point<int> &des_coord, t_rr_type type, e_side side)

	Mirror the last dimension of a look-up, i.e., a list of nodes, from a source coordinate to a destination coordinate.

This function is mostly need by SOURCE and SINK nodes which are indexable in multiple locations. Considering a bounding box (layer, x, y)->(layer, x + width, y + height) of a multi-height and multi-width grid, SOURCE and SINK nodes are indexable in any location inside the boundry.

An example of usage:

// Create a empty lookup
RRSpatialLookup rr_lookup;
// Adding other nodes ...
// Copy the nodes whose types are SOURCE at (1, 1) to (1, 2)
rr_lookup.mirror_nodes(vtr::Point<int>(1, 1),
 vtr::Point<int>(1, 2),
 SOURCE,
 TOP);

Note

currently this function only accepts SOURCE/SINK nodes. May unlock for the other types depending on needs

	
void resize_nodes(int layer, int x, int y, t_rr_type type, e_side side)

	Resize the given 4 dimensions (layer, x, y, side) of the RRSpatialLookup data structure for the given type.

This function will keep any existing data

Note

Strongly recommend to use when the sizes of dimensions are deterministic

	
void reorder(const vtr::vector<RRNodeId, RRNodeId> dest_order)

	Reorder the internal look up to be more memory efficient.

	
void clear()

	Clear all the data inside.

 VTRUTIL API

VTRUTIL API

	IDs - Ranges

	Containers

	Container Utils

	Logging - Errors - Assertions

	Geometry

	Other

 IDs - Ranges

IDs - Ranges

vtr_range

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

Functions

	
template<typename T>
constexpr auto make_range(T b, T e)

	Creates a vtr::Range from a pair of iterators.

Unlike using the vtr::Range() constructor (which requires specifying the template type T, using vtr::make_range() infers T from the arguments.

Example usage: auto my_range = vtr::make_range(my_vec.begin(), my_vec.end());

	
template<typename Container>
inline auto make_range(const Container &c)

	Creates a vtr::Range from a container.

	
template<typename T>
class Range

	
#include <vtr_range.h>

The vtr::Range template models a range defined by two iterators of type T.

It allows conveniently returning a range from a single function call without having to explicity expose the underlying container, or make two explicit calls to retrieve the associated begin and end iterators. It also enables the easy use of range-based-for loops.

For example: class My Data {
 public:
 typdef std::vector<int>::const_iterator my_iter;
 vtr::Range<my_iter> data();
 ...
 private:
 std::vector<int> data_;
 };

 ...

 MyDat my_data;

 //fill my_data

 for(int val : my_data.data()) {
 //work with values stored in my_data
 }

 The empty() and size() methods are convenience wrappers around the relevant iterator comparisons.

Note that size() is only constant time if T is a random-access iterator!

Public Functions

	
inline constexpr Range(T b, T e)

	constructor

	
inline constexpr T begin()

	Return an iterator to the start of the range.

	
inline constexpr T end()

	Return an iterator to the end of the range.

	
inline constexpr const T begin() const

	Return an iterator to the start of the range (immutable)

	
inline constexpr const T end() const

	Return an iterator to the end of the range (immutable)

	
inline constexpr bool empty()

	Return true if empty.

	
inline constexpr size_t size()

	Return the range size.

vtr_strong_id

This header provides the StrongId class.

It is template which can be used to create strong Id’s which avoid accidental type conversions (generating compiler errors when they occur).

Motivation

It is common to use an Id (typically an integer) to identify and represent a component. A basic example (poor style): size_t count_net_terminals(int net_id);

 Where a plain int is used to represent the net identifier. Using a plain basic type is poor style since it makes it unclear that the parameter is an Id.

A better example is to use a typedef: typedef int NetId;

 size_t count_net_teriminals(NetId net_id);

 It is now clear that the parameter is expecting an Id.

However this approach has some limitations. In particular, typedef’s only create type aliases, and still allow conversions. This is problematic if there are multiple types of Ids. For example: typedef int NetId;
 typedef int BlkId;

 size_t count_net_teriminals(NetId net_id);

 BlkId blk_id = 10;
 NetId net_id = 42;

 count_net_teriminals(net_id); //OK
 count_net_teriminals(blk_id); //Bug: passed a BlkId as a NetId

 Since typdefs are aliases the compiler issues no errors or warnings, and silently passes the BlkId where a NetId is expected. This results in hard to diagnose bugs.

We can avoid this issue by using a StrongId: struct net_id_tag; //Phantom tag for NetId
 struct blk_id_tag; //Phantom tag for BlkId

 typedef StrongId<net_id_tag> NetId;
 typedef StrongId<blk_id_tag> BlkId;

 size_t count_net_teriminals(NetId net_id);

 BlkId blk_id = 10;
 NetId net_id = 42;

 count_net_teriminals(net_id); //OK
 count_net_teriminals(blk_id); //Compiler Error: NetId expected!

 StrongId is a template which implements the basic features of an Id, but disallows silent conversions between different types of Ids. It uses another ‘tag’ type (passed as the first template parameter) to uniquely identify the type of the Id (preventing conversions between different types of Ids).

Usage

The StrongId template class takes one required and three optional template parameters:

	Tag - the unique type used to identify this type of Ids [Required]

	T - the underlying integral id type (default: int) [Optional]

	T sentinel - a value representing an invalid Id (default: -1) [Optional]

If no value is supllied during construction the StrongId is initialized to the invalid/sentinel value.

Example 1: default definition struct net_id_tag;
 typedef StrongId<net_id_tag> NetId; //Internally stores an integer Id, -1 represents invalid

 Example 2: definition with custom underlying type struct blk_id_tag;
 typedef StrongId<net_id_tag,size_t> BlkId; //Internally stores a size_t Id, -1 represents invalid

 Example 3: definition with custom underlying type and custom sentinel value struct pin_id_tag;
 typedef StrongId<net_id_tag,size_t,0> PinId; //Internally stores a size_t Id, 0 represents invalid

 Example 4: Creating Ids struct net_id_tag;
 typedef StrongId<net_id_tag> MyId; //Internally stores an integer Id, -1 represents invalid

 MyId my_id; //Defaults to the sentinel value (-1 by default)
 MyId my_other_id = 5; //Explicit construction
 MyId my_thrid_id(25); //Explicit construction

 Example 5: Comparing Ids struct net_id_tag;
 typedef StrongId<net_id_tag> MyId; //Internally stores an integer Id, -1 represents invalid

 MyId my_id; //Defaults to the sentinel value (-1 by default)
 MyId my_id_one = 1;
 MyId my_id_two = 2;
 MyId my_id_also_one = 1;

 my_id_one == my_id_also_one; //True
 my_id_one == my_id; //False
 my_id_one == my_id_two; //False
 my_id_one != my_id_two; //True

 Example 5: Checking for invalid Ids struct net_id_tag;
 typedef StrongId<net_id_tag> MyId; //Internally stores an integer Id, -1 represents invalid

 MyId my_id; //Defaults to the sentinel value
 MyId my_id_one = 1;

 //Comparison against a constructed invalid id
 my_id == MyId::INVALID(); //True
 my_id_one == MyId::INVALID(); //False
 my_id_one != MyId::INVALID(); //True

 //The Id can also be evaluated in a boolean context against the sentinel value
 if(my_id) //False, my_id is invalid
 if(!my_id) //True my_id is valid
 if(my_id_one) //True my_id_one is valid

 Example 6: Indexing data structures struct my_id_tag;
 typedef StrongId<net_id_tag> MyId; //Internally stores an integer Id, -1 represents invalid

 std::vector<int> my_vec = {0, 1, 2, 3, 4, 5};

 MyId my_id = 2;

 my_vec[size_t(my_id)]; //Access the third element via explicit conversion

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

	
namespace std

	Specialize std::hash for StrongId’s (needed for std::unordered_map-like containers)

	
template<typename tag, typename T = int, T sentinel = T(-1)>
class StrongId

	Class template definition with default template parameters.

Public Functions

	
inline constexpr StrongId()

	Default to the sentinel value.

	
inline explicit constexpr StrongId(T id)

	Only allow explicit constructions from a raw Id (no automatic conversions)

	
inline explicit constexpr operator bool() const

	Allow explicit conversion to bool (e.g. if(id))

	
inline constexpr bool is_valid() const

	Another name for the bool cast.

	
inline explicit constexpr operator std::size_t() const

	Allow explicit conversion to size_t (e.g. my_vector[size_t(strong_id)])

Public Static Functions

	
static inline constexpr StrongId INVALID() noexcept

	Gets the invalid Id.

Friends

	
friend constexpr friend bool operator== (const StrongId< tag, T, sentinel > &lhs, const StrongId< tag, T, sentinel > &rhs)

	To enable comparisons between Ids.

Note that since these are templated functions we provide an empty set of template parameters after the function name (i.e. <>)

	
friend constexpr friend bool operator!= (const StrongId< tag, T, sentinel > &lhs, const StrongId< tag, T, sentinel > &rhs)

	!= operator

	
friend constexpr friend bool operator< (const StrongId< tag, T, sentinel > &lhs, const StrongId< tag, T, sentinel > &rhs)

	< operator

	
friend std::ostream &operator<<(std::ostream &out, const StrongId<tag, T, sentinel> &rhs)

	to be able to print them out

vtr_strong_id_range

This header defines a utility class for StrongId’s.

StrongId’s are described in vtr_strong_id.h. In some cases, StrongId’s be considered like random access iterators, but not all StrongId’s have this property. In addition, there is utility in refering to a range of id’s, and being able to iterator over that range.

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

Functions

	
template<typename IdType>
inline StrongIdIterator<IdType> operator+(const StrongIdIterator<IdType> &lhs, ssize_t n)

	
	operator

	
template<typename IdType>
inline StrongIdIterator<IdType> operator-(const StrongIdIterator<IdType> &lhs, ssize_t n)

	
	operator

	
template<typename StrongId>
class StrongIdIterator

	
#include <vtr_strong_id_range.h>

StrongIdIterator class.

StrongIdIterator allows a StrongId to be treated like a random access iterator. Whether this is a correct use of the abstraction is up to the called.

Public Functions

	
StrongIdIterator() = default

	constructor

	
StrongIdIterator &operator=(const StrongIdIterator &other) = default

	copy constructor

	
StrongIdIterator(const StrongIdIterator &other) = default

	copy constructor

	
inline explicit StrongIdIterator(StrongId id)

	constructor

	
inline StrongId &operator*()

	Dereference operator (*)

	
inline StrongIdIterator &operator+=(ssize_t n)

	+= operator

	
inline StrongIdIterator &operator-=(ssize_t n)

	-= operator

	
inline StrongIdIterator &operator++()

	++ operator

	
inline StrongIdIterator &operator--()

	Decremment operator.

	
inline StrongId operator[](ssize_t offset) const

	Indexing operator [].

	
template<typename IdType>
inline ssize_t operator-(const StrongIdIterator<IdType> &other) const

	~ operator

	
template<typename IdType>
inline bool operator==(const StrongIdIterator<IdType> &other) const

	== operator

	
template<typename IdType>
inline bool operator!=(const StrongIdIterator<IdType> &other) const

	!= operator

	
template<typename IdType>
inline bool operator<(const StrongIdIterator<IdType> &other) const

	< operator

	
template<typename StrongId>
class StrongIdRange

	
#include <vtr_strong_id_range.h>

StrongIdRange class.

StrongIdRange allows a pair of StrongId’s to defines a continguous range of ids. The “end” StrongId is excluded from this range.

Public Functions

	
inline StrongIdRange(StrongId b, StrongId e)

	constructor

	
inline StrongIdIterator<StrongId> begin() const

	Returns a StrongIdIterator to the first strongId in the range.

	
inline StrongIdIterator<StrongId> end() const

	Returns a StrongIdIterator referring to the past-the-end element in the vector container.

	
inline bool empty()

	Returns true if the range is empty.

	
inline size_t size()

	Reurns the size of the range.

 Containers

Containers

vtr_vector

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

	
template<typename K, typename V, typename Allocator = std::allocator<V>>
class vector : private std::vector<V, std::allocator<V>>

	
#include <vtr_vector.h>

A std::vector container which is indexed by K (instead of size_t).

The main use of this container is to behave like a std::vector which is indexed by a vtr::StrongId. It assumes that K is explicitly convertable to size_t (i.e. via operator size_t()), and can be explicitly constructed from a size_t.

It includes all the following std::vector functions:
	begin

	cbegin

	cend

	crbegin

	crend

	end

	rbegin

	rend

	capacity

	empty

	max_size

	reserve

	resize

	shrink_to_fit

	size

	back

	front

	assign

	clear

	emplace

	emplace_back

	erase

	get_allocator

	insert

	pop_back

	push_back

If you need more std::map-like (instead of std::vector-like) behaviour see vtr::vector_map.

	
class key_iterator : public std::iterator<std::bidirectional_iterator_tag, key_type>

	
#include <vtr_vector.h>

Iterator class which is convertable to the key_type.

This allows end-users to call the parent class’s keys() member to iterate through the keys with a range-based for loop

Public Functions

	
inline key_iterator(key_iterator::value_type init)

	constructor

	
inline key_iterator operator++()

	++ operator

	
inline key_iterator operator--()

	decrement operator

	
inline reference operator*()

	dereference oeprator

	
inline pointer operator->()

	-> operator

Public Functions

	
inline V *data()

	Returns a pointer to the vector’s data.

	
inline const V *data() const

	Returns a pointer to the vector’s data (immutable)

	
inline reference operator[](const key_type id)

	[] operator

	
inline const_reference operator[](const key_type id) const

	[] operator immutable

	
inline reference at(const key_type id)

	at() operator

	
inline const_reference at(const key_type id) const

	at() operator immutable

	
inline void swap(vector<K, V, Allocator> &other)

	swap function

	
inline key_range keys() const

	Returns a range containing the keys.

vtr_small_vector

	
template<class T, class S = uint32_t>
class small_vector

	vtr::small_vector is a std::vector like container which:

	consumes less memory: sizeof(vtr::small_vector) < sizeof(std::vector)

	possibly stores elements in-place (i.e. within the object)

On a typical LP64 system a vtr::small_vector consumes 16 bytes by default and supports vectors up to ~2^32 elements long, while a std::vector consumes 24 bytes and supports up to ~2^64 elements. The type used to store the size and capacity is configurable, and set by the second template parameter argument. Setting it to size_t will replicate std::vector’s characteristics.

For short vectors vtr::small_vector will try to store elements in-place (i.e. within the vtr::small_vector object) instead of dynamically allocating an array (by re-using the internal storage for the pointer, size and capacity). Whether this is possible depends on the size and alignment requirements of the value type, as compared to vtr::small_vector. If in-place storage is not possible (e.g. due to a large value type, or a large number of elements) a dynamic buffer is allocated (similar to std::vector).

This is a highly specialized container. Unless you have specifically measured it’s usefulness you should use std::vector.

Public Functions

	
inline small_vector()

	constructor

	
inline small_vector(size_type nelem)

	constructor

	
inline const_iterator begin() const

	Return a const_iterator to the first element.

	
inline const_iterator end() const

	Return a const_iterator pointing to the past-the-end element in the container.

	
inline const_reverse_iterator rbegin() const

	Return a const_reverse_iterator pointing to the last element in the container (i.e., its reverse beginning).

	
inline const_reverse_iterator rend() const

	Return a const_reverse_iterator pointing to the theoretical element preceding the first element in the container (which is considered its reverse end).

	
inline const_iterator cbegin() const

	Return a const_iterator pointing to the first element in the container.

	
inline const_iterator cend() const

	a const_iterator pointing to the past-the-end element in the container.

	
inline const_reverse_iterator crbegin() const

	Return a const_reverse_iterator pointing to the last element in the container (i.e., its reverse beginning).

	
inline const_reverse_iterator crend() const

	Return a const_reverse_iterator pointing to the theoretical element preceding the first element in the container (which is considered its reverse end).

	
inline size_type size() const

	return the vector size (Padding ensures long/short format sizes are always aligned)

	
inline size_t max_size() const

	Return the maximum size.

	
inline size_type capacity() const

	Return the vector capacity.

	
inline bool empty() const

	Return true if empty.

	
inline const_reference operator[](size_t i) const

	Immutable indexing operator [].

	
inline const_reference at(size_t i) const

	Immutable at() operator.

	
inline const_reference front() const

	Return a constant reference to the first element.

	
inline const_reference back() const

	Return a constant reference to the last element.

	
inline const_pointer data() const

	Return a constant pointer to the vector data.

	
inline iterator begin()

	Return an iterator pointing to the first element in the sequence.

	
inline iterator end()

	Return an iterator referring to the past-the-end element in the vector container.

	
inline reverse_iterator rbegin()

	Return a reverse iterator pointing to the last element in the vector (i.e., its reverse beginning).

	
inline reverse_iterator rend()

	Return a reverse iterator pointing to the theoretical element preceding the first element in the vector (which is considered its reverse end).

	
inline void resize(size_type n)

	Resizes the container so that it contains n elements.

	
inline void resize(size_type n, value_type val)

	Resizes the container so that it contains n elements and fills it with val.

	
inline void reserve(size_type num_elems)

	Reserve memory for a spicific number of elemnts.

Don’t change capacity unless requested number of elements is both:
	More than the short capacity (no need to reserve up to short capacity)

	Greater than the current size (capacity can never be below size)

	
inline void shrink_to_fit()

	Requests the container to reduce its capacity to fit its size.

	
inline reference operator[](size_t i)

	Indexing operator [].

	
inline reference at(size_t i)

	at() operator

	
inline reference front()

	Returns a reference to the first element in the vector.

	
inline reference back()

	Returns a reference to the last element in the vector.

	
template<class InputIterator>
inline void assign(InputIterator first, InputIterator last)

	Assigns new contents to the vector, replacing its current contents, and modifying its size accordingly.

Input iterators to the initial and final positions in a sequence. The range used is [first,last), which includes all the elements between first and last, including the element pointed by first but not the element pointed by last.

	
inline void assign(size_type n, const value_type &val)

	Assigns new contents to the vector, replacing its current contents, and modifying its size accordingly.

Resize the vector to n and fill it with val

	
inline void assign(std::initializer_list<value_type> il)

	Assigns new contents to the vector, replacing its current contents, and modifying its size accordingly.

The compiler will automatically construct such objects from initializer list declarators (il)

	
inline void push_back(value_type value)

	Construct default value_type at new location.

	
inline void pop_back()

	Removes the last element in the vector, effectively reducing the container size by one.

	
inline iterator insert(const_iterator position, const value_type &val)

	The vector is extended by inserting new elements before the element at the specified position, effectively increasing the container size by the number of elements inserted.

	
inline iterator insert(const_iterator position, size_type n, const value_type &val)

	Insert a new value.

Location of position as an index, which will be unchanged if the underlying storage is reallocated

	
inline iterator insert(const_iterator position, size_type n, value_type &&val)

	Insert n elements at position position and fill them with value val.

	
inline iterator erase(const_iterator position)

	Removes from the vector a single element (position).

	
inline iterator erase(const_iterator first, const_iterator last)

	Removes from the vector either a range of elements ([first,last)).

	
inline void swap(small_vector<T, S> &other)

	Exchanges the content of the container by the content of x, which is another vector object of the same type. Sizes may differ.

	
inline void clear()

	Removes all elements from the vector (which are destroyed), leaving the container with a size of 0.

	
template<typename ...Args>
inline void emplace_back(Args&&... args)

	Inserts a new element at the end of the vector, right after its current last element. This new element is constructed in place using args as the arguments for its constructor.

	
inline ~small_vector()

	destructor

	
inline small_vector(const small_vector &other)

	copy constructor

	
inline small_vector(small_vector &&other)

	copy and swap constructor

Friends

	
inline friend void swap(small_vector<T, S> &lhs, small_vector<T, S> &rhs)

	swaps two vectors

	
inline friend bool operator==(const small_vector<T, S> &lhs, const small_vector<T, S> &rhs)

	== p[erator

	
inline friend bool operator<(const small_vector<T, S> &lhs, const small_vector<T, S> &rhs)

	< operator

	
inline friend bool operator!=(const small_vector<T, S> &lhs, const small_vector<T, S> &rhs)

	!= operator

	
inline friend bool operator>(const small_vector<T, S> &lhs, const small_vector<T, S> &rhs)

	> operator

	
inline friend bool operator<=(const small_vector<T, S> &lhs, const small_vector<T, S> &rhs)

	<= operator

	
inline friend bool operator>=(const small_vector<T, S> &lhs, const small_vector<T, S> &rhs)

	>= operator

vtr_vector_map

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

	
template<typename K, typename V, typename Sentinel = DefaultSentinel<V>>
class vector_map

	
#include <vtr_vector_map.h>

A vector-like container which is indexed by K (instead of size_t as in std::vector).

The main use of this container is to behave like a std::vector which is indexed by vtr::StrongId.

Requires that K be convertable to size_t with the size_t operator (i.e. size_t()), and that the conversion results in a linearly increasing index into the underlying vector.

This results in a container that is somewhat similar to a std::map (i.e. converts from one type to another), but requires contiguously ascending (i.e. linear) keys. Unlike std::map only the values are stored (at the specified index/key), reducing memory usage and improving cache locality. Furthermore, operator[] and find() return the value or iterator directly associated with the value (like std::vector) rather than a std::pair (like std::map). insert() takes both the key and value as separate arguments and has no return value.

Additionally, vector_map will silently create values for ‘gaps’ in the index range (i.e. those elements are initialized with Sentinel::INVALID()).

If you need a fully featured std::map like container without the above differences see vtr::linear_map.

If you do not need std::map-like features see vtr::vector. Note that vtr::vector_map is very similar to vtr::vector. Unless there is a specific reason that vtr::vector_map is needed, it is better to use vtr::vector.

Note that it is possible to use vector_map with sparse/non-contiguous keys, but this is typically memory inefficient as the underlying vector will allocate space for [0..size_t(max_key)-1], where max_key is the largest key that has been inserted.

As with a std::vector, it is the caller’s responsibility to ensure there is sufficient space when a given index/key before it is accessed. The exception to this are the find(), insert() and update() methods which handle non-existing keys gracefully.

Public Functions

	
template<typename ...Args>
inline vector_map(Args&&... args)

	Constructor.

	
inline const_iterator begin() const

	Returns an iterator referring to the first element in the map container.

	
inline const_iterator end() const

	Returns an iterator referring to the past-the-end element in the map container.

	
inline const_reverse_iterator rbegin() const

	@begin Returns a reverse iterator pointing to the last element in the container (i.e., its reverse beginning).

	
inline const_reverse_iterator rend() const

	Returns a reverse iterator pointing to the theoretical element right before the first element in the map container (which is considered its reverse end).

	
inline const_reference operator[](const K n) const

	[] operator immutable

	
inline const_iterator find(const K key) const

	Searches the container for an element with a key equivalent to k and returns an iterator to it if found, otherwise it returns an iterator to vector_map::end.

	
inline std::size_t size() const

	Returns the number of elements in the container.

	
inline bool empty() const

	Returns true if the container is empty.

	
inline bool contains(const K key) const

	Returns true if the container contains key.

	
inline size_t count(const K key) const

	Returns 1 if the container contains key, 0 otherwise.

	
template<typename ...Args>
inline void push_back(Args&&... args)

	push_back function

	
template<typename ...Args>
inline void emplace_back(Args&&... args)

	emplace_back function

	
template<typename ...Args>
inline void resize(Args&&... args)

	resize function

	
inline void clear()

	clears the container

	
inline size_t capacity() const

	Returns the capacity of the container.

	
inline void shrink_to_fit()

	Requests the container to reduce its capacity to fit its size.

	
inline iterator begin()

	Returns an iterator referring to the first element in the map container.

	
inline iterator end()

	Returns an iterator referring to the past-the-end element in the map container.

	
inline reference operator[](const K n)

	Indexing.

	
inline iterator find(const K key)

	Returns an iterator to the first element in the container that compares equal to val. If no such element is found, the function returns end().

	
inline void insert(const K key, const V value)

	Extends the container by inserting new elements, effectively increasing the container size by the number of elements inserted.

	
inline void update(const K key, const V value)

	Inserts the new key value pair in the container.

vtr_linear_map

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

	
template<class K, class T, class Sentinel = DefaultSentinel<K>>
class linear_map

	
#include <vtr_linear_map.h>

A std::map-like container which is indexed by K.

The main use of this container is to behave like a std::map which is optimized to hold mappings between a dense linear range of keys (e.g. vtr::StrongId).

Requires that K be convertable to size_t with the size_t operator (i.e. size_t()), and that the conversion results in a linearly increasing index into the underlying vector. Also requires that K() return the sentinel value used to mark invalid entries.

If you only need to access the value associated with the key consider using vtr::vector_map instead, which provides a similar but more std::vector-like interface.

Note that it is possible to use linear_map with sparse/non-contiguous keys, but this is typically memory inefficient as the underlying vector will allocate space for [0..size_t(max_key)-1], where max_key is the largest key that has been inserted.

As with a std::vector, it is the caller’s responsibility to ensure there is sufficient space when a given index/key before it is accessed. The exception to this are the find() and insert() methods which handle non-existing keys gracefully.

Public Functions

	
linear_map() = default

	Standard big 5 constructors.

	
linear_map(const linear_map&) = default

	

	
linear_map(linear_map&&) = default

	

	
linear_map &operator=(const linear_map&) = default

	

	
linear_map &operator=(linear_map&&) = default

	

	
inline linear_map(size_t num_keys)

	

	
inline iterator begin()

	Return an iterator to the first element.

	
inline const_iterator begin() const

	Return a constant iterator to the first element.

	
inline iterator end()

	Return an iterator to the last element.

	
inline const_iterator end() const

	Return a constant iterator to the last element.

	
inline reverse_iterator rbegin()

	Return a reverse iterator to the last element.

	
inline const_reverse_iterator rbegin() const

	Return a constant reverse iterator to the last element.

	
inline reverse_iterator rend()

	Return a reverse iterator pointing to the theoretical element preceding the first element.

	
inline const_reverse_iterator rend() const

	Return a constant reverse iterator pointing to the theoretical element preceding the first element.

	
inline const_iterator cbegin() const

	Return a const iterator to the first element.

	
inline const_iterator cend() const

	Return a const_iterator pointing to the past-the-end element in the container.

	
inline const_reverse_iterator crbegin() const

	Return a const_reverse_iterator pointing to the last element in the container (i.e., its reverse beginning).

	
inline const_reverse_iterator crend() const

	Return a const_reverse_iterator pointing to the theoretical element preceding the first element in the container (which is considered its reverse end).

	
inline bool empty() const

	Return true if the container is empty.

	
inline size_type size() const

	Return the size of the container.

	
inline size_type max_size() const

	Return the maximum size of the container.

	
inline mapped_type &operator[](const key_type &key)

	[] operator

	
inline mapped_type &at(const key_type &key)

	at() operator

	
inline const mapped_type &at(const key_type &key) const

	constant at() operator

	
inline std::pair<iterator, bool> insert(const value_type &value)

	Insert value.

	
template<class InputIterator>
inline void insert(InputIterator first, InputIterator last)

	Insert range.

	
inline void erase(const key_type &key)

	Erase by key.

	
inline void erase(const_iterator position)

	Erase at iterator.

	
inline void erase(const_iterator first, const_iterator last)

	Erase range.

	
inline void swap(linear_map &other)

	Swap two linear maps.

	
inline void clear()

	Clear the container.

	
template<class ...Args>
inline std::pair<iterator, bool> emplace(const key_type &key, Args&&... args)

	Emplace.

	
inline void reserve(size_type n)

	Requests that the underlying vector capacity be at least enough to contain n elements.

	
inline void shrink_to_fit()

	Reduces the capacity of the container to fit its size and destroys all elements beyond the capacity.

	
inline iterator find(const key_type &key)

	Returns an iterator to the first element in the range [first,last) that compares equal to val. If no such element is found, the function returns last.

	
inline const_iterator find(const key_type &key) const

	Returns a constant iterator to the first element in the range [first,last) that compares equal to val. If no such element is found, the function returns last.

	
inline size_type count(const key_type &key) const

	Returns the number of elements in the range [first,last) that compare equal to val.

	
inline iterator lower_bound(const key_type &key)

	Returns an iterator pointing to the first element in the range [first,last) which does not compare less than val.

	
inline const_iterator lower_bound(const key_type &key) const

	Returns a constant iterator pointing to the first element in the range [first,last) which does not compare less than val.

	
inline iterator upper_bound(const key_type &key)

	Returns an iterator pointing to the first element in the range [first,last) which compares greater than val.

	
inline const_iterator upper_bound(const key_type &key) const

	Returns a constant iterator pointing to the first element in the range [first,last) which compares greater than val.

	
inline std::pair<iterator, iterator> equal_range(const key_type &key)

	Returns the bounds of the subrange that includes all the elements of the range [first,last) with values equivalent to val.

	
inline std::pair<const_iterator, const_iterator> equal_range(const key_type &key) const

	Returns constant bounds of the subrange that includes all the elements of the range [first,last) with values equivalent to val.

	
inline size_type valid_size() const

	Return the size of valid elements.

vtr_flat_map

	
template<class K, class T, class Compare, class Storage>
class flat_map

	flat_map is a (nearly) std::map compatible container

It uses a vector as it’s underlying storage. Internally the stored elements are kept sorted allowing efficient look-up in O(logN) time via binary search.

This container is typically useful in the following scenarios:
	Reduced memory usage if key/value are small (std::map needs to store pointers to other BST nodes which can add substantial overhead for small keys/values)

	Faster search/iteration by exploiting data locality (all elments are in continguous memory enabling better spatial locality)

The container deviates from the behaviour of std::map in the following important ways:
	Insertion/erase takes O(N) instead of O(logN) time

	Iterators may be invalidated on insertion/erase (i.e. if the vector is reallocated)

The slow insertion/erase performance makes this container poorly suited to maps that frequently add/remove new keys. If this is required you likely want std::map or std::unordered_map. However if the map is constructed once and then repeatedly quieried, consider using the range or vector-based constructors which initializes the flat_map in O(NlogN) time.

Subclassed by vtr::flat_map2< K, T, Compare, Storage >

Public Functions

	
flat_map() = default

	Standard constructors.

	
template<class InputIterator>
inline flat_map(InputIterator first, InputIterator last)

	range constructor

	
inline explicit flat_map(Storage &&values)

	direct vector constructor

	
inline void assign(Storage &&values)

	Move the values.

Should be more efficient than the range constructor which must copy each element

	
inline void assign_sorted(Storage &&values)

	By moving the values this should be more efficient than the range constructor which must copy each element.

	
inline iterator begin()

	Return an iterator pointing to the first element in the sequence:

	
inline const_iterator begin() const

	Return a constant iterator pointing to the first element in the sequence:

	
inline iterator end()

	Returns an iterator referring to the past-the-end element in the vector container.

	
inline const_iterator end() const

	Returns a constant iterator referring to the past-the-end element in the vector container.

	
inline reverse_iterator rbegin()

	Returns a reverse iterator which points to the last element of the map.

	
inline const_reverse_iterator rbegin() const

	Returns a constant reverse iterator which points to the last element of the map.

	
inline reverse_iterator rend()

	Returns a reverse iterator pointing to the theoretical element preceding the first element in the vector (which is considered its reverse end).

	
inline const_reverse_iterator rend() const

	Returns a constant reverse iterator pointing to the theoretical element preceding the first element in the vector (which is considered its reverse end).

	
inline const_iterator cbegin() const

	Returns a constant_iterator to the first element in the underlying vector.

	
inline const_iterator cend() const

	Returns a const_iterator pointing to the past-the-end element in the container.

	
inline const_reverse_iterator crbegin() const

	Returns a const_reverse_iterator pointing to the last element in the container (i.e., its reverse beginning).

	
inline const_reverse_iterator crend() const

	Returns a const_reverse_iterator pointing to the theoretical element preceding the first element in the container (which is considered its reverse end).

	
inline bool empty() const

	Return true if the underlying vector is empty.

	
inline size_type size() const

	Return the container size.

	
inline size_type max_size() const

	Return the underlying vector’s max size.

	
inline const mapped_type &operator[](const key_type &key) const

	The constant version of operator [].

	
inline mapped_type &operator[](const key_type &key)

	operator []

	
inline mapped_type &at(const key_type &key)

	operator at()

	
inline const mapped_type &at(const key_type &key) const

	The constant version of at() operator.

	
inline std::pair<iterator, bool> insert(const value_type &value)

	Insert value.

	
inline std::pair<iterator, bool> emplace(const value_type &&value)

	Emplace function.

	
inline iterator insert(const_iterator position, const value_type &value)

	Insert value with position hint.

	
inline iterator emplace(const_iterator position, const value_type &value)

	Emplace value with position hint.

	
template<class InputIterator>
inline void insert(InputIterator first, InputIterator last)

	Insert range.

	
inline void erase(const key_type &key)

	Erase by key.

	
inline void erase(const_iterator position)

	Erase at iterator.

	
inline void erase(const_iterator first, const_iterator last)

	Erase range.

	
inline void swap(flat_map &other)

	swap two flat maps

	
inline void clear()

	clear the flat map

	
template<class ...Args>
inline iterator emplace(const key_type &key, Args&&... args)

	templated emplace function

	
template<class ...Args>
inline iterator emplace_hint(const_iterator position, Args&&... args)

	templated emplace_hint function

	
inline void reserve(size_type n)

	Reserve a minimum capacity for the underlying vector.

	
inline void shrink_to_fit()

	Reduce the capacity of the underlying vector to fit its size.

	
inline iterator find(const key_type &key)

	Find a key and return an iterator to the found key.

	
inline const_iterator find(const key_type &key) const

	Find a key and return a constant iterator to the found key.

	
inline size_type count(const key_type &key) const

	Return the count of occurances of a key.

	
inline iterator lower_bound(const key_type &key)

	lower bound function

	
inline const_iterator lower_bound(const key_type &key) const

	Return a constant iterator to the lower bound.

	
inline iterator upper_bound(const key_type &key)

	upper bound function

	
inline const_iterator upper_bound(const key_type &key) const

	Return a constant iterator to the upper bound.

	
inline std::pair<iterator, iterator> equal_range(const key_type &key)

	Returns a range containing all elements equivalent to “key”.

	
inline std::pair<const_iterator, const_iterator> equal_range(const key_type &key) const

	Returns a constant range containing all elements equivalent to “key”.

Friends

	
inline friend void swap(flat_map &lhs, flat_map &rhs)

	Swaps 2 flat maps.

	
class value_compare

	A class to perform the comparison operation for the flat map.

	
template<class K, class T, class Compare, class Storage>
class flat_map2 : public vtr::flat_map<K, T, Compare, Storage>

	Another flat_map container.

Like flat_map, but operator[] never inserts and directly returns the mapped value

Public Functions

	
inline flat_map2()

	Constructor.

	
inline const T &operator[](const K &key) const

	const [] operator

	
inline T &operator[](const K &key)

	[] operator

	
namespace vtr

	
Functions

	
template<class K, class V>
flat_map<K, V> make_flat_map(std::vector<std::pair<K, V>> &&vec)

	A function to create a flat map.

Helper function to create a flat map from a vector of pairs without haveing to explicity specify the key and value types

	
template<class K, class V>
flat_map2<K, V> make_flat_map2(std::vector<std::pair<K, V>> &&vec)

	Same as make_flat_map but for flat_map2.

vtr_bimap

The vtr_bimap.h header provides a bi-directonal mapping between key and value which means that it can be addressed by either the key or the value.

It provides this bi-directional feature for all the map-like containers defined in vtr:
	unordered map

	flat map

	linear map

One example where this container might be so useful is the mapping between the atom and clustered net Id. See atom_lookup.h

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

	
template<class K, class V, template<typename...> class Map = std::map, template<typename...> class InvMap = std::map>
class bimap

	
#include <vtr_bimap.h>

A map-like class which provides a bi-directonal mapping between key and value.

Keys and values can be looked up directly by passing either the key or value. the indexing operator will throw if the key/value does not exist.

Public Functions

	
inline iterator begin() const

	Return an iterator to the begin of the map.

	
inline iterator end() const

	Return an iterator to the end of the map.

	
inline inverse_iterator inverse_begin() const

	Return an iterator to the begin of the inverse map.

	
inline inverse_iterator inverse_end() const

	Return an iterator to the end of the inverse map.

	
inline iterator find(const K key) const

	Return an iterator to the key-value pair matching key, or end() if not found.

	
inline inverse_iterator find(const V value) const

	Return an iterator to the value-key pair matching value, or inverse_end() if not found.

	
inline const V &operator[](const K key) const

	Return an immutable reference to the value matching key (throw an exception if key is not found)

	
inline const K &operator[](const V value) const

	Return an immutable reference to the key matching value (throw an exception if value is not found)

	
inline std::size_t size() const

	Return the number of key-value pairs stored.

	
inline bool empty() const

	Return true if there are no key-value pairs stored.

	
inline bool contains(const K key) const

	Return true if the specified key exists.

	
inline bool contains(const V value) const

	Return true if the specified value exists.

	
bimap() = default

	default constructor required by compiler

	
inline bimap(std::initializer_list<value_type> il)

	construct the bimap using initializer list with value_type

	
inline bimap(std::initializer_list<inverse_value_type> il)

	construct the bimap using initializer list with inverse_value_type

	
inline void clear()

	Drop all stored key-values.

	
inline std::pair<iterator, bool> insert(const K key, const V value)

	Insert a key-value pair, if not already in map.

	
inline void update(const K key, const V value)

	Update a key-value pair, will insert if not already in map.

	
inline void erase(const K key)

	Remove the specified key (and it’s associated value)

	
inline void erase(const V val)

	Remove the specified value (and it’s associated key)

Typedefs

	
template<class K, class V>
using unordered_bimap = bimap<K, V, std::unordered_map, std::unordered_map>

	

	
template<class K, class V>
using flat_bimap = bimap<K, V, vtr::flat_map, vtr::flat_map>

	

	
template<class K, class V>
using linear_bimap = bimap<K, V, vtr::linear_map, vtr::linear_map>

	

vtr_vec_id_set

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

	
template<typename T>
class vec_id_set

	
#include <vtr_vec_id_set.h>

Implements a set-like interface which supports multiple operations.

The supported operations are:
	insertion

	iteration

	membership test all in constant time.

It assumes the element type (T) is convertable to size_t. Usually, elements are vtr::StrongIds.

Iteration through the elements is not strictly ordered, usually insertion order, unless sort() has been previously called.

The underlying implementation uses a vector for element storage (for iteration), and a bit-set for membership tests.

Public Functions

	
inline auto begin() const

	Returns an iterator to the first element in the sequence.

	
inline auto end() const

	Returns an iterator referring to the past-the-end element in the vector container.

	
inline auto cbegin() const

	Returns a constant iterator to the first element in the sequence.

	
inline auto cend() const

	Returns a constant iterator referring to the past-the-end element in the vector container.

	
inline bool insert(T val)

	Insert val in the set.

	
template<typename Iter>
inline void insert(Iter first, Iter last)

	Iterators specifying a range of elements. Copies of the elements in the range [first,last) are inserted in the container.

	
inline size_t count(T val) const

	Count elements with a specific value.

	
inline size_t size() const

	Returns the size of the container.

	
inline void sort()

	Sort elements in the container.

	
inline void clear()

	@bried Clears the container

vtr_list

Linked lists of void pointers and integers, respectively.

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

	
struct t_linked_vptr

	
#include <vtr_list.h>

Linked list node struct.

	
t_linked_vptr *vtr::insert_in_vptr_list(t_linked_vptr *head, void *vptr_to_add)

	Inserts a node to a list.

	
t_linked_vptr *vtr::delete_in_vptr_list(t_linked_vptr *head)

	Delete a list.

vtr_ragged_matrix

	
template<typename T, typename Index0 = size_t, typename Index1 = size_t>
class FlatRaggedMatrix

	A 2 dimensional ‘ragged’ matrix with rows indexed by Index0, and each row of variable length (indexed by Index1)

Example: std::vector<int> row_sizes = {1, 5, 3, 10};
 FlatRaggedMatrix<float> matrix(row_sizes);

 //Fill in all entries with ascending values
 float value = 1.;
 for (size_t irow = 0; irow < row_sizes.size(); ++irow) {
 for (size_t icol = 0; icol < row_sizes[irow]; ++icoll) {
 matrix[irow][icol] = value;
 value += 1.;
 }
 }

For efficiency, this class uses a flat memory layout, where all elements are laid out contiguiously (one row after another).

Expects Index0 and Index1 to be convertable to size_t.

Public Functions

	
FlatRaggedMatrix() = default

	default constructor

	
template<class Callback>
inline FlatRaggedMatrix(size_t nrows, Callback &row_length_callback, T default_value = T())

	Constructs matrix with ‘nrows’ rows.

The row length is determined by calling ‘row_length_callback’ with the associated row index.

	
template<class Container>
inline FlatRaggedMatrix(Container container, T default_value = T())

	Constructs matrix from a container of row lengths.

	
template<class Iter>
inline FlatRaggedMatrix(Iter row_size_first, Iter row_size_last, T default_value = T())

	Constructs matrix from an iterator range.

The length of the range is the number of rows, and iterator values are the row lengths.

	
inline auto begin()

	Iterators to all elements.

	
inline auto end()

	Iterator to the last element of the matrix.

	
inline auto begin() const

	Iterator to the first element of the matrix (immutable)

	
inline auto end() const

	Iterator to the last element of the matrix (immutable)

	
inline size_t size() const

	Return the size of the matrix.

	
inline bool empty() const

	Return true if empty.

	
inline vtr::array_view<T> operator[](Index0 i)

	Indexing operators for the first dimension.

	
inline vtr::array_view<const T> operator[](Index0 i) const

	Indexing operators for the first dimension (immutable)

	
inline void clear()

	Clears the matrix.

	
inline void swap(FlatRaggedMatrix<T, Index0, Index1> &other)

	Swaps two matrices.

Friends

	
inline friend void swap(FlatRaggedMatrix<T, Index0, Index1> &lhs, FlatRaggedMatrix<T, Index0, Index1> &rhs)

	Swaps two matrices.

	
template<typename U>
class ProxyRow

	Proxy class used to represent a ‘row’ in the matrix.

Public Functions

	
inline ProxyRow(U *first, U *last)

	constructor

	
inline U *begin()

	Return iterator to the first element.

	
inline U *end()

	Return iterator to the last element.

	
inline const U *begin() const

	Return iterator to the first element (immutable)

	
inline const U *end() const

	Return iterator to the last element (immutable)

	
inline size_t size() const

	Return the size of the row.

	
inline U &operator[](Index1 j)

	indexing [] operator

	
inline const U &operator[](Index1 j) const

	indexing [] operator (immutable)

	
inline U *data()

	Return iterator to the first element.

	
inline U *data() const

	Return iterator to the first element (immutable)

vtr_ndmatrix

	
namespace vtr

	
	
template<typename T, size_t N>
class NdMatrixProxy

	
#include <vtr_ndmatrix.h>

Proxy class for a sub-matrix of a NdMatrix class.

This is used to allow chaining of array indexing [] operators in a natural way.

Each instance of this class peels off one-dimension and returns a NdMatrixProxy representing the resulting sub-matrix. This is repeated recursively until we hit the 1-dimensional base-case.

Since this expansion happens at compiler time all the proxy classes get optimized away, yielding both high performance and generality.

Recursive case: N-dimensional array

Public Functions

	
inline NdMatrixProxy(const size_t *dim_sizes, const size_t *dim_strides, T *start)

	Construct a matrix proxy object.

	Parameters:

	
	dim_sizes – Array of dimension sizes

	idim – The dimension associated with this proxy

	dim_stride – The stride of this dimension (i.e. how many element in memory between indicies of this dimension)

	start – Pointer to the start of the sub-matrix this proxy represents

	
NdMatrixProxy<T, N> &operator=(const NdMatrixProxy<T, N> &other) = delete

	

	
inline const NdMatrixProxy<T, N - 1> operator[](size_t index) const

	const [] operator

	
inline NdMatrixProxy<T, N - 1> operator[](size_t index)

	[] operator

	
template<typename T>
class NdMatrixProxy<T, 1>

	
#include <vtr_ndmatrix.h>

Base case: 1-dimensional array.

Public Functions

	
inline NdMatrixProxy(const size_t *dim_sizes, const size_t *dim_stride, T *start)

	Construct a 1-d matrix proxy object.

	Parameters:

	
	dim_sizes – Array of dimension sizes

	dim_stride – The stride of this dimension (i.e. how many element in memory between indicies of this dimension)

	start – Pointer to the start of the sub-matrix this proxy represents

	
NdMatrixProxy<T, 1> &operator=(const NdMatrixProxy<T, 1> &other) = delete

	

	
inline const T &operator[](size_t index) const

	const [] operator

	
inline T &operator[](size_t index)

	[] operator

	
inline const T *data() const

	Backward compitability.

For legacy compatibility (i.e. code expecting a pointer) we allow this base dimension case to retrieve a raw pointer to the last dimension elements.

Note that it is the caller’s responsibility to use this correctly; care must be taken not to clobber elements in other dimensions

	
inline T *data()

	same as above but allow update the value

	
template<typename T, size_t N>
class NdMatrixBase

	
#include <vtr_ndmatrix.h>

Base class for an N-dimensional matrix.

Base class for an N-dimensional matrix supporting arbitrary index ranges per dimension. This class implements all of the matrix handling (lifetime etc.) except for indexing (which is implemented in the NdMatrix class). Indexing is split out to allows specialization (of indexing for N = 1.

Implementation:

This class uses a single linear array to store the matrix in c-style (row major) order. That is, the right-most index is laid out contiguous memory.

This should improve memory usage (no extra pointers to store for each dimension), and cache locality (less indirection via pointers, predictable strides).

The indicies are calculated based on the dimensions to access the appropriate elements. Since the indexing calculations are visible to the compiler at compile time they can be optimized to be efficient.

Public Functions

	
inline NdMatrixBase()

	An empty matrix (all dimensions size zero)

	
inline NdMatrixBase(std::array<size_t, N> dim_sizes, T value = T())

	Specified dimension sizes:

 [0..dim_sizes[0])
 [0..dim_sizes[1])
 ...
 with optional fill value

	
inline size_t size() const

	Returns the size of the matrix (number of elements)

	
inline bool empty() const

	Returns true if there are no elements in the matrix.

	
inline size_t ndims() const

	Returns the number of dimensions (i.e. N)

	
inline size_t dim_size(size_t i) const

	Returns the size of the ith dimension.

	
inline size_t begin_index(size_t i) const

	Returns the starting index of ith dimension.

	
inline size_t end_index(size_t i) const

	Returns the one-past-the-end index of the ith dimension.

	
inline const T &get(size_t i) const

	const Flat accessors of NdMatrix

	
inline T &get(size_t i)

	Flat accessors of NdMatrix.

	
inline void fill(T value)

	Set all elements to ‘value’.

	
inline void resize(std::array<size_t, N> dim_sizes, T value = T())

	Resize the matrix to the specified dimension ranges.

If ‘value’ is specified all elements will be initialized to it, otherwise they will be default constructed.

	
inline void clear()

	Reset the matrix to size zero.

	
inline NdMatrixBase(const NdMatrixBase &other)

	Copy constructor.

	
inline NdMatrixBase(NdMatrixBase &&other)

	Move constructor.

	
inline NdMatrixBase &operator=(NdMatrixBase rhs)

	Copy/move assignment.

Note that rhs is taken by value (copy-swap idiom)

	
template<typename T, size_t N>
class NdMatrix : public vtr::NdMatrixBase<T, N>

	
#include <vtr_ndmatrix.h>

An N-dimensional matrix supporting arbitrary (continuous) index ranges per dimension.

Examples: //A 2-dimensional matrix with indicies [0..4][0..9]
 NdMatrix<int,2> m1({5,10});

 //Accessing an element
 int i = m1[3][5];

 //Setting an element
 m1[2][8] = 0;

 //A 3-dimensional matrix with indicies [0..4][0..9][0..19]
 NdMatrix<int,3> m2({5,10,20});

 //A 2-dimensional matrix with indicies [0..4][0..9], with all entries
 //initialized to 42
 NdMatrix<int,2> m3({5,10}, 42);

 //Filling all entries with value 101
 m3.fill(101);

 //Resizing an existing matrix (all values reset to default constucted value)
 m3.resize({5,5})

 //Resizing an existing matrix (all elements set to value 88)
 m3.resize({15,55}, 88)

Public Functions

	
inline const NdMatrixProxy<T, N - 1> operator[](size_t index) const

	Access an element.

Returns a proxy-object to allow chained array-style indexing (N >= 2 case)

	
inline NdMatrixProxy<T, N - 1> operator[](size_t index)

	Access an element.

Returns a proxy-object to allow chained array-style indexing

	
template<typename T>
class NdMatrix<T, 1> : public vtr::NdMatrixBase<T, 1>

	
#include <vtr_ndmatrix.h>

A 1-dimensional matrix supporting arbitrary (continuous) index ranges per dimension.

This is considered a specialization for N=1

Public Functions

	
inline const T &operator[](size_t index) const

	Access an element (immutable)

	
inline T &operator[](size_t index)

	Access an element (mutable)

std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

Typedefs

	
template<typename T>
using Matrix = NdMatrix<T, 2>

	Convenient short forms for common NdMatricies.

vtr_ndoffsetmatrix

	
namespace vtr

	
	
class DimRange

	
#include <vtr_ndoffsetmatrix.h>

A half-open range specification for a matrix dimension [begin_index, last_index)

It comes with valid indicies from [begin_index() … end_index()-1], provided size() > 0.

Public Functions

	
DimRange() = default

	default constructor

	
inline DimRange(size_t begin, size_t end)

	a constructor with begin_index, end_index

	
inline size_t begin_index() const

	Return the begin index.

	
inline size_t end_index() const

	Return the end index.

	
inline size_t size() const

	Return the size.

	
template<typename T, size_t N>
class NdOffsetMatrixProxy

	
#include <vtr_ndoffsetmatrix.h>

Proxy class for a sub-matrix of a NdOffsetMatrix class.

This is used to allow chaining of array indexing [] operators in a natural way.

Each instance of this class peels off one-dimension and returns a NdOffsetMatrixProxy representing the resulting sub-matrix. This is repeated recursively until we hit the 1-dimensional base-case.

Since this expansion happens at compiler time all the proxy classes get optimized away, yielding both high performance and generality.

Recursive case: N-dimensional array

Public Functions

	
inline NdOffsetMatrixProxy(const DimRange *dim_ranges, size_t idim, size_t dim_stride, T *start)

	Construct a matrix proxy object.

dim_ranges: Array of DimRange objects idim: The dimension associated with this proxy dim_stride: The stride of this dimension (i.e. how many element in memory between indicies of this dimension) start: Pointer to the start of the sub-matrix this proxy represents

	
inline const NdOffsetMatrixProxy<T, N - 1> operator[](size_t index) const

	const [] operator

	
inline NdOffsetMatrixProxy<T, N - 1> operator[](size_t index)

	[] operator

	
template<typename T>
class NdOffsetMatrixProxy<T, 1>

	
#include <vtr_ndoffsetmatrix.h>

Base case: 1-dimensional array.

Public Functions

	
inline NdOffsetMatrixProxy(const DimRange *dim_ranges, size_t idim, size_t dim_stride, T *start)

	Construct a matrix proxy object.

- dim_ranges: Array of DimRange objects
- dim_stride: The stride of this dimension (i.e. how many element in memory between indicies of this dimension)
- start: Pointer to the start of the sub-matrix this proxy represents

	
inline const T &operator[](size_t index) const

	const [] operator

	
inline T &operator[](size_t index)

	[] operator

	
template<typename T, size_t N>
class NdOffsetMatrixBase

	
#include <vtr_ndoffsetmatrix.h>

Base class for an N-dimensional matrix supporting arbitrary index ranges per dimension.

This class implements all of the matrix handling (lifetime etc.) except for indexing (which is implemented in the NdOffsetMatrix class). Indexing is split out to allows specialization of indexing for N = 1.

Implementation:

This class uses a single linear array to store the matrix in c-style (row major) order. That is, the right-most index is laid out contiguous memory.

This should improve memory usage (no extra pointers to store for each dimension), and cache locality (less indirection via pointers, predictable strides).

The indicies are calculated based on the dimensions to access the appropriate elements. Since the indexing calculations are visible to the compiler at compile time they can be optimized to be efficient.

Public Functions

	
inline NdOffsetMatrixBase()

	An empty matrix (all dimensions size zero)

	
inline NdOffsetMatrixBase(std::array<size_t, N> dim_sizes, T value = T())

	Specified dimension sizes:

 [0..dim_sizes[0])
 [0..dim_sizes[1])
 ...

 with optional fill value

	
inline NdOffsetMatrixBase(std::array<DimRange, N> dim_ranges, T value = T())

	Specified dimension index ranges:

 [dim_ranges[0].begin_index() ... dim_ranges[1].end_index())
 [dim_ranges[1].begin_index() ... dim_ranges[1].end_index())
 ...

 with optional fill value

	
inline size_t size() const

	Returns the size of the matrix (number of elements)

	
inline bool empty() const

	Returns true if there are no elements in the matrix.

	
inline size_t ndims() const

	Returns the number of dimensions (i.e. N)

	
inline size_t dim_size(size_t i) const

	Returns the size of the ith dimension.

	
inline size_t begin_index(size_t i) const

	Returns the starting index of ith dimension.

	
inline size_t end_index(size_t i) const

	Returns the one-past-the-end index of the ith dimension.

	
inline void fill(T value)

	Set all elements to ‘value’.

	
inline void resize(std::array<size_t, N> dim_sizes, T value = T())

	Resize the matrix to the specified dimensions.

If ‘value’ is specified all elements will be initialized to it, otherwise they will be default constructed.

	
inline void resize(std::array<DimRange, N> dim_ranges, T value = T())

	Resize the matrix to the specified dimension ranges.

If ‘value’ is specified all elements will be initialized to it, otherwise they will be default constructed.

	
inline void clear()

	Reset the matrix to size zero.

	
inline NdOffsetMatrixBase(const NdOffsetMatrixBase &other)

	Copy constructor.

	
inline NdOffsetMatrixBase(NdOffsetMatrixBase &&other)

	Move constructor.

	
inline NdOffsetMatrixBase &operator=(NdOffsetMatrixBase rhs)

	Copy/move assignment.

Note that rhs is taken by value (copy-swap idiom)

	
template<typename T, size_t N>
class NdOffsetMatrix : public vtr::NdOffsetMatrixBase<T, N>

	
#include <vtr_ndoffsetmatrix.h>

An N-dimensional matrix supporting arbitrary (continuous) index ranges per dimension.

If no second template parameter is provided defaults to a 2-dimensional matrix

Examples: //A 2-dimensional matrix with indicies [0..4][0..9]
 NdOffsetMatrix<int,2> m1({5,10});

 //Accessing an element
 int i = m4[3][5];

 //Setting an element
 m4[6][20] = 0;

 //A 2-dimensional matrix with indicies [2..6][5..9]
 // Note that C++ requires one more set of curly brace than you would expect
 NdOffsetMatrix<int,2> m2({{{2,7},{5,10}}});

 //A 3-dimensional matrix with indicies [0..4][0..9][0..19]
 NdOffsetMatrix<int,3> m3({5,10,20});

 //A 3-dimensional matrix with indicies [2..6][1..19][50..89]
 NdOffsetMatrix<int,3> m4({{{2,7}, {1,20}, {50,90}}});

 //A 2-dimensional matrix with indicies [2..6][1..20], with all entries
 //intialized to 42
 NdOffsetMatrix<int,2> m4({{{2,7}, {1,21}}}, 42);

 //A 2-dimensional matrix with indicies [0..4][0..9], with all entries
 //initialized to 42
 NdOffsetMatrix<int,2> m1({5,10}, 42);

 //Filling all entries with value 101
 m1.fill(101);

 //Resizing an existing matrix (all values reset to default constucted value)
 m1.resize({5,5})

 //Resizing an existing matrix (all elements set to value 88)
 m1.resize({15,55}, 88)

Public Functions

	
inline const NdOffsetMatrixProxy<T, N - 1> operator[](size_t index) const

	Access an element.

Returns a proxy-object to allow chained array-style indexing (N >= 2 case) template<typename = typename std::enable_if<N >= 2>::type, typename T1=T>

	
inline NdOffsetMatrixProxy<T, N - 1> operator[](size_t index)

	Access an element.

Returns a proxy-object to allow chained array-style indexing

	
template<typename T>
class NdOffsetMatrix<T, 1> : public vtr::NdOffsetMatrixBase<T, 1>

	
#include <vtr_ndoffsetmatrix.h>

A 1-dimensional matrix supporting arbitrary (continuous) index ranges per dimension.

This is considered a specialization for N=1

Public Functions

	
inline const T &operator[](size_t index) const

	Access an element (immutable)

	
inline T &operator[](size_t index)

	Access an element (mutable)

std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

Typedefs

	
template<typename T>
using OffsetMatrix = NdOffsetMatrix<T, 2>

	Convenient short forms for common NdMatricies.

vtr_array_view

	
template<typename K, typename V>
class array_view_id : private vtr::array_view<V>

	Implements a fixed length view to an array which is indexed by vtr::StrongId.

The main use of this container is to behave like a std::span which is indexed by a vtr::StrongId instead of size_t. It assumes that K is explicitly convertable to size_t (i.e. via operator size_t()), and can be explicitly constructed from a size_t.

Public Functions

	
inline V &operator[](const key_type id)

	[] operator

	
inline const V &operator[](const key_type id) const

	constant [] operator

	
inline V &at(const key_type id)

	at() operator

	
inline const V &at(const key_type id) const

	constant at() operator

	
inline key_range keys() const

	Returns a range containing the keys.

	
class key_iterator : public std::iterator<std::bidirectional_iterator_tag, key_type>

	Iterator class which is convertable to the key_type.

This allows end-users to call the parent class’s keys() member to iterate through the keys with a range-based for loop

Public Types

	
using my_iter = typename std::iterator<std::bidirectional_iterator_tag, K>

	Intermediate type my_iter.

We use the intermediate type my_iter to avoid a potential ambiguity for which clang generates errors and warnings

Public Functions

	
inline key_iterator operator++()

	Note.

vtr::vector assumes that the key time is convertable to size_t and that all the underlying IDs are zero-based and contiguous. That means we can just increment the underlying Id to build the next key.

increment the iterator

	
inline key_iterator operator--()

	decrement the iterator

	
inline reference operator*()

	dereference operator (*)

	
inline pointer operator->()

	-> operator

	
template<typename T>
class array_view

	An array view class to avoid copying data.

Public Functions

	
inline explicit constexpr array_view()

	default constructor

	
inline explicit constexpr array_view(T *str, size_t size)

	A constructor with data initialization.

	
inline constexpr T &operator[](size_t pos)

	[] operator

	
inline constexpr const T &operator[](size_t pos) const

	constant [] operator

	
inline T &at(size_t pos)

	at() operator

	
inline const T &at(size_t pos) const

	const at() operator

	
inline constexpr T &front()

	get the first element of the array

	
inline constexpr const T &front() const

	get the first element of the array (can’t update it)

	
inline constexpr T &back()

	get the last element of the array

	
inline constexpr const T &back() const

	get the last element of the array (can’t update it)

	
inline constexpr T *data()

	return the underlying pointer

	
inline constexpr const T *data() const

	return the underlying pointer (constant pointer)

	
inline constexpr size_t size() const noexcept

	return thr array size

	
inline constexpr size_t length() const noexcept

	return the array size

	
inline constexpr bool empty() const noexcept

	check if the array is empty

	
inline constexpr T *begin() noexcept

	return a pointer to the first element of the array

	
inline constexpr const T *begin() const noexcept

	return a constant pointer to the first element of the array

	
inline constexpr const T *cbegin() const noexcept

	return a constant pointer to the first element of the array

	
inline constexpr T *end() noexcept

	return a pointer to the last element of the array

	
inline constexpr const T *end() const noexcept

	return a constant pointer to the last element of the array

	
inline constexpr const T *cend() const noexcept

	return a constant pointer to the last element of the array

vtr_string_view

	
class string_view

	Implements a view to a fixed length string (similar to std::basic_string_view).

The underlying string does not need to be NULL terminated.

Public Functions

	
inline explicit constexpr string_view()

	constructor

	
inline explicit string_view(const char *str)

	constructor

	
inline explicit constexpr string_view(const char *str, size_t size)

	constructor

	
inline constexpr string_view &operator=(const string_view &view) noexcept

	copy constructor

	
inline constexpr char operator[](size_t pos) const

	indexing [] operator (immutable)

	
inline const char &at(size_t pos) const

	aT() operator (immutable)

	
inline constexpr const char &front() const

	Returns the first character of the string.

	
inline constexpr const char &back() const

	Returns the last character of the string.

	
inline constexpr const char *data() const

	Returns a pointer to the string data.

	
inline constexpr size_t size() const noexcept

	Returns the string size.

	
inline constexpr size_t length() const noexcept

	Returns the string size.

	
inline constexpr bool empty() const noexcept

	Returns true if empty.

	
inline constexpr const char *begin() const noexcept

	Returns a pointer to the begin of the string.

	
inline constexpr const char *cbegin() const noexcept

	Same as begin()

	
inline constexpr const char *end() const noexcept

	Returns a pointer to the end of the string.

	
inline constexpr const char *cend() const noexcept

	Same as end()

	
inline void swap(string_view &v) noexcept

	Swaps two string views.

	
inline string_view substr(size_t pos = 0, size_t count = npos)

	Returns a newly constructed string object with its value initialized to a copy of a substring of this object.

vtr_cache

	
template<typename CacheKey, typename CacheValue>
class Cache

	An implementation of a simple cache.

Public Functions

	
inline void clear()

	Clear cache.

	
inline const CacheValue *get(const CacheKey &key) const

	Check if the cache is valid.

Returns the cached value if present and valid. Returns nullptr if the cache is invalid.

	
inline const CacheValue *set(const CacheKey &key, std::unique_ptr<CacheValue> value)

	Update the cache.

vtr_dynamic_bitset

	
template<typename Index = size_t, typename Storage = unsigned int>
class dynamic_bitset

	A container to represent a set of flags either they are set or reset.

It allocates any required length of bit at runtime. It is very useful in bit manipulation

Public Functions

	
inline void resize(size_t size)

	Reize to the determined size.

	
inline void clear()

	Clear all the bits.

	
inline size_t size() const

	Return the size of the bitset (total number of bits)

	
inline void fill(bool set)

	Fill the whole bitset with a specific value (0 or 1)

	
inline void set(Index index, bool val)

	Set a specific bit in the bit set to a specific value (0 or 1)

	
inline bool get(Index index) const

	Return the value of a specific bit in the bitset.

	
inline constexpr size_t count(void) const

	Return count of set bits.

	
inline constexpr dynamic_bitset<Index, Storage> &operator|=(const dynamic_bitset<Index, Storage> &x)

	Bitwise OR with rhs. Truncate the operation if one operand is smaller.

	
inline constexpr dynamic_bitset<Index, Storage> &operator&=(const dynamic_bitset<Index, Storage> &x)

	Bitwise AND with rhs. Truncate the operation if one operand is smaller.

	
inline dynamic_bitset<Index, Storage> operator~(void) const

	Return inverted bitset.

Public Static Attributes

	
static constexpr size_t kWidth = std::numeric_limits<Storage>::digits

	Bits in underlying storage.

 Container Utils

Container Utils

vtr_hash

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

Functions

	
template<class T>
inline void hash_combine(std::size_t &seed, const T &v)

	Hashes v and combines it with seed (as in boost)

This is typically used to implement std::hash for composite types.

	
struct hash_pair

	
#include <vtr_hash.h>

Public Functions

	
template<class T1, class T2>
inline std::size_t operator()(const std::pair<T1, T2> &pair) const noexcept

	

vtr_memory

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

	
struct t_chunk

	
#include <vtr_memory.h>

This structure keeps track to chenks of memory

This structure is to keep track of chunks of memory that is being

allocated to save overhead when allocating very small memory pieces. For a complete description, please see the comment in chunk_malloc

	
template<class T>
struct aligned_allocator

	
#include <vtr_memory.h>

aligned_allocator is a STL allocator that allocates memory in an aligned fashion

works if supported by the platform

It is worth noting the C++20 std::allocator does aligned allocations, but C++20 has poor support.

Functions

	
template<typename Container>
void release_memory(Container &container)

	This function will force the container to be cleared.

It release it’s held memory. For efficiency, STL containers usually don’t release their actual heap-allocated memory until destruction (even if Container::clear() is called).

	
template<typename T>
T *chunk_new(t_chunk *chunk_info)

	Like chunk_malloc, but with proper C++ object initialization.

	
template<typename T>
void chunk_delete(T *obj, t_chunk*)

	Call the destructor of an obj which must have been allocated in the specified chunk.

	
inline int memalign(void **ptr_out, size_t align, size_t size)

	

	
template<typename T>
bool operator==(const aligned_allocator<T>&, const aligned_allocator<T>&)

	compare two aligned_allocators.

Since the allocator doesn’t have any internal state, all allocators for a given type are the same.

vtr_pair_util

	
namespace vtr

	
	
template<typename PairIter>
class pair_first_iter

	
#include <vtr_pair_util.h>

Iterator which derefernces the ‘first’ element of a std::pair iterator.

Public Functions

	
inline pair_first_iter(PairIter init)

	constructor

	
inline auto operator++()

	increment operator (++)

	
inline auto operator--()

	decrement operator (–)

	
inline auto operator*()

	dereference * operator

	
inline auto operator->()

	-> operator

	
template<typename PairIter>
class pair_second_iter

	
#include <vtr_pair_util.h>

Iterator which derefernces the ‘second’ element of a std::pair iterator

Public Functions

	
inline pair_second_iter(PairIter init)

	constructor

	
inline auto operator++()

	increment operator (++)

	
inline auto operator--()

	decrement operator (—)

	
inline auto operator*()

	dereference * operator

	
inline auto operator->()

	-> operator

std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

vtr_map_util

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

Typedefs

	
template<typename Iter>
using map_key_iter = pair_first_iter<Iter>

	An iterator who wraps a std::map iterator to return it’s key.

	
template<typename Iter>
using map_value_iter = pair_second_iter<Iter>

	An iterator who wraps a std::map iterator to return it’s value.

Functions

	
template<typename T>
auto make_key_range(T b, T e)

	Returns a range iterating over a std::map’s keys.

	
template<typename Container>
auto make_key_range(const Container &c)

	Returns a range iterating over a std::map’s keys.

	
template<typename T>
auto make_value_range(T b, T e)

	Returns a range iterating over a std::map’s values.

	
template<typename Container>
auto make_value_range(const Container &c)

	Returns a range iterating over a std::map’s values.

 Logging - Errors - Assertions

Logging - Errors - Assertions

vtr_log

This header defines useful logging macros for VTR projects.

Message Type

Three types of log message types are defined:
	VTR_LOG : The standard ‘info’ type log message

	VTR_LOG_WARN : A warning log message. This represents unusual condition that may indicate an issue but executiom continues

	VTR_LOG_ERROR : An error log message. This represents a clear issue that should result in stopping the program execution. Please note that using this log message will not actually terminate the program. So a VtrError should be thrown after all the neccessary VTR_LOG_ERROR messages are printed.

For example: VTR_LOG("This produces a regular '%s' message\n", "info");
 VTR_LOG_WARN("This produces a '%s' message\n", "warning");
 VTR_LOG_ERROR("This produces an '%s' message\n", "error");

Conditional Logging

Each of the three message types also have a VTR_LOGV_* variant, which will cause the message to be logged if a user-defined condition is satisifed.

For example: VTR_LOGV(verbosity > 5, "This message will be logged only if verbosity is greater than %d\n", 5);
 VTR_LOGV_WARN(verbose, "This warning message will be logged if verbose is true\n");
 VTR_LOGV_ERROR(false, "This error message will never be logged\n");

Custom Location Logging

Each of the three message types also have a VTR_LOGF_* variant, which will cause the message to be logged for a custom file and

For example: VTR_LOGF("my_file.txt", "This message will be logged from file 'my_file.txt' line %d\n", 42);

Debug Logging

For debug purposes it may be useful to have additional logging. This is supported by VTR_LOG_DEBUG() and VTR_LOGV_DEBUG().

To avoid run-time overhead, these are only enabled if VTR_ENABLE_DEBUG_LOGGING is defined (disabled by default).

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

Functions

	
void add_warnings_to_suppress(std::string function_name)

	The following data structure and functions allow to suppress noisy warnings and direct them into an external file, if specified.

	
void set_noisy_warn_log_file(std::string log_file_name)

	This function creates a new log file to hold the suppressed warnings. If the file already exists, it is cleared out first.

	
void print_or_suppress_warning(const char *pszFileName, unsigned int lineNum, const char *pszFuncName, const char *pszMessage, ...)

	This function checks whether to print or to suppress warning.

This function checks whether the function from which the warning has been called is in the set of warnings_to_suppress. If so, the warning is printed on the noisy_warn_log_file, otherwise it is printed on stdout (or the regular log file)

vtr_error

A utility container that can be used to identify VTR execution errors.

The recommended usage is to store information in this container about the error during an error event and and then throwing an exception with the container. If the exception is not handled (exception is not caught), this will result in the termination of the program.

Error information can be displayed using the information stored within this container.

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

	
class VtrError : public std::runtime_error

	
#include <vtr_error.h>

Container that holds information related to an error.

It holds different info related to a VTR error:
	error message

	file name associated with the error

	line number associated with the error

Example Usage: // creating and throwing an exception with a VtrError container that has an error occuring in file "error_file.txt" at line number 1

 throw vtr::VtrError("This is a program terminating error!", "error_file.txt", 1);

Public Functions

	
inline VtrError(std::string msg = "", std::string new_filename = "", size_t new_linenumber = -1)

	VtrError constructor.

	
inline std::string filename() const

	gets the filename

Returns the filename associated with this error. Returns an empty string if none is specified.

	
inline const char *filename_c_str() const

	same as filename() but returns in c style string

	
inline size_t line() const

	get the line number

Returns the line number associated with this error. Returns zero if none is specified.

vtr_assertion

The header vtr_assert.h defines useful assertion macros for VTR projects.

Four types of assertions are defined: VTR_ASSERT_OPT - low overhead assertions that should always be enabled
 VTR_ASSERT - medium overhead assertions that are usually be enabled
 VTR_ASSERT_SAFE - high overhead assertions typically enabled only for debugging
 VTR_ASSERT_DEBUG - very high overhead assertions typically enabled only for extreme debugging

 Each of the above assertions also have a *_MSG variants (e.g. VTR_ASSERT_MSG(expr, msg)) which takes an additional argument specifying additional message text to be shown. By convention the message should state the condition being checked (and not the failure condition), since that the condition failed is obvious from the assertion failure itself.

The macro VTR_ASSERT_LEVEL specifies the level of assertion checking desired and is updated in CMAKE compilation: VTR_ASSERT_LEVEL == 4: VTR_ASSERT_OPT, VTR_ASSERT, VTR_ASSERT_SAFE, VTR_ASSERT_DEBUG enabled
 VTR_ASSERT_LEVEL == 3: VTR_ASSERT_OPT, VTR_ASSERT, VTR_ASSERT_SAFE enabled
 VTR_ASSERT_LEVEL == 2: VTR_ASSERT_OPT, VTR_ASSERT enabled
 VTR_ASSERT_LEVEL == 1: VTR_ASSERT_OPT enabled
 VTR_ASSERT_LEVEL == 0: No assertion checking enabled

 @Note that an assertion levels beyond 4 are currently treated the same as level 4 and the default assertion level is 2

vtr_time

	
class ScopedStartFinishTimer : public vtr::ScopedActionTimer

	Scoped elapsed time class which prints out the action when initialized and again both the action and elapsed time.

when destructed. For example: {
 vtr::ScopedStartFinishTimer timer("my_action") //Will print: 'my_action'

 //Do other work

 //Will print 'my_action took X.XX seconds' when out of scope
 }

	
class ScopedFinishTimer : public vtr::ScopedActionTimer

	Scoped elapsed time class which prints the time elapsed for the specified action when it is destructed.

For example: {
 vtr::ScopedFinishTimer timer("my_action");

 //Do other work

 //Will print: 'my_action took X.XX seconds' when out-of-scope
 }

	
class ScopedActionTimer : public vtr::Timer

	Scoped time class which prints the time elapsed for the specifid action.

Subclassed by vtr::ScopedFinishTimer, vtr::ScopedStartFinishTimer

	
class Timer

	Class for tracking time elapsed since construction.

Subclassed by vtr::ScopedActionTimer

 Geometry

Geometry

vtr_geometry

This file include differents different geometry classes.

	
template<class T>
class Point

	A point in 2D space.

This class represents a point in 2D space. Hence, it holds both x and y components of the point.

Public Functions

	
T x() const

	x coordinate

	
T y() const

	y coordinate

	
void set(T x_val, T y_val)

	Set x and y values.

	
void set_x(T x_val)

	set x value

	
void set_y(T y_val)

	set y value

	
void swap()

	Swap x and y values.

Friends

	
friend bool operator==(Point<T> lhs, Point<T> rhs)

	== operator

	
friend bool operator!=(Point<T> lhs, Point<T> rhs)

	!= operator

	
friend bool operator<(Point<T> lhs, Point<T> rhs)

	< operator

	
template<class T>
class Rect

	A 2D rectangle.

This class represents a 2D rectangle. It can be created with its 4 points or using the bottom left and the top rights ones only

Public Functions

	
Rect()

	default constructor

	
Rect(T left_val, T bottom_val, T right_val, T top_val)

	construct using 4 vertex

	
Rect(Point<T> bottom_left_val, Point<T> top_right_val)

	construct using the bottom left and the top right vertex

	
template<typename U = T, typename std::enable_if<std::is_integral<U>::value>::type...>
Rect(Point<U> point)

	Constructs a rectangle that only contains the given point.

Rect(p1).contains(p2) => p1 == p2 It is only enabled for integral types, because making this work for floating point types would be difficult and brittle. The following line only enables the constructor if std::is_integral<T>::value == true

	
T xmin() const

	xmin coordinate

	
T xmax() const

	xmax coordinate

	
T ymin() const

	ymin coodrinate

	
T ymax() const

	ymax coordinate

	
Point<T> bottom_left() const

	Return the bottom left point.

	
Point<T> top_right() const

	Return the top right point.

	
T width() const

	Return the rectangle width.

	
T height() const

	Return the rectangle height.

	
bool contains(Point<T> point) const

	Returns true if the point is fully contained within the rectangle (excluding the top-right edges)

	
bool strictly_contains(Point<T> point) const

	Returns true if the point is strictly contained within the region (excluding all edges)

	
bool coincident(Point<T> point) const

	Returns true if the point is coincident with the rectangle (including the top-right edges)

	
bool contains(const Rect<T> &other) const

	Returns true if other is contained within the rectangle (including all edges)

	
bool empty() const

	Checks whether the rectangle is empty.

Returns true if no points are contained in the rectangle rect.empty() => not exists p. rect.contains(p) This also implies either the width or height is 0.

	
void set_xmin(T xmin_val)

	set xmin to a point

	
void set_ymin(T ymin_val)

	set ymin to a point

	
void set_xmax(T xmax_val)

	set xmax to a point

	
void set_ymax(T ymax_val)

	set ymax to a point

	
Rect<T> &expand_bounding_box(const Rect<T> &other)

	Equivalent to *this = bounding_box(*this, other)

Friends

	
friend bool operator==(const Rect<T> &lhs, const Rect<T> &rhs)

	== operator

	
friend bool operator!=(const Rect<T> &lhs, const Rect<T> &rhs)

	!= operator

	
template<class T>
class Line

	A 2D line.

It is constructed using a vector of the line points

Public Functions

	
Line(std::vector<Point<T>> line_points)

	contructor

	
Rect<T> bounding_box() const

	Returns the bounding box.

	
point_range points() const

	Returns a range of constituent points.

	
template<class T>
class RectUnion

	A union of 2d rectangles.

Public Functions

	
RectUnion(std::vector<Rect<T>> rects)

	Construct from a set of rectangles.

	
Rect<T> bounding_box() const

	Returns the bounding box of all rectangles in the union.

	
bool contains(Point<T> point) const

	Returns true if the point is fully contained within the region (excluding top-right edges)

	
bool strictly_contains(Point<T> point) const

	Returns true if the point is strictly contained within the region (excluding all edges)

	
bool coincident(Point<T> point) const

	Returns true if the point is coincident with the region (including the top-right edges)

	
rect_range rects() const

	Returns a range of all constituent rectangles.

Friends

	
friend bool operator==(const RectUnion<T> &lhs, const RectUnion<T> &rhs)

	Checks whether two RectUnions have identical representations.

Note: does not check whether the representations they are equivalent

	
friend bool operator!=(const RectUnion<T> &lhs, const RectUnion<T> &rhs)

	!= operator

 Other

Other

vtr_expr_eval

This file implements an expressopn evaluator.

The expression evaluator is capable of performing many operations on given variables, after parsing the expression. The parser goes character by character and identifies the type of char or chars. (e.g bracket, comma, number, operator, variable). The supported operations include addition, subtraction, multiplication, division, finding max, min, gcd, lcm, as well as boolean operators such as &&, ||, ==, >=, <= etc. The result is returned as an int value and operation precedance is taken into account. (e.g given 3-2*4, the result will be -5). This class is also used to parse expressions indicating breakpoints. The breakpoint expressions consist of variable names such as move_num, temp_num, from_block etc, and boolean operators (e.g move_num == 3). Multiple breakpoints can be expressed in one expression

Functions

	
BreakpointStateGlobals *get_bp_state_globals()

	returns the global variable that holds all values that can trigger a breakpoint and are updated by the router and placer

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

Enums

	
enum e_formula_obj

	Used to identify the type of symbolic formula object.

Values:

	
enumerator E_FML_UNDEFINED

	

	
enumerator E_FML_NUMBER

	

	
enumerator E_FML_BRACKET

	

	
enumerator E_FML_COMMA

	

	
enumerator E_FML_OPERATOR

	

	
enumerator E_FML_VARIABLE

	

	
enumerator E_FML_NUM_FORMULA_OBJS

	

	
enum e_operator

	Used to identify an operator in a formula.

Values:

	
enumerator E_OP_UNDEFINED

	

	
enumerator E_OP_ADD

	

	
enumerator E_OP_SUB

	

	
enumerator E_OP_MULT

	

	
enumerator E_OP_DIV

	

	
enumerator E_OP_MIN

	

	
enumerator E_OP_MAX

	

	
enumerator E_OP_GCD

	

	
enumerator E_OP_LCM

	

	
enumerator E_OP_AND

	

	
enumerator E_OP_OR

	

	
enumerator E_OP_GT

	

	
enumerator E_OP_LT

	

	
enumerator E_OP_GTE

	

	
enumerator E_OP_LTE

	

	
enumerator E_OP_EQ

	

	
enumerator E_OP_MOD

	

	
enumerator E_OP_AA

	

	
enumerator E_OP_NUM_OPS

	

	
enum e_compound_operator

	Used to identify operators with more than one character.

Values:

	
enumerator E_COM_OP_UNDEFINED

	

	
enumerator E_COM_OP_AND

	

	
enumerator E_COM_OP_OR

	

	
enumerator E_COM_OP_EQ

	

	
enumerator E_COM_OP_AA

	

	
enumerator E_COM_OP_GTE

	

	
enumerator E_COM_OP_LTE

	

	
class Formula_Object

	A class represents an object in a formula.

This object can be any of the following:
	a number

	a bracket

	an operator

	a variable

Public Functions

	
inline Formula_Object()

	constructor

	
inline std::string to_string() const

	convert enum to string

Public Members

	
t_formula_obj type

	indicates the type of formula object this is

	
union u_Data

	object data, accessed based on what kind of object this is

Public Members

	
int num

	for number objects

	
t_operator op

	for operator objects

	
bool left_bracket

	for bracket objects — specifies if this is a left bracket

	
class FormulaParser

	A class to parse formula.

Public Functions

	
int parse_formula(std::string formula, const t_formula_data &mydata, bool is_breakpoint = false)

	returns integer result according to specified formula and data

	
int parse_piecewise_formula(const char *formula, const t_formula_data &mydata)

	returns integer result according to specified piece-wise formula and data

Public Static Functions

	
static bool is_piecewise_formula(const char *formula)

	checks if the specified formula is piece-wise defined

	
class t_formula_data

	a class to hold the formula data

Public Functions

	
inline void clear()

	clears all the formula data

	
inline void set_var_value(vtr::string_view var, int value)

	set the value of a specific part of the formula

	
inline void set_var_value(const char *var, int value)

	set the value of a specific part of the formula (the var can be c-style string)

	
inline int get_var_value(const std::string &var) const

	get the value of a specific part of the formula

	
inline int get_var_value(vtr::string_view var) const

	get the value of a specific part of the formula (the var can be c-style string)

vtr_color_map

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

	
template<class T>
struct Color

	
#include <vtr_color_map.h>

A container to save the rgb components of a color.

	
class ColorMap

	
#include <vtr_color_map.h>

A class that holds a complete color map.

Public Functions

	
ColorMap(float min, float max, const std::vector<Color<float>> &color_data)

	color map constructor

	
virtual ~ColorMap() = default

	color map destructor

	
Color<float> color(float value) const

	Returns the full color corresponding to the input value.

	
float min() const

	Return the min Color of this color map.

	
float max() const

	Return the max color of this color map.

	
float range() const

	Return the range of the color map.

	
class InfernoColorMap : public vtr::ColorMap

	
#include <vtr_color_map.h>

Public Functions

	
InfernoColorMap(float min, float max)

	

	
class PlasmaColorMap : public vtr::ColorMap

	
#include <vtr_color_map.h>

Public Functions

	
PlasmaColorMap(float min, float max)

	

	
class ViridisColorMap : public vtr::ColorMap

	
#include <vtr_color_map.h>

Public Functions

	
ViridisColorMap(float min, float max)

	

vtr_digest

	
std::string vtr::secure_digest_file(const std::string &filepath)

	Generate a secure hash of the file at filepath.

	
std::string vtr::secure_digest_stream(std::istream &is)

	Generate a secure hash of a stream.

vtr_logic

	
namespace vtr

	
Enums

	
enum class LogicValue

	This class represents the different supported logic values.

Values:

	
enumerator FALSE

	

	
enumerator TRUE

	

	
enumerator DONT_CARE

	

	
enumerator UNKOWN

	

vtr_math

This file defines some math operations.

	
namespace vtr

	
Functions

	
constexpr int nint(float val)

	Integer rounding conversion for floats.

	
template<typename T>
T safe_ratio(T numerator, T denominator)

	Returns a ‘safe’ ratio which evaluates to zero if the denominator is zero.

	
template<typename InputIterator>
double median(InputIterator first, InputIterator last)

	Returns the median of the elements in range [first, last].

	
template<typename Container>
double median(Container c)

	Returns the median of a whole container.

	
template<typename InputIterator>
double geomean(InputIterator first, InputIterator last, double init = 1.)

	Returns the geometric mean of the elments in range [first, last)

To avoid potential round-off issues we transform the standard formula: geomean = (v_1 * v_2 * ... * v_n) ^ (1/n)

 by taking the log: geomean = exp((1 / n) * (log(v_1) + log(v_2) + ... + log(v_n)))

	
template<typename Container>
double geomean(Container c)

	Returns the geometric mean of a whole container.

	
template<typename InputIterator>
double arithmean(InputIterator first, InputIterator last, double init = 0.)

	Returns the arithmatic mean of the elements in range [first, last].

	
template<typename Container>
double arithmean(Container c)

	Returns the aritmatic mean of a whole container.

	
template<typename T>
static T gcd(T x, T y)

	Returns the greatest common divisor of x and y.

Note that T should be an integral type

	
template<typename T>
T lcm(T x, T y)

	Return the least common multiple of x and y.

Note that T should be an integral type

	
template<class T>
bool isclose(T a, T b, T rel_tol, T abs_tol)

	Return true if a and b values are close to each other.

	
template<class T>
bool isclose(T a, T b)

	Return true if a and b values are close to each other (using the default tolerances)

	
namespace vtr

	
Functions

	
int ipow(int base, int exp)

	Calculates the value pow(base, exp)

	
float median(std::vector<float> vector)

	Returns the median of an input vector.

	
template<typename X, typename Y>
Y linear_interpolate_or_extrapolate(const std::map<X, Y> *xy_map, X requested_x)

	Linear interpolation/Extrapolation.

Performs linear interpolation or extrapolation on the set of (x,y) values specified by the xy_map. A requested x value is passed in, and we return the interpolated/extrapolated y value at this requested value of x. Meant for maps where both key and element are numbers. This is specifically enforced by the explicit instantiations below this function. i.e. only templates using those types listed in the explicit instantiations below are allowed

	
template double linear_interpolate_or_extrapolate (const std::map< int, double > *xy_map, int requested_x)

	

	
template double linear_interpolate_or_extrapolate (const std::map< double, double > *xy_map, double requested_x)

	

vtr_ostream_guard

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

	
class OsFormatGuard

	
#include <vtr_ostream_guard.h>

A RAII guard class to ensure restoration of output stream format.

Public Functions

	
inline explicit OsFormatGuard(std::ostream &os)

	constructor

	
inline ~OsFormatGuard()

	destructor

	
OsFormatGuard(const OsFormatGuard&) = delete

	

	
OsFormatGuard &operator=(const OsFormatGuard&) = delete

	

	
OsFormatGuard(const OsFormatGuard&&) = delete

	

	
OsFormatGuard &operator=(const OsFormatGuard&&) = delete

	

vtr_path

This file defines some useful utilities to handle paths.

	
std::array<std::string, 2> vtr::split_ext(const std::string &filename)

	Splits off the name and extension (including “.”) of the specified filename.

	
std::string vtr::basename(const std::string &path)

	Returns the basename of path (i.e. the last filename component)

For example, the path “/home/user/my_files/test.blif” -> “test.blif”

	
std::string vtr::dirname(const std::string &path)

	Returns the dirname of path (i.e. everything except the last filename component)

For example, the path “/home/user/my_files/test.blif” -> “/home/user/my_files/”

	
std::string vtr::getcwd()

	Returns the current working directory.

vtr_random

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

Functions

	
template<typename Iter>
void shuffle(Iter first, Iter last, RandState &rand_state)

	Portable/invariant version of std::shuffle.

Note that std::shuffle relies on std::uniform_int_distribution which can produce different sequences accross different compilers/compiler versions.

This version should be deterministic/invariant. However, since it uses vtr::irand(), may not be as well distributed as std::shuffle.

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

Functions

	
void srandom(int seed)

	The pseudo-random number generator is initialized using the argument passed as seed.

	
RandState get_random_state()

	Return The random number generator state.

	
int irand(int imax, RandState &rand_state)

	Return a randomly generated integer less than or equal imax using the generator (rand_state)

	
int irand(int imax)

	Return a randomly generated integer less than or equal imax.

	
float frand()

	Return a randomly generated float number between [0,1].

vtr_rusage

	
namespace vtr

	
Functions

	
size_t get_max_rss()

	Returns the maximum resident set size in bytes, or zero if unable to determine.

vtr_sentinels

This header defines different sentinal value classes.

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

	
template<class T>
class DefaultSentinel

	
#include <vtr_sentinels.h>

The Default sentinal value class.

Some specialized containers like vtr::linear_map and vtr::vector_map require sentinel values to mark invalid/uninitialized values. By convention, such containers query the sentinel objects static INVALID() member function to retrieve the sentinel value.

These classes allows users to specify a custom sentinel value.

Usually the containers default to DefaultSentinel

The sentinel value is the default constructed value of the type

	
template<class T>
class DefaultSentinel<T*>

	
#include <vtr_sentinels.h>

Specialization for pointer types.

	
template<class T, T val>
class CustomSentinel

	
#include <vtr_sentinels.h>

The sentile value is a specified value of the type.

vtr_string_interning

Provides basic string interning, along with pattern splitting suitable for use with FASM.

For reference, string interning refers to keeping a unique copy of a string in storage, and then handing out an id to that storage location, rather than keeping the string around. This deduplicates memory overhead for strings.

This string internment has an additional feature that is splitting the input string into “parts” based on ‘.’, which happens to be the feature seperator for FASM. This means the string “TILE.CLB.A” and “TILE.CLB.B” would be made up of the intern ids for {“TILE”, “CLB”, “A”} and {“TILE”, “CLB”, “B”} respectively, allowing some internal deduplication.

Strings can contain up to kMaxParts, before they will be interned as their whole string.

Interned strings (interned_string) that come from the same internment object (string_internment) can safely be checked for equality and hashed without touching the underlying string. Lexigraphical comprisions (e.g. <) requires reconstructing the string.

Basic usage:
	Create a string_internment

	Invoke string_internment::intern_string, which returns the interned_string object that is the interned string’s unique idenfier. This idenfier can be checked for equality or hashed. If string_internment::intern_string is called with the same string, a value equivalent interned_string object will be returned.

	If the original string is required, interned_string::get can be invoked to copy the string into a std::string. interned_string also provides iteration via begin/end, however the begin method requires a pointer to original string_internment object. This is not suitable for range iteration, so the method interned_string::bind can be used to create a bound_interned_string that can be used in a range iteration context.

For reference, the reason that interned_string’s does not have a reference back to the string_internment object is to keep their memory footprint lower.

	
class string_internment

	Storage of interned string, and object capable of generating new interned_string objects.

Public Functions

	
inline interned_string intern_string(vtr::string_view view)

	Intern a string, and return a unique identifier to that string.

If interned_string is ever called with two strings of the same value, the interned_string will be equal.

	
inline vtr::string_view get_string(StringId id) const

	Retrieve a string part based on id.

This method should not generally be called directly.

	
inline size_t unique_strings() const

	Number of unique string parts stored.

	
class interned_string

	Interned string value returned from a string_internment object.

This is a value object without allocation. It can be checked for equality and hashed safely against other interned_string’s generated from the same string_internment.

Public Functions

	
inline interned_string(std::array<StringId, kMaxParts> intern_ids, size_t n)

	constructor

	
inline void get(const string_internment *internment, std::string *output) const

	Copy the underlying string into output.

internment must the object that generated this interned_string.

	
inline std::string get(const string_internment *internment) const

	Returns the underlying string as a std::string.

This method will allocated memory.

	
inline bound_interned_string bind(const string_internment *internment) const

	Bind the parent string_internment and return a bound_interned_string object.

That bound_interned_string lifetime must be shorter than this interned_string object lifetime, as bound_interned_string contains a reference this object, along with a reference to the internment object.

	
inline interned_string_iterator begin(const string_internment *internment) const

	begin() function

	
inline interned_string_iterator end() const

	end() function

Friends

	
friend bool operator==(interned_string lhs, interned_string rhs) noexcept

	== operator

	
friend bool operator!=(interned_string lhs, interned_string rhs) noexcept

	!= operator

	
class bound_interned_string

	A interned_string bound to it’s string_internment object.

This object is heavier than just an interned_string. This object holds a pointer to interned_string, so its lifetime must be shorter than the parent interned_string.

Public Functions

	
inline bound_interned_string(const string_internment *internment, const interned_string *str)

	constructor

	
inline interned_string_iterator begin() const

	return an iterator to the first part of the interned_string

	
inline interned_string_iterator end() const

	return an iterator to the last part of the interned_string

	
class interned_string_iterator

	Iterator over interned string.

This object is much heavier memory wise than interned_string, so do not store these.

This iterator only accomidates the forward_iterator concept.

Do no construct this iterator directly. Use either bound_interned_string::begin/end or interned_string;:begin/end.

Public Functions

	
inline interned_string_iterator(const string_internment *internment, std::array<StringId, kMaxParts> intern_ids, size_t n)

	constructor for interned string iterator.

Do no construct this iterator directly. Use either bound_interned_string::begin/end or interned_string;:begin/end.

	
inline interned_string_iterator &operator++()

	Increment operator for interned_string_iterator.

	
inline interned_string_iterator operator++(int)

	Increment operator for interned_string_iterator.

Friends

	
friend bool operator==(const interned_string_iterator &lhs, const interned_string_iterator &rhs)

	== operator

vtr_token

Tokenizer.

	Author
	Jason Luu @Date July 22, 2009

Enums

	
enum e_token_type

	Token types.

Values:

	
enumerator TOKEN_NULL

	

	
enumerator TOKEN_STRING

	

	
enumerator TOKEN_INT

	

	
enumerator TOKEN_OPEN_SQUARE_BRACKET

	

	
enumerator TOKEN_CLOSE_SQUARE_BRACKET

	

	
enumerator TOKEN_OPEN_SQUIG_BRACKET

	

	
enumerator TOKEN_CLOSE_SQUIG_BRACKET

	

	
enumerator TOKEN_COLON

	

	
enumerator TOKEN_DOT

	

Functions

	
t_token *GetTokensFromString(const char *inString, int *num_tokens)

	Returns a token list of the text for a given string.

	
void freeTokens(t_token *tokens, const int num_tokens)

	Free (tokens)

	
bool checkTokenType(const t_token token, enum e_token_type token_type)

	Returns true if the token’s type equals to token_type.

	
void my_atof_2D(float **matrix, const int max_i, const int max_j, const char *instring)

	Returns a 2D array representing the atof result of all the input string entries seperated by whitespace.

	
bool check_my_atof_2D(const int max_i, const int max_j, const char *instring, int *num_entries)

	Checks if the number of entries (separated by whitespace) matches the the expected number (max_i * max_j)

can be used before calling my_atof_2D

	
struct t_token

	
#include <vtr_token.h>

Token structure.

Public Members

	
enum e_token_type type

	

	
char *data

	

vtr_util

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

Functions

	
template<typename Iter>
std::string join(Iter begin, Iter end, std::string_view delim)

	Joins a sequence by a specified delimeter.

Template join function implementation.

For example the sequence {“home”, “user”, “my_files”, “test.blif”} with delim=”/” would return “home/user/my_files/test.blif”

	
template<typename Container>
std::string join(Container container, std::string_view delim)

	

	
template<typename T>
std::string join(std::initializer_list<T> list, std::string_view delim)

	

	
template<typename Container>
void uniquify(Container container)

	Template uniquify function implementation.

Removes repeated elements in the container

	
namespace vtr

	std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr namespace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:
	replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

	explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a cleaner interface.

	function return types returning an optional<T> gives the caller a clear hint to check the return value.

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior. this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A: in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply. when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s worth keeping around in the codebase.

Functions

	
std::vector<std::string> split(const char *text, std::string_view delims)

	Splits the c-style string ‘text’ along the specified delimiter characters in ‘delims’.

Splits the string ‘text’ along the specified delimiter characters in ‘delims’.

The split strings (excluding the delimiters) are returned

	
std::vector<std::string> split(std::string_view text, std::string_view delims)

	Splits the string ‘text’ along the specified delimiter characters in ‘delims’.

The split strings (excluding the delimiters) are returned

	
std::string replace_first(std::string_view input, std::string_view search, std::string_view replace)

	Returns ‘input’ with the first instance of ‘search’ replaced with ‘replace’.

	
std::string replace_all(std::string_view input, std::string_view search, std::string_view replace)

	Returns ‘input’ with all instances of ‘search’ replaced with ‘replace’.

	
bool starts_with(const std::string &str, std::string_view prefix)

	Returns true if str starts with prefix.

Retruns true if str starts with prefix.

	
std::string string_fmt(const char *fmt, ...)

	Returns a std::string formatted using a printf-style format string.

	
std::string vstring_fmt(const char *fmt, va_list args)

	Returns a std::string formatted using a printf-style format string taking an explicit va_list.

	
char *strncpy(char *dest, const char *src, size_t size)

	An alternate for strncpy since strncpy doesn’t work as most people would expect. This ensures null termination.

	
char *strdup(const char *str)

	Legacy c-style function replacements.

Typically these add extra error checking and/or correct ‘unexpected’ behaviour of the standard c-functions

	
template<class T>
T atoT(const std::string &value, std::string_view type_name)

	Legacy c-style function replacements.

Typically these add extra error checking and/or correct ‘unexpected’ behaviour of the standard c-functions

	
int atoi(const std::string &value)

	Legacy c-style function replacements.

Typically these add extra error checking and/or correct ‘unexpected’ behaviour of the standard c-functions

	
double atod(const std::string &value)

	Legacy c-style function replacements.

Typically these add extra error checking and/or correct ‘unexpected’ behaviour of the standard c-functions

	
float atof(const std::string &value)

	Legacy c-style function replacements.

Typically these add extra error checking and/or correct ‘unexpected’ behaviour of the standard c-functions

	
unsigned atou(const std::string &value)

	Legacy c-style function replacements.

Typically these add extra error checking and/or correct ‘unexpected’ behaviour of the standard c-functions

	
char *strtok(char *ptr, const char *tokens, FILE *fp, char *buf)

	Get next token, and wrap to next line if \ at end of line.

There is a bit of a “gotcha” in strtok. It does not make a * copy of the character array which you pass by pointer on the

first call. Thus, you must make sure this array exists for

as long as you are using strtok to parse that line. Don’t

use local buffers in a bunch of subroutines calling each

other; the local buffer may be overwritten when the stack is

restored after return from the subroutine.

	
FILE *fopen(const char *fname, const char *flag)

	The legacy fopen function with extra error checking.

	
int fclose(FILE *f)

	The legacy fclose function.

	
char *fgets(char *buf, int max_size, FILE *fp)

	Get an input line, update the line number and cut off any comment part.

A \ at the end of a line with no comment part (#) means continue. vtr::fgetsshould give identical results for Windows (\r

) and Linux (

) newlines, since it replaces each carriage return \r by a newline character

. Returns NULL after EOF.

	
char *getline(char *&_lineptr, FILE *_stream)

	to get an arbitrary long input line and cut off any comment part

the getline function is exaly like the __get_delim function in GNU with ‘

’ delimiter. As a result, to make the function behaviour identical for Windows (\r

) and Linux (

) compiler macros for checking operating systems have been used.

Note

user need to take care of the given pointer, which will be dynamically allocated by getdelim

	
int get_file_line_number_of_last_opened_file()

	Returns line number of last opened and read file.

File utilities.

	
bool file_exists(const char *filename)

	

	
bool check_file_name_extension(std::string_view file_name, std::string_view file_extension)

	Checks the file extension of an file to ensure correct file format.

Returns true if the extension is correct, and false otherwise.

	
std::vector<std::string> ReadLineTokens(FILE *InFile, int *LineNum)

	Legacy ReadLine Tokening.

	
int get_pid()

	Returns pid if os is unix, -1 otherwise.

 VPR INTERNALS

VPR INTERNALS

	VPR Draw Structures

	VPR UI

	VPR Draw Files

	VPR NoC

 VPR Draw Structures

VPR Draw Structures

T_Draw_State

	
struct t_draw_state

	Structure used to store variables related to highlighting/drawing.

Stores a lot of different variables to reflect current draw state. Most callback functions/UI elements mutate some member in this struct, which then alters the draw state. Accessible through global function get_draw_state_vars() in draw_global.cpp. It is recommended to name the variable draw_state for consistent form.

Note

t_draw_state is used in the same way as a Context, but cannot be a Context because Contexts are not copyable, while t_draw_state must be. (t_draw_state is copied to save a restore of the graphics state when running graphics commands.)

Public Members

	
pic_type pic_on_screen = NO_PICTURE

	What to draw on the screen (ROUTING, PLACEMENT, NO_PICTURE)

	
e_draw_nets show_nets = DRAW_NO_NETS

	Whether to show nets at placement and routing.

	
e_draw_crit_path show_crit_path = DRAW_NO_CRIT_PATH

	Whether to show crit path.

	
e_draw_congestion show_congestion = DRAW_NO_CONGEST

	Controls if congestion is shown, when ROUTING is on screen.

	
e_draw_routing_costs show_routing_costs

	Controls if routing congestion costs are shown, when ROUTING is on screen.

	
e_draw_block_pin_util show_blk_pin_util = DRAW_NO_BLOCK_PIN_UTIL

	Toggles whether block pin util is shown.

	
e_draw_router_expansion_cost show_router_expansion_cost = DRAW_NO_ROUTER_EXPANSION_COST

	Toggles whether router expansion cost is shown.

	
e_draw_placement_macros show_placement_macros = DRAW_NO_PLACEMENT_MACROS

	Toggles whether placement macros are shown.

	
e_draw_routing_util show_routing_util = DRAW_NO_ROUTING_UTIL

	toggles whether routing util is shown

	
e_draw_rr_toggle draw_rr_toggle = DRAW_NO_RR

	Controls drawing of routing resources on screen, if pic_on_screen is ROUTING.

	
bool clip_routing_util = false

	Whether routing util is shown.

	
bool draw_block_outlines = true

	Boolean that toggles block outlines are shown.

	
bool draw_block_text = true

	Boolean that toggles block names.

	
bool draw_partitions = false

	Boolean that toggles showing partitions.

	
int draw_net_max_fanout = std::numeric_limits<int>::max()

	integer value for net max fanout

	
int max_sub_blk_lvl = 0

	The maximum number of sub-block levels among all physical block types in the FPGA.

	
int show_blk_internal = 0

	If 0, no internal drawing is shown. Otherwise, indicates how many levels of sub-pbs to be drawn.

	
bool show_graphics = false

	Whether graphics are enabled.

	
int gr_automode = 0

	How often is user input required. (0: each t, 1: each place, 2: never)

	
bool auto_proceed = false

	Should we automatically finish drawing (instead of waiting in the event loop for user interaction?

	
e_route_type draw_route_type = GLOBAL

	GLOBAL or DETAILED.

	
char default_message[vtr::bufsize]

	default screen message on screen

	
vtr::vector<ClusterNetId, ezgl::color> net_color

	color in which each net should be drawn. [0..cluster_ctx.clb_nlist.nets().size()-1]

	
vtr::vector<RRNodeId, t_draw_rr_node> draw_rr_node

	stores the state information of each routing resource.

Used to control drawing each routing resource when ROUTING is on screen. [0..device_ctx.rr_nodes.size()-1]

	
const t_arch *arch_info = nullptr

	pointer to architecture info. const

	
bool save_graphics = false

	Whether to generate an output graphics file.

	
bool forced_pause = false

	If we should pause for user interaction (requested by user)

	
float pres_fac = 1.

	Present congestion cost factor used when drawing. Is a copy of router’s current pres_fac.

	
bool show_noc_button = false

	Whether we are showing the NOC button.

	
e_draw_noc draw_noc = DRAW_NO_NOC

	Draw state for NOC drawing.

	
bool justEnabled = false

	Tracks autocomplete enabling.

	
std::vector<t_draw_layer_display> draw_layer_display

	Stores visibility and transparency drawing controls for each layer [0 … grid.num_layers -1].

	
t_draw_layer_display cross_layer_display

	Visibility and transparency for elements that cross die layers.

	
std::string save_graphics_file_base = "vpr"

	base of save graphics file name (i.e before extension)

T_Draw_Coords

	
struct t_draw_coords

	Global Struct that stores drawn coords/sizes of grid blocks/logic blocks.

Structure used to store coordinates and dimensions for grid tiles and logic blocks in the FPGA. Accessible through the global function get_draw_coords_vars().

Public Functions

	
t_draw_coords()

	constructor

	
float get_tile_width()

	returns tile width

	
float get_tile_height()

	returns tile width

	
ezgl::rectangle get_pb_bbox(ClusterBlockId clb_index, const t_pb_graph_node &pb_gnode)

	returns bounding box for given pb in given clb

	
ezgl::rectangle get_pb_bbox(int grid_layer, int grid_x, int grid_y, int sub_block_index, const t_logical_block_type_ptr type, const t_pb_graph_node &pb_gnode)

	returns bounding box of sub block at given location of given type w. given pb

	
ezgl::rectangle get_pb_bbox(int grid_layer, int grid_x, int grid_y, int sub_block_index, const t_logical_block_type_ptr type)

	returns pb of sub block of given idx/given type at location

	
ezgl::rectangle get_absolute_pb_bbox(const ClusterBlockId clb_index, const t_pb_graph_node *pb_gnode)

	returns a bounding box for the given pb in the given clb with absolute coordinates, that can be directly drawn.

	
ezgl::rectangle get_absolute_clb_bbox(const ClusterBlockId clb_index, const t_logical_block_type_ptr type)

	Returns bounding box for CLB of given idx/type.

	
ezgl::rectangle get_absolute_clb_bbox(int grid_layer, int grid_x, int grid_y, int sub_block_index)

	Returns a bounding box for the clb at device_ctx.grid[grid_x][grid_y].blocks[sub_block_index], even if it is empty.

	
ezgl::rectangle get_absolute_clb_bbox(int grid_layer, int grid_x, int grid_y, int sub_block_index, const t_logical_block_type_ptr block_type)

	Returns a bounding box for the clb at device_ctx.grid[grid_x][grid_y].blocks[sub_block_index], of given type even if it is empty.

Public Members

	
float *tile_x

	Form the axes of the chips coordinate system.

tile_x and tile_y form two axes that make a COORDINATE SYSTEM for grid_tiles, which goes from (tile_x[0],tile_y[0]) at the lower left corner of the FPGA to (tile_x[device_ctx.grid.width()-1]+tile_width, tile_y[device_ctx.grid.height()-1]+tile_width) in the upper right corner.

	
float pin_size

	Half-width or Half-height of a pin. Set when init_draw_coords is called.

	
std::vector<t_draw_pb_type_info> blk_info

	stores drawing information for different block types

a list of drawing information for each type of block, one for each type. Access it with cluster_ctx.clb_nlist.block_type(block_id)->index

 VPR UI

VPR UI

UI SETUP

Functions

	
void basic_button_setup(ezgl::application *app)

	configures basic buttons

Sets up Window, Search, Save, and SearchType buttons. Buttons are created in glade main.ui file. Connects them to their cbk functions. Always called.

	
void net_button_setup(ezgl::application *app)

	sets up net related buttons and connects their signals

Sets up the toggle nets combo box, net alpha spin button, and max fanout spin button which are created in main.ui file. Found in Net Settings dropdown. Always called.

	
void block_button_setup(ezgl::application *app)

	sets up block related buttons, connects their signals

Connects signals and sets init. values for blk internals spin button, blk pin util combo box,placement macros combo box, and noc combo bx created in main.ui. Found in Block Settings dropdown. Always Called.

	
void search_setup(ezgl::application *app)

	Loads required data for search autocomplete, sets up special completion fn.

	
void routing_button_setup(ezgl::application *app)

	configures and connects signals/functions for routing buttons

Connects signals/sets default values for toggleRRButton, ToggleCongestion, ToggleCongestionCost, ToggleRoutingBBox, RoutingExpansionCost, ToggleRoutingUtil buttons. Called in all startup options/runs that include Routing

Connects signals/sets default values for toggleRRButton, ToggleCongestion, ToggleCongestionCost, ToggleRoutingBBox, RoutingExpansionCost, ToggleRoutingUtil buttons.

	
void view_button_setup(ezgl::application *app)

	configures and connects signals/functions for View buttons

Determines how many layers there are and displays depending on number of layers

	
void crit_path_button_setup(ezgl::application *app)

	connects critical path button to its cbk fn. Called in all setup options that show crit. path

	
void hide_crit_path_routing(ezgl::application *app, bool hide)

	Hides or displays Critical Path routing / routing delay UI elements, Use to ensure we don’t show inactive buttons etc. when routing data doesn’t exist.

	
void load_block_names(ezgl::application *app)

	Loads block names into Gtk Structures to enable autocomplete.

Loads block names into Gtk Structures to enable autocomplete.

	Parameters:

	app – ezgl application used for ui

	
void load_net_names(ezgl::application *app)

	Loads net names into Gtk ListStore to enable autocomplete.

	
void hide_widget(std::string widgetName, ezgl::application *app)

	Hides widget with given name; name is id string created in Glade.

	
void show_widget(std::string widgetName, ezgl::application *app)

	Shows widget with given name; name is id string created in Glade.

Shows widget with given name; name is id string created in Glade.

 VPR Draw Files

VPR Draw Files

breakpoint.h/cpp

This file holds the declaration of the breakpoint class, and also some of the breakpoint related functions.

This class holds the definiton of type Breakpoint as well as all related functions. Breakpoints can be set through the GUI anytime during placement or routing. Breakpoints can also be activated, deactivated, and deleted. Each breakpoint has a type (BT_MOVE_NUM, BT_TEMP_NUM, BT_FROM_BLOCK, BT_ROUTER_ITER, BT_ROUTE_NET_ID, BT_EXPRESSION) and holds the values for corresponding to its type, as well as a boolean variable to activate and deactivate a breakpoint. It should be noted that each breakpoint can only have one type and hold one value corresponding to that type. More complicated breakpoints are set using an expression. (e.g move_num > 3 && block_id == 11) Breakpoints can be create using 3 constructors, the default contructor that doesn’t identify the type and sets a breakpoint that is never reached, a constructor that takes in the type and an int value, and lastly a constructor that takes in the type and the sting that holds the expression. (e.g Breakpoint(BT_MOVE_NUM, 4) or Breakpoint(BT_EXPRESSION, “move_num += 3”)) The == operator has also been provided which returns true when two breakpoints have the same type, and the same value corresponding to the type.

draw_basic.h/cpp

draw_basic.cpp contains all functions that draw in the main graphics area that aren’t RR nodes or muxes (they have their own file). All functions in this file contain the prefix draw_.

draw_color.h

Contains declarations for different colors used to draw blocks, as well as a global vector of colors shuffled to prevent similar colors from being close together

draw_debug.h/cpp

This file contains all functions regarding the graphics related to the setting of place and route breakpoints. Manages creation of new Gtk Windows with debug options on use of the “Debug” button.

draw_floorplanning.h/cpp

draw_global.h/cpp

This file contains declaration of accessor functions that can be used to retrieve global variables declared at filed scope inside draw_global.c. Doing so could reduce the number of global variables in VPR and thus reduced the likelihood of compiler error for declaration of multiple variables with the same name.

Author: Long Yu (Mike) Wang Date: August 21, 2013

draw_mux.h/cpp

This file contains all functions related to drawing muxes

draw_noc.h/cpp

Overview

The following steps are all performd when displaying the NoC:
	First, the state of the NoC display button is checked. If the user selected to not display the NoC, then nothing is displayed.

	If the user selected to display the NoC, then first the NoC routers are highlighted. The highlighting is done on top of the already drawn FPGA device within the canvas.

	Then links are drawn on top of the FPGA device, connecting the routers together based on the topology. There is an option to display the “usage” of each link in the NoC. If this is selected then a color map legend is drawn and each link is colored based on how much of its bandwidth is being used relative to its maximum capaity.

Author: Srivatsan Srinivasan

draw_rr_edges.h/cpp

draw_rr_edges.cpp contains all functions that draw lines between RR nodes.

draw_rr.h/cpp

draw_rr.cpp contains all functions that relate to drawing routing resources.

draw_searchbar.h/cpp

draw_searchbar contains functions that draw/highlight search results, and manages the selection/highlighting of currently selected options.

draw_toggle_functions.h/cpp

This file contains all of the callback functions for main UI elements. These callback functions alter the state of a set enum member in t_draw_state (draw_types.cpp) which is then reflected in the drawing. Please add any new callback functions here, and if it makes sense, add _cbk at the end of function name to prevent someone else calling it in any non gtk context.

Author: Sebastian Lievano

draw_triangle.h/cpp

draw_triangle.cpp contains functions that draw triangles. Used for drawing arrows for showing switching in the routing, direction of signals, flylines

draw_types.h/cpp

This file contains declarations of structures and types shared by all drawing routines.

Key structures: t_draw_coords - holds coordinates and dimensions for each grid tile and each logic block t_draw_state - holds variables that control drawing modes based on user input (eg. clicking on the menu buttons)
	holds state variables that control drawing and highlighting of architectural elements on the FPGA chip

Author: Long Yu (Mike) Wang, Sebastian Lievano

draw.h/cpp

The main drawing file. Contains the setup for ezgl application, ui setup, and graphis functions

This is VPR’s main graphics application program. The program interacts with ezgl/graphics.hpp, which provides an API for displaying graphics on both X11 and Win32. The most important subroutine in this file is draw_main_canvas(), which is a callback function that will be called whenever the screen needs to be updated. Then, draw_main_canvas() will decide what drawing subroutines to call depending on whether PLACEMENT or ROUTING is shown on screen. The initial_setup_X() functions link the menu button signals to the corresponding drawing functions. As a note, looks into draw_global.c for understanding the data structures associated with drawing->

Contains all functions that didn’t fit in any other draw_*.cpp file.

Authors: Vaughn Betz, Long Yu (Mike) Wang, Dingyu (Tina) Yang, Sebastian Lievano Last updated: August 2022

hsl.h/cpp

This file manages conversions between color (red, green, and blue) and hsl (hue, saturation, and luminesence)

intra_logic_block.h/cpp

This file manages the interactions between logic blocks, cluster blocks, and their sub blocks Contains declaration of selected_Sub_block_info struct, which holds the information on the currently selected/highlighted block

Authors: Long Yu Wang, Matthew J.P. Walker, Sebastian Lievano

manual_moves.h/cpp

Includes the data structures and gtk function for manual moves. The Manual Move Generator class is defined manual_move_generator.h/cpp.

Author: Paula Perdomo

save_graphics.h/cpp

Manages saving of graphics in different file formats

search_bar.h/cpp

This file essentially follows the whole search process, from searching, finding the match, and finally highlighting the searched for item. Also includes auto-complete functionality/matching functions.

Author: Sebastian Lievano

ui_setup.h/cpp

UI Members are initialized and created through a main.ui file, which is maintained and edited using the Glade program. This file (ui_setup.h/cpp) contains the setup of these buttons, which are connected to their respective callback functions in draw_toggle_functions.cpp.

Author: Sebastian Lievano

 VPR NoC

VPR NoC

	NoC Router

	NoC Link

	NoC Storage

	NoC Traffic Flows

	NoC Routing

	NoC Data Types

 NoC Router

NoC Router

NocRouter

This file defines the NocRouter class.

Overview

The NocRouter represents a physical router in the NoC. The NocRouter acts as nodes in the NoC and is used as entry points to the NoC. The NocRouters are created based on the topology information provided by the user in the arch file.

The NocRouter contains the following information:
	The router id. This represents the unique ID given by the user in the architecture description file when describing a router. The purpose of this is to help the user identify the router when logging information or displaying errors.

	The grid position of the physical router tile this object represents. Each router in the NoC represents a physical router tile in the FPGA device. By storing the grid positions, we can quickly get the corresponding physical router tile information by searching the DeviceGrid in the device context.

	The design module (router cluster blocks) currently occupying this tile. Within the user design there will be a number of instantiations of NoC routers. The user will also provide information about which router blocks will be communication with each other. During placement, it is possible for the router blocks to move between the physical router tiles, so by storing the module reference, we can determine which physical router tiles are communicating between each other and find a route between them.

	
class NocRouter

	
#include <noc_router.h>

Public Functions

	
NocRouter(int id, int grid_position_x, int grid_position_y, int layer_position)

	

	
int get_router_user_id(void) const

	Gets the unique id assigned by the user for the physical router.

	Returns:

	A numerical value (integer) that represents the physical router id

	
int get_router_grid_position_x(void) const

	Gets the horizontal position on the FPGA device that the physical router is located.

	Returns:

	A numerical value (integer) that represents horizontal position of the physical router

	
int get_router_grid_position_y(void) const

	Gets the vertical position on the FPGA device that the physical router is located.

	Returns:

	A numerical value (integer) that represents vertical position of the physical router

	
int get_router_layer_position(void) const

	Gets the layer number of the die the the physical router is located.

	Returns:

	A numerical value (integer) that represents layer position of the physical router

	
t_physical_tile_loc get_router_physical_location(void) const

	Gets the physical location where the the physical router is located.

	Returns:

	t_physical_tile_loc that contains x-y coordinates and the layer number

	
ClusterBlockId get_router_block_ref(void) const

	Gets the unique id of the router block that is current placed on the physical router.

	Returns:

	A ClusterBlockId that identifies a router block in the clustered netlist

	
void set_router_block_ref(ClusterBlockId router_block_ref_id)

	Sets the router block that is placed on the physical router.

	Parameters:

	router_block_ref_id – A ClusterBlockId that represents a router block

Private Members

	
int router_user_id

	This represents a unique id provided by the user when describing the NoC topology in the arch file. The intended use is to report errors with router ids the user understands

	
int router_grid_position_x

	Represents the horizontal grid position on the device the physical router tile is located

	
int router_grid_position_y

	Represents the vertical grid position on the device the physical router is located

	
int router_layer_position

	Represents the layer number of the die that the physical router is located

	
ClusterBlockId router_block_ref

	A unique identifier that represents a router block in the clustered netlist that is placed on the physical router

 NoC Link

NoC Link

NocLink

This file defines the NocLink class.

Overview

The NocLink represents a connection between two routers in the NoC. The NocLink acts as edges in the NoC and can be used to traverse between routers.The NocLinks are created based on the user provided topology information in the arch file. The NocLink contains the following information:

	The source router and destination router the link connects

	The bandwidth usage of the link. When a link is used within a traffic flow (communication between two routers), each link in the communication path needs to support a predefined bandwidth of the flow. Every time a link is used in a flow, its bandwidth usage increases based on the bandwidth needed by this link. This is useful to track as it can indicate when a link is being overused (the bandwidth usage exceeds the links supported capability).

Example: ---------- ----------
/ / link / /
/ router / --------------------->/ router /
/ a / / b /
/ / / /
/--------/ /--------/

 In the example above the links source router would be router a and the sink router would be router b.

	
class NocLink

	
#include <noc_link.h>

Public Functions

	
NocLink(NocLinkId link_id, NocRouterId source_router, NocRouterId sink_router, double bw)

	

	
NocRouterId get_source_router(void) const

	Provides the id of the router that has this link as an outgoing edge.

	Returns:

	A unique id (NocRouterId) that identifies the source router of the link

	
NocRouterId get_sink_router(void) const

	Provides the id of the router that has this link as an incoming edge.

	Returns:

	A unique id (NocRouterId) that identifies the sink router of the link

	
double get_bandwidth_usage(void) const

	Provides the size of the data (bandwidth) being currently transmitted using the link.

	Returns:

	A numeric value of the bandwidth usage of the link

	
double get_bandwidth(void) const

	Returns the maximum bandwidth that the link can carry without congestion.

	Returns:

	A numeric value of the bandwidth capacity of the link

	
double get_congested_bandwidth(void) const

	Calculates the extent to which the current bandwidth utilization exceeds the link capacity. Any positive value means the link is congested.

	Returns:

	A numeric value of the bandwidth over-utilization in the link

	
double get_congested_bandwidth_ratio() const

	Computes the congested bandwidth to bandwidth capacity ratio.

	Returns:

	The congested bandwidth to bandwidth capacity of the link.

	
NocLinkId get_link_id() const

	Returns the unique link ID. The ID can be used to index vtr::vector<NoCLinkId, …> instances.

	Returns:

	The unique ID for the link

	
void set_source_router(NocRouterId source)

	Can be used to set the source router of the link to a different router.

	Parameters:

	source – An identifier representing the router that should be the source of this link

	
void set_sink_router(NocRouterId sink)

	Can be used to set the sink router of the link to a different router.

	Parameters:

	sink – An identifier representing the router that should be the sink of this link

	
void set_bandwidth_usage(double new_bandwidth_usage)

	Can modify the bandwidth usage of the link. It is expected that when the NoC is being placed the traffic flows will be re-routed multiple times. So the links will end up being used and un-used by different traffic flows and the bandwidths of the links will correspondingly change. This function can be used to make those changes.

	Parameters:

	new_bandwidth_usage – The new value of the bandwidth usage of the link

	
void set_bandwidth(double new_bandwidth)

	Sets the bandwidth capacity of the link. This function should be used when global NoC data structures are created and populated. The bandwidth capacity is used along with bandwidth_usage to measure congestion.

	Parameters:

	new_bandwidth – The new value of the bandwidth of the link

	
operator NocLinkId() const

	Returns the unique link ID. The ID can be used to index vtr::vector<NoCLinkId, …> instances.

	Returns:

	The unique ID for the link

Private Members

	
NocLinkId id

	

	
NocRouterId source_router

	The router which uses this link as an outgoing edge

	
NocRouterId sink_router

	The router which uses this link as an incoming edge

	
double bandwidth_usage

	Represents the bandwidth of the data being transmitted on the link. Units in bits-per-second(bps)

	
double bandwidth

	Represents the maximum bits per second that can be transmitted over the link without causing congestion

 NoC Storage

NoC Storage

NocStorage

This file defines the NocStorage class.

Overview

The NocStorage class represents the model of the embedded NoC in the FPGA device. The model describes the topology of the NoC, its placement on the FPGA and properties of the NoC components. The NocStorage consists of two main components, which are routers and links. The routers and links can be accessed to retrieve information about them using unique identifier (NocRouterId, NocLinkId). Each router and link modelled in the NoC has a unique ID.

Router

A router is component of the NoC and is defined by the NocRouter class. Routers are represent physical FPGA tiles and represent entry and exit points to and from the NoC.

Link

A link is a component of the NoC and is defined by the NocLink class. Links are connections between two routers. Links are used by routers to communicate with other routers in the NoC. They can be thought of as edges in a graph. Links have a source router where they exit from and sink router where they enter. It is important to note that the links are not bi-directional; the legal way to traverse a link is from the source router of the link to the sink router.

	
class NocStorage

	
#include <noc_storage.h>

Public Functions

	
NocStorage()

	

	
const std::vector<NocLinkId> &get_noc_router_connections(NocRouterId id) const

	Gets a vector of outgoing links for a given router in the NoC. THe link vector cannot be modified.

	Parameters:

	id – A unique identifier that represents a router

	Returns:

	A vector of links. The links are represented by a unique identifier.

	
const vtr::vector<NocRouterId, NocRouter> &get_noc_routers(void) const

	Get all the routers in the NoC. The routers themselves cannot be modified. This function should be used to when information on all routers is needed.

	Returns:

	A vector of routers.

	
int get_number_of_noc_routers(void) const

	
	Returns:

	An integer representing the total number of routers within the NoC.

	
const vtr::vector<NocLinkId, NocLink> &get_noc_links(void) const

	Get all the links in the NoC. The links themselves cannot be modified. This function should be used when information on every link is needed.

	Returns:

	A vector of links.

	
vtr::vector<NocLinkId, NocLink> &get_mutable_noc_links(void)

	Get all the links in the NoC. The links themselves can be modified. This function should be used when information on every link needs to be modified.

	Returns:

	A vector of links.

	
int get_number_of_noc_links(void) const

	
	Returns:

	An integer representing the total number of links within the NoC.

	
double get_noc_link_bandwidth(void) const

	Get the maximum allowable bandwidth for a link within the NoC.

	Returns:

	a numeric value that represents the link bandwidth in bps

	
double get_noc_link_latency(void) const

	Get the latency of traversing through a link in the NoC.

	Returns:

	a numeric value that represents the link latency in seconds

	
double get_noc_router_latency(void) const

	Get the latency of traversing through a router in the NoC.

	Returns:

	a numeric value that represents the router latency in seconds

	
const NocRouter &get_single_noc_router(NocRouterId id) const

	Given a unique router identifier, get the corresponding router within the NoC. The router cannot be modified, so the intended use of this function is to retrieve information about a specific router.

	Parameters:

	id – A unique router identifier.

	Returns:

	A router (NocRouter) that is identified by the given id.

	
NocRouter &get_single_mutable_noc_router(NocRouterId id)

	Given a unique router identifier, get the corresponding router within the NoC. The router can be modified, so the intended use of this function is to retrieve a router to modify it.

	Parameters:

	id – A unique router identifier.

	Returns:

	A router (NocRouter) that is identified by the given id.

	
const NocLink &get_single_noc_link(NocLinkId id) const

	Given a unique link identifier, get the corresponding link within the NoC. The link cannot be modified, so the intended use of this function is to retrieve information about a specific link.

	Parameters:

	id – A unique link identifier.

	Returns:

	A link (NocLink) that is identified by the given id.

	
NocLinkId get_single_noc_link_id(NocRouterId src_router, NocRouterId dst_router) const

	Given source and sink router identifiers, this function finds a link connecting these routers and returns its identifier. If such a link does not exist, an invalid id is returned. The function is not optimized for performance as it has a complexity of O(N_links).

	Parameters:

	
	src_router – The unique router identifier for the source router.

	dst_router – The unique router identifier for the destination router.

	Returns:

	A link identifier (NocLinkId) that connects the source router to the destination router. NocLinkId::INVALID() is such a link is not found.

	
NocLink &get_single_mutable_noc_link(NocLinkId id)

	Given a unique link identifier, get the corresponding link within the NoC. The link can be modified, so the intended use of this function is tis to retrieve a link to modify it.

	Parameters:

	id – A unique link identifier.

	Returns:

	A link (NocLink) that is identified by the given id.

	
NocRouterId get_router_at_grid_location(const t_pl_loc &hard_router_location) const

	Given a grid location of a hard router block on the FPGA device this function determines the id of the hard router block positioned on that grid location.

	Parameters:

	hard_router_location – A struct that contains the grid location of an arbitrary hard router block on the FPGA.

	Returns:

	NocRouterId The hard router block “id”

located at the given grid location.

	
void add_router(int id, int grid_position_x, int grid_position_y, int layer_poisition)

	Creates a new router and adds it to the NoC. When the router is created, its corresponding internal id (NocRouterId) is also created and a conversion between the user supplied id to the internal id is setup. If “finish_building_noc()” was called then calling this function after will throw an error as the NoC cannot be modified after building the NoC.

	Parameters:

	
	id – The user supplied identification for the router.

	grid_position_x – The horizontal position on the FPGA of the physical tile that this router represents.

	grid_position_y – The vertical position on the FPGA of the physical tile that this router represents.

	
void add_link(NocRouterId source, NocRouterId sink)

	Creates a new link and adds it to the NoC. The newly created links internal id (NocLinkId) is then added to the vector of outgoing links of its source router. If “finish_building_noc()” was called then calling this function after will throw an error as the NoC cannot be modified after building the NoC.

	Parameters:

	
	source – A unique identifier for the router that the new link exits from (outgoing from the router)

	sink – A unique identifier for the router that the new link enters into (incoming to the router)

	
void set_noc_link_bandwidth(double link_bandwidth)

	Set the maximum allowable bandwidth for a link within the NoC.

	
void set_noc_link_latency(double link_latency)

	Set the latency of traversing through a link in the NoC.

	
void set_noc_router_latency(double router_latency)

	Set the latency of traversing through a router in the NoC.

	
void set_device_grid_width(int grid_width)

	Set the internal reference to the device grid width.

	
void set_device_grid_spec(int grid_width, int grid_height)

	

	
bool remove_link(NocRouterId src_router_id, NocRouterId sink_router_id)

	The link is removed from the outgoing vector of links for the source router. The link is not removed from the vector of all links as this will require a re-indexing of all link ids. Instead, the link is set to being invalid by. The link is still removed since it will be considered invalid when used externally. THe link is identified by going through the vector outgoing links of the supplied source router, for each outgoing link the sink router is compared the supplied sink router and the link to remove is identified if there is a match. If the link doesn’t exist in the NoC then a warning message is printed and a boolean status is updated indicating that the link does not exist in the NoC.

	Parameters:

	
	src_router_id – The source router of the traffic flow to delete

	sink_router_id – The sink router of the traffic flow to delete

	Returns:

	true The link was successfully removed

	Returns:

	false The link was not removed

	
void finished_building_noc(void)

	Asserts an internal flag which represents that the NoC has been built. This means that no changes can be made to the NoC (routers and links cannot be added or removed). This function should be called after building the NoC. Guarantees that no future changes can be made.

	
void clear_noc(void)

	Resets the NoC by clearing all internal datastructures. This includes deleting all routers and links. Also all internal IDs are removed (the is conversion table is cleared). It is recommended to run this function before building the NoC.

	
NocRouterId convert_router_id(int id) const

	Given a user id of a router, this function converts the id to the equivalent internal NocRouterId. If there were no routers in the NoC with the given id an error is thrown.

	Parameters:

	id – The user supplied identification for the router.

	Returns:

	The equivalent internal NocRouterId.

	
void make_room_for_noc_router_link_list(void)

	The datastructure that stores the outgoing links to each router is an 2-D Vector. When processing the links, they can be outgoing from any router in the NoC. Therefore the column size of the 2-D vector needs to be the size of the number of routers in the NoC. The function below sets the column size to the number of routers in the NoC.

	
NocLinkId get_parallel_link(NocLinkId current_link) const

	Two links are considered parallel when the source router of one link is the sink router of the second link and when the sink router of one link is the source router of the other link. Given a link, this functions finds a parallel link, if no link is found then an invalid link is returned.

Example: ---------- ----------
/ / link 1 / /
/ router / --------------------->/ router /
/ a / <---------------------/ b /
/ / link 2 / /
/--------/ /--------/

 In the example above, link 1 and link 2 are parallel.

	Parameters:

	current_link – A unique identifier that represents a link

	Returns:

	NocLinkId An identifier that represents a link that is parallel to the input link.

	
int generate_router_key_from_grid_location(int grid_position_x, int grid_position_y, int layer_position) const

	Generates a unique integer using the x and y coordinates of a hard router block that can be used to identify it. This should be used to generate the keys for the ‘grid_location_to_router_id’ datastructure.

The key will be generated as follows: key = y * device_grid.width() + x

	Parameters:

	
	grid_position_x – The horizontal position on the FPGA of the physical tile that this router represents.

	grid_position_y – The vertical position on the FPGA of the phyical tile that this router represents.

	layer_position – The layer number of the phyical tile that this router represents.

	Returns:

	int Represents a unique key that can be used to identify a hard router block.

	
void echo_noc(char *file_name) const

	Writes out the NocStorage class information to a file. This includes the list of routers and their connections to other routers in the NoC.

	Parameters:

	file_name – The name of the file that contains the NoC model info.

Private Functions

	
NocStorage(const NocStorage&) = delete

	

	
void operator=(const NocStorage&) = delete

	

Private Members

	
vtr::vector<NocRouterId, NocRouter> router_storage

	Contains all the routers in the NoC

	
vtr::vector<NocRouterId, std::vector<NocLinkId>> router_link_list

	Stores outgoing links for each router in the NoC. These links can be used by the router to communicate to other routers in the NoC.

	
vtr::vector<NocLinkId, NocLink> link_storage

	Contains all the links in the NoC

	
std::unordered_map<int, NocRouterId> router_id_conversion_table

	The user provides an ID for the router when describing the NoC in the architecture file. This ID system will be different than the NocRouterIds assigned to each router. The user ID system will be arbitrary but the internal ID system used here will start at 0 and are dense since it is used to index the routers. The datastructure below is a conversiont able that maps the user router IDs to the corresponding internal ones.

	
std::unordered_map<int, NocRouterId> grid_location_to_router_id

	Associates the hard (physical) routers on the device to their grid location. During placement, when logical routers are moved to different hard routers, only the grid location of where the logical router was moved is known. Using this datastructure, the grid location can be used to identify the corresponding hard router block positioned at that grid location. The NocROuterId uniquely identifies hard router blocks and can be used to retrieve the hard router block information using the router_storage data structure above. This can also be used to access the connectivity graph datastructure above.

It is important to know the specific hard router block because without it we cannot determine the starting/end points of the traffic flows associated to the moved logical router. We need this so that we can re-route all traffic flows and evaluate the the placement cost of the moved logical router block.

The intended use is when trying to re-route a traffic flow. The current location of a logical router block can be used in conjunction with this datastructure to identify the corresponding hard router block.

	
bool built_noc

	A flag that indicates whether the NoC has been built. If this flag is true, then the NoC cannot be modified, meaning that routers and links cannot be added or removed. The intended use of this flag is to set it after you complete building the NoC (adding routers and links). This flag can then acts as a check so that the NoC is not modified later on after building it.

	
double noc_link_bandwidth

	Represents the maximum allowed bandwidth for the links in the NoC (in bps)

	
double noc_link_latency

	Represents the delay expected when going through a link (in seconds)

	
double noc_router_latency

	Represents the expected delay when going through a router (in seconds))

	
int device_grid_width

	Internal reference to the device grid width. This is necessary to compute a unique key for a given grid location which we can then use to get the corresponding physical (hard) router at the given grid location using ‘grid_location_to_router_id’.

	
int layer_num_grid_locs

	Internal reference to the number of blocks at each layer (width * height). This is necessary to compute a unique key for a given grid location which we can then use to get the corresponding physical (hard) router at the given grid location using ‘grid_location_to_router_id’.

 NoC Traffic Flows

NoC Traffic Flows

NocTrafficFlows

This file defines the NocTrafficFlows class, which contains all communication between routers in the NoC.

Overview

The NocTrafficFlows class contains all traffic flows in a given design. A traffic flow is defined by the t_noc_traffic_flow struct. Each traffic flow is indexed by a unique id that can be used to retrieve information about them.

The class also associates traffic flows to their logical source routers (start point) and logical sink routers (end point). This is useful if one wants to find traffic flows based on just the source or sink logical router. The routes for the traffic flows are expected to change throughout placement as routers will be moved within the chip. Therefore this class provides a datastructure to keep track of which flows have been updated (re-routed).

Finally, this class also stores all router blocks (logical routers) in the design.

This class will be primarily used during placement to identify which routers inside the NoC (NocStorage) need to be routed to each other.This is important since the router modules can be moved around to different tiles on the FPGA device.

	
struct t_noc_traffic_flow

	
#include <noc_traffic_flows.h>

Describes a traffic flow within the NoC, which is the communication between two logical routers. The NocTrafficFlows contains a number of this structure to describe all the communication happening within the NoC.

Public Functions

	
inline t_noc_traffic_flow(std::string source_router_name, std::string sink_router_name, ClusterBlockId source_router_id, ClusterBlockId sink_router_id, double flow_bandwidth, double max_flow_latency, int flow_priority)

	Constructor initializes all variables

Public Members

	
std::string source_router_module_name

	stores the partial name of the source router block communicating within this traffic flow. Names must uniquely identify router blocks in the netlist.

	
std::string sink_router_module_name

	stores the partial name of the sink router block communicating within this traffic flow. Names must uniquely identify router blocks in the netlist.

	
ClusterBlockId source_router_cluster_id

	stores the block id of the source router block communicating within this traffic flow. This can be used to retrieve the block information from the clustered netlist

	
ClusterBlockId sink_router_cluster_id

	stores the block id of the destination router block communicating within this traffic flow. This can be used to retrieve the block information from the clustered netlist

	
double traffic_flow_bandwidth

	The bandwidth of the information transferred between the two routers. Units in bytes per second. This parameters will be used to update the link usage in the noc model after routing the traffic flow.

	
double max_traffic_flow_latency

	The maximum allowable time to transmit data between thw two routers, in seconds. This parameter will be used to evaluate a router traffic flow.

	
int traffic_flow_priority

	Indicates the importance of the traffic flow. Higher priority traffic flows will have more importance and will be more likely to have their latency reduced and constraints met. Range: [0-inf)

	
class NocTrafficFlows

	
#include <noc_traffic_flows.h>

Public Functions

	
NocTrafficFlows()

	

	
int get_number_of_traffic_flows(void) const

	
	Returns:

	int An integer that represents the number of unique traffic flows within the NoC.

	
const t_noc_traffic_flow &get_single_noc_traffic_flow(NocTrafficFlowId traffic_flow_id) const

	Given a unique id of a traffic flow (t_noc_traffic_flow) retrieve it from the vector of all traffic flows in the design. The retrieved traffic flow cannot be modified but can be used to retrieve information such as the routers involved.

	Parameters:

	traffic_flow_id – The unique identifier (NocTrafficFlowId) of the traffic flow to retrieve.

	Returns:

	const t_noc_traffic_flow& The traffic flow represented by the provided identifier.

	
const std::vector<NocTrafficFlowId> &get_traffic_flows_associated_to_router_block(ClusterBlockId router_block_id) const

	Get a vector of all traffic flows that have a given router block in the clustered netlist as the source (starting point) or sink (destination point) in the flow. If the router block does not have any traffic flows associated to it then NULL is returned.

	Parameters:

	router_block_id – A unique identifier that represents the a router block in the clustered netlist. This router block will be the source or sink router in the retrieved traffic flows.

	Returns:

	const std::vector<NocTrafficFlowId>& A vector of traffic flows that have the input router block parameter as the source or sink in the flow.

	
int get_number_of_routers_used_in_traffic_flows(void)

	Gets the number of unique router blocks in the clustered netlist that were used within the user provided traffic flows description.

	Returns:

	int The total number of unique routers used in the traffic flows provided by the user.

	
const std::vector<NocLinkId> &get_traffic_flow_route(NocTrafficFlowId traffic_flow_id) const

	Gets the routed path of traffic flow. This cannot be modified externally.

	Parameters:

	traffic_flow_id – A unique identifier that represents a traffic flow.

	Returns:

	std::vector<NocLinkId>& A reference to the provided traffic flow’s routed path.

	
std::vector<NocLinkId> &get_mutable_traffic_flow_route(NocTrafficFlowId traffic_flow_id)

	Gets the routed path of a traffic flow. The path returned can and is expected to be modified externally.

	Parameters:

	traffic_flow_id – A unique identifier that represents a traffic flow.

	Returns:

	std::vector<NocLinkId>& A reference to the provided traffic flow’s vector of links used from the src to dst.

	
const vtr::vector<NocTrafficFlowId, std::vector<NocLinkId>> &get_all_traffic_flow_routes() const

	Gets all routed paths for all traffic flows. This cannot be modified externally.

	Returns:

	vtr::vector<NocTrafficFlowId, std::vector<NocLinkId>>& A reference to the provided container that includes all traffic flow routes.

	
const std::vector<ClusterBlockId> &get_router_clusters_in_netlist(void) const

	
	Returns:

	a vector ([0..num_logical_router-1]) where each entry gives the clusterBlockId of a logical NoC router. Used for fast lookups in the placer.

	
const std::vector<NocTrafficFlowId> &get_all_traffic_flow_id(void) const

	
	Returns:

	provides access to all traffic flows’ ids to allow a range-based loop through all traffic flows, used in noc_place_utils.cpp functions.

	
void create_noc_traffic_flow(const std::string &source_router_module_name, const std::string &sink_router_module_name, ClusterBlockId source_router_cluster_id, ClusterBlockId sink_router_cluster_id, double traffic_flow_bandwidth, double traffic_flow_latency, int traffic_flow_priority)

	Given a set of parameters that specify a traffic flow, create and add the specified traffic flow it to the vector of flows in the design.

Finally, the newly created traffic flow is also added to internal datastructures that can be used to quickly look up which traffic flows contain a specific router cluster block.

	Parameters:

	
	source_router_module_name – A string that represents the name of the source router block in the traffic flow. This is provided by the user.

	sink_router_module_name – A string that represents the name of the sink router block in the traffic flow. This is provided by the user.

	source_router_cluster_id – The source router block id that uniquely identifies this block in the clustered netlist.

	sink_router_cluster_id – The sink router block id that uniquely identifier this block in the clustered netlist.

	traffic_flow_bandwidth – The size of the data transmission in this traffic flow (units of bps).

	traffic_flow_latency – The maximum allowable delay between transmitting data at the source router and having it received at the sink router.

	traffic_flow_priority – The importance of a given traffic flow.

	
void set_router_cluster_in_netlist(const std::vector<ClusterBlockId> &routers_cluster_id_in_netlist)

	Copies the passed in router_cluster_id_in_netlist vector to the private internal vector.

	Parameters:

	routers_cluster_id_in_netlist – A vector ([0..num_logical_routers-1]) containing all routers’ ClusterBlockId extracted from netlist.

	
void finished_noc_traffic_flows_setup(void)

	Indicates that the class has been fully constructed, meaning that all the traffic flows have been added and cannot be added anymore. This function should be called only after adding all the traffic flows provided by the user. Additionally, creates the storage space for storing the routed paths for all traffic flows.

	
void clear_traffic_flows(void)

	Resets the class by clearing internal datastructures.

	
bool check_if_cluster_block_has_traffic_flows(ClusterBlockId block_id) const

	Given a block from the clustered netlist, determine if the block has traffic flows that it is a part of. There are three possible cases seen by this function. Case 1 is when the block is not a router. Case 2 is when the block is a router and has not traffic flows it is a part of. And finally case three is when the block is a router and has traffic flows it is a part of. This function should be used during placement when clusters are moved or placed. This function can indicate if the moved cluster needs traffic flows to be re-routed. If a cluster is a part of a traffic flow, then this means that the cluster is either the source or sink router of the traffic flow.

	Parameters:

	block_id – A unique identifier that represents a cluster block in the clustered netlist

	Returns:

	true The block has traffic flows that it is a part of

	Returns:

	false The block has no traffic flows it is a prt of

	
void echo_noc_traffic_flows(char *file_name)

	Writes out the NocTrafficFlows class information to a file. This includes printing out each internal datastructure information.

	Parameters:

	file_name – The name of the file that contains the NoC traffic flow information

Private Functions

	
void add_traffic_flow_to_associated_routers(NocTrafficFlowId traffic_flow_id, ClusterBlockId associated_router_id)

	Given a router that is either a source or sink of a traffic flow, the corresponding traffic flow is added to a vector of traffic flows associated to the router.

	Parameters:

	
	traffic_flow_id – A unique id that represents a traffic flow.

	associated_router_id – A ClusterBlockId that represents a router block.

	router_associated_traffic_flows – A datastructure that stores a vector of traffic flows for a given router block where the traffic flows have the router as a source or sink within the flow.

Private Members

	
vtr::vector<NocTrafficFlowId, t_noc_traffic_flow> noc_traffic_flows

	contains all the traffic flows provided by the user and their information

	
std::vector<NocTrafficFlowId> noc_traffic_flows_ids

	contains all the traffic flows ids provided by the user

	
std::vector<ClusterBlockId> router_cluster_in_netlist

	contains the ids of all the router cluster blocks within the design

	
std::unordered_map<ClusterBlockId, std::vector<NocTrafficFlowId>> traffic_flows_associated_to_router_blocks

	Each traffic flow is composed of a source and destination router. If the source/destination routers are moved, then the traffic flow needs tp be re-routed.

This datastructure stores a vector of traffic flows that are associated to each router cluster block. A traffic flow is associated to a router cluster block if the router block is either the source or destination router within the traffic flow.

This is done so that during placement when a router cluster block is moved then the traffic flows that need to be re-routed due to the moved block can quickly be found.

	
bool built_traffic_flows

	Indicates whether the the NocTrafficFlows class has been fully constructed. The expectation is that all the traffic flows will be added in one spot and will not be added later on. So this variable can be used to check whether all the traffic flows have been added or or not. The variable should be used to ensure that this class is not modified once all the traffic flows have been added.

	
vtr::vector<NocTrafficFlowId, std::vector<NocLinkId>> traffic_flow_routes

	Stores the routes that were found by the routing algorithm for all traffic flows within the NoC. This is initialized after all the traffic flows have been added. This datastructure should be used to store the path found whenever a traffic flow needs to be routed/ re-routed. Also, this datastructure should be used to access the routed path of a traffic flow.

 NoC Routing

NoC Routing

NocRouting

This file defines the NocRouting class, which handles the packet routing between routers within the NoC. It describes the routing algorithm for the NoC.

Overview

The NocRouting class is an abstract class. It is intended to be used as a base class and should not be used on its own. The NocRouting class is used as a base (interface) class.

Usage

When a new routing algorithm for the NoC is needed, a new class should be made that inherits this class. Then the following needs to be done:
	The routing algorithm should be implemented inside the route_flow function and should match the prototype declared below

	
class NocRouting

	
#include <noc_routing.h>

Subclassed by BFSRouting, TurnModelRouting

Public Functions

	
virtual ~NocRouting() = default

	

	
virtual void route_flow(NocRouterId src_router_id, NocRouterId sink_router_id, NocTrafficFlowId traffic_flow_id, std::vector<NocLinkId> &flow_route, const NocStorage &noc_model) = 0

	Finds a route that goes from the starting router in a traffic flow to the destination router. A route consists of a series of links that should be traversed when travelling between two routers within the NoC. Derived classes will primarily differ by the routing algorithm they use. The expectation is that this function should be overridden in the derived classes to implement the routing algorithm.

	Parameters:

	
	src_router_id – The source router of a traffic flow. Identifies the starting point of the route within the NoC. This represents a physical router on the FPGA.

	sink_router_id – The destination router of a traffic flow. Identifies the ending point of the route within the NoC.This represents a physical router on the FPGA.

	traffic_flow_id – The unique ID for the traffic flow being routed.

	flow_route – Stores the path returned by this function as a series of NoC links found by a NoC routing algorithm between two routers in a traffic flow. The function will clear any previously stored path and re-insert the new found path between the two routers.

	noc_model – A model of the NoC. This is used to traverse the NoC and find a route between the two routers.

NocRoutingAlgorithmCreator

This file defines the NocRoutingAlgorithmCreator class, which creates the routing algorithm that will be used to route packets within the NoC.

Overview

There are a number of different available NoC routing algorithms. This class is a factory object for the NocRouting abstract class. This class constructs the appropriate routing algorithm based on the user specification in the command line. The user identifies a specific routing algorithm in the command line by providing a string (which is the name of routing algorithm). Then the corresponding routing algorithm is created here based on the provided string.

	
class NocRoutingAlgorithmCreator

	
#include <noc_routing_algorithm_creator.h>

Public Functions

	
NocRoutingAlgorithmCreator() = default

	

	
~NocRoutingAlgorithmCreator() = default

	

Public Static Functions

	
static std::unique_ptr<NocRouting> create_routing_algorithm(const std::string &routing_algorithm_name)

	Given a string that identifies a NoC routing algorithm, this function creates the corresponding routing algorithm and returns a reference to it. If the provided string does not match any available routing algorithms then an error is thrown.

	Parameters:

	routing_algorithm_name – A user provided string that identifies a NoC routing algorithm

	Returns:

	std::unique_ptr<NocRouting> A reference to the created NoC routing algorithm

XYRouting

This file defines the XYRouting class, which represents a direction oriented routing algorithm.

Overview

The XYRouting class performs packet routing between routers in the NoC. This class is based on the XY routing algorithm.

XY Routing Algorithm

The algorithm works by first travelling in the X-direction and then in the Y-direction.

First the algorithm compares the source router and the destination router, checking the coordinates in the X-axis. If the coordinates are not the same (so not horizontally aligned), then the algorithm moves in the direction towards the destination router in the X-axis. For each router in the path, the algorithm checks again to see whether it is horizontally aligned with the destination router; otherwise it moves in the direction of the destination router (once again the movement is done in the X-axis).

Once horizontally aligned (current router in the path has the same X-coordinate as the destination) the algorithm checks to see whether the y-axis coordinates match between the destination router and the current router in the path (checking for vertical alignment). Similar to the x-axis movement, the algorithm moves in the Y-axis towards the destination router. Once again, at each router in the path the algorithm checks for vertical alignment; if not aligned it then moves in the y-axis towards the destination router until it is aligned vertically.

The main aspect of this algorithm is that it is deterministic. It will always move in the horizontal direction and then the vertical direction to reach the destination router. The path is never affected by things like congestion, latency, distance and etc..).

Below we have an example of the path determined by this algorithm for a 3x3 mesh NoC: --------- --------- ---------
/ / / / / /
/ $ / ----------------- / / ------------------ / /
/ / / / / /
--------- --------- ---------
 /^ / /
 /+ / /
 /+ / /
 /+ / /
--------- --------- ---------
/ / / / / /
/ / ----------------- / / ------------------ / /
/ / / / / /
--------- --------- ---------
 /^ / /
 /+ / /
 /+ / /
 /+ / /
--------- --------- ---------
/ /<++++++++++++++++++/ /<+++++++++++++++++++/ /
/ / ----------------- / / ------------------ / * /
/ / / / / /
--------- --------- ---------

 In the example above, the router marked with the ‘*’ character is the start and the router marked with the ‘$’ character is the destination. The path determined by the XY-Routing algorithm is shown as “<++++”.

Note that this routing algorithm in inherently deadlock free.

Usage

It is recommended to use this algorithm when the NoC topology is of type Mesh. This algorithm will work for other types of topologies but the directional nature of the algorithm makes it ideal for mesh topologies. If the algorithm fails to find a router then an error is thrown; this should only happen for non-mesh topologies. If this algorithms is used for non-mesh topologies, it might be able to generate routes for all traffic flows, but the generated routes are not guaranteed to be deadlock free in a non-mesh topology. Im mesh and torus topologies, xy-routing algorithm is guaranteed to generate deadlock free routes.

	
class XYRouting : public TurnModelRouting

	
#include <xy_routing.h>

Public Functions

	
~XYRouting() override

	

Private Functions

	
virtual const std::vector<TurnModelRouting::Direction> &get_legal_directions(NocRouterId src_router_id, NocRouterId curr_router_id, NocRouterId dst_router_id, const NocStorage &noc_model) override

	Returns legal directions that the traffic flow can follow. The legal directions might be a subset of all directions to guarantee deadlock freedom.

	Parameters:

	
	src_router_id – A unique ID identifying the source NoC router.

	curr_router_id – A unique ID identifying the current NoC router.

	dst_router_id – A unique ID identifying the destination NoC router.

	noc_model – A model of the NoC. This might be used by the derived class to determine the position of NoC routers.

	Returns:

	std::vector<TurnModelRouting::Direction> All legal directions that the a traffic flow can follow.

	
virtual TurnModelRouting::Direction select_next_direction(const std::vector<TurnModelRouting::Direction> &legal_directions, NocRouterId src_router_id, NocRouterId dst_router_id, NocRouterId curr_router_id, NocTrafficFlowId traffic_flow_id, const NocStorage &noc_model) override

	Selects a direction from legal directions. The traffic flow travels travels in that direction.

	Parameters:

	
	legal_directions – Legal directions that the traffic flow can follow. Legal directions are usually a subset of all possible directions to ensure deadlock freedom.

	src_router_id – A unique ID identifying the source NoC router.

	dst_router_id – A unique ID identifying the destination NoC router.

	curr_router_id – A unique ID identifying the current NoC router.

	noc_model – A model of the NoC. This might be used by the derived class to determine the position of NoC routers.

	Returns:

	Direction The direction to travel next

Private Members

	
const std::vector<TurnModelRouting::Direction> x_axis_directions = {TurnModelRouting::Direction::LEFT, TurnModelRouting::Direction::RIGHT}

	

	
const std::vector<TurnModelRouting::Direction> y_axis_directions = {TurnModelRouting::Direction::UP, TurnModelRouting::Direction::DOWN}

	

BFSRouting

This file defines the BFSRouting class.

Overview

The BFSRouting class performs packet routing between physical routers in the FPGA. This class is based on the BFS algorithm.

The BFS algorithm is used to explore the NoC from the starting router in the traffic flow. Once the destination router is found a path from the source to the destination router is generated. The main advantage of this algorithm is that the found path from the source to the destination router uses the minimum number of links required within the NoC. This algorithm does not guarantee deadlock freedom. In other words, the algorithm might generate routes that form cycles in channel dependency graph.

	
class BFSRouting : public NocRouting

	
#include <bfs_routing.h>

Public Functions

	
~BFSRouting() override

	

	
virtual void route_flow(NocRouterId src_router_id, NocRouterId sink_router_id, NocTrafficFlowId traffic_flow_id, std::vector<NocLinkId> &flow_route, const NocStorage &noc_model) override

	Finds a route that goes from the starting router in a traffic flow to the destination router. Uses the BFS algorithm to determine the route. A route consists of a series of links that should be traversed when travelling between two routers within the NoC.

	Parameters:

	
	src_router_id – The source router of a traffic flow. Identifies the starting point of the route within the NoC. This represents a physical router on the FPGA.

	sink_router_id – The destination router of a traffic flow. Identifies the ending point of the route within the NoC.This represents a physical router on the FPGA.

	traffic_flow_id – The unique ID for the traffic flow being routed.

	flow_route – Stores the path returned by this fuction as a series of NoC links found by a NoC routing algorithm between two routers in a traffic flow. The function will clear any previously stored path and re-insert the new found path between the two routers.

	noc_model – A model of the NoC. This is used to traverse the NoC and find a route between the two routers.

Private Functions

	
void generate_route(NocRouterId sink_router_id, std::vector<NocLinkId> &flow_route, const NocStorage &noc_model, const std::unordered_map<NocRouterId, NocLinkId> &router_parent_link)

	Traces the path taken by the BFS routing algorithm from the destination router to the starting router. Starting with the destination router, the parent link (link taken to get to this router) is found and is added to the path. Then the algorithm moves to the source router of the parent link. Then it repeats the previous process of finding the parent link, adding it to the path and moving to the source router. This is repeated until the starting router is reached.

	Parameters:

	
	start_router_id – The router to use as a starting point when tracing back the route from the destination router. to the the starting router. Generally this would be the sink router of the flow.

	flow_route – Stores the path as a series of NoC links found by a NoC routing algorithm between two routers in a traffic flow. The function will clear any previously stored path and re-insert the new found path between the two routers.

	noc_model – A model of the NoC. This is used to traverse the NoC and find a route between the two routers.

	router_parent_link – Contains the parent link associated to each router in the NoC (parent link is the link used to visit the router during the BFS routing algorithm).

 NoC Data Types

NoC Data Types

Data Types

This file contains datatype definitions which are used by the NoC datastructures.

Typedefs

	
typedef vtr::StrongId<noc_router_id_tag, int> NocRouterId

	Datatype to index routers within the NoC

	
typedef vtr::StrongId<noc_link_id_tag, int> NocLinkId

	Datatype to index links within the NoC

	
typedef vtr::StrongId<noc_traffic_flow_id_tag, int> NocTrafficFlowId

	Datatype to index traffic flows within the application

 Index

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | X

Symbols

 	
 	
 #(comment),\\(linecontinued),*(wildcard),{}(stringescape)

 	SDC Command

 	$VTR_ROOT

 	
 --absorb_buffer_luts

 	vpr command line option

 	
 --acc_fac

 	vpr command line option

 	
 --activity_file

 	vpr command line option

 	
 --allow_unrelated_clustering

 	vpr command line option

 	
 --alpha_clustering

 	vpr command line option

 	
 --alpha_decay

 	vpr command line option

 	
 --alpha_max

 	vpr command line option

 	
 --alpha_min

 	vpr command line option

 	
 --alpha_t

 	vpr command line option

 	
 --analysis

 	vpr command line option

 	
 --anneal_success_min

 	vpr command line option

 	
 --anneal_success_target

 	vpr command line option

 	
 --astar_fac

 	vpr command line option

 	
 --auto

 	vpr command line option

 	
 --balance_block_type_utilization

 	vpr command line option

 	
 --base_cost_type

 	vpr command line option

 	
 --bb_factor

 	vpr command line option

 	
 --bend_cost

 	vpr command line option

 	
 --beta_clustering

 	vpr command line option

 	
 --circuit_file

 	vpr command line option

 	
 --circuit_format

 	vpr command line option

 	
 --clock_modeling

 	vpr command line option

 	
 --cluster_seed_type

 	vpr command line option

 	
 --clustering_pin_feasibility_filter

 	vpr command line option

 	
 --congested_routing_iteration_threshold

 	vpr command line option

 	
 --connection_driven_clustering

 	vpr command line option

 	
 --const_gen_inference

 	vpr command line option

 	
 --constant_net_method

 	vpr command line option

 	
 --criticality_exp

 	vpr command line option

 	
 --device

 	vpr command line option

 	
 --disp

 	vpr command line option

 	
 --echo_dot_timing_graph_node

 	vpr command line option

 	
 --echo_file

 	vpr command line option

 	
 --enable_timing_computations

 	vpr command line option

 	
 --exit_before_pack

 	vpr command line option

 	
 --exit_t

 	vpr command line option

 	
 --first_iter_pres_fac

 	vpr command line option

 	
 --fix_clusters

 	vpr command line option

 	
 --fix_pins

 	vpr command line option

 	
 --flat_routing

 	vpr command line option

 	
 --full_stats

 	vpr command line option

 	
 --gen_post_implementation_merged_netlist

 	vpr command line option

 	
 --gen_post_synthesis_netlist

 	vpr command line option

 	
 --generate_rr_node_overuse_report

 	vpr command line option

 	
 --graphics_commands

 	vpr command line option

 	
 --help

 	vpr command line option

 	
 --incremental_reroute_delay_ripup

 	vpr command line option

 	
 --init_t

 	vpr command line option

 	
 --initial_pres_fac

 	vpr command line option

 	
 --inner_loop_recompute_divider

 	vpr command line option

 	
 --inner_num

 	vpr command line option

 	
 --max_criticality

 	vpr command line option

 	
 --max_logged_overused_rr_nodes

 	vpr command line option

 	
 --max_router_iterations

 	vpr command line option

 	
 --min_incremental_reroute_fanout

 	vpr command line option

 	
 --min_route_chan_width_hint

 	vpr command line option

 	
 --net_file

 	vpr command line option

 	
 --netlist_verbosity

 	vpr command line option

 	
 --noc

 	vpr command line option

 	
 --noc_flows_file

 	vpr command line option

 	
 --noc_latency_constraints_weighting

 	vpr command line option

 	
 --noc_latency_weighting

 	vpr command line option

 	
 --noc_placement_file_name

 	vpr command line option

 	
 --noc_placement_weighting

 	vpr command line option

 	
 --noc_routing_algorithm

 	vpr command line option

 	
 --noc_swap_percentage

 	vpr command line option

 	
 --num_workers

 	vpr command line option

 	
 --outfile_prefix

 	vpr command line option

 	
 --pack

 	vpr command line option

 	
 --pack_feasible_block_array_size

 	vpr command line option

 	
 --pack_high_fanout_threshold

 	vpr command line option

 	
 --pack_prioritize_transitive_connectivity

 	vpr command line option

 	
 --pack_transitive_fanout_threshold

 	vpr command line option

 	
 --pack_verbosity

 	vpr command line option

 	
 --place

 	vpr command line option

 	
 --place_agent_algorithm

 	vpr command line option

 	
 --place_agent_epsilon

 	vpr command line option

 	
 --place_agent_gamma

 	vpr command line option

 	
 --place_agent_multistate

 	vpr command line option

 	
 --place_agent_space

 	vpr command line option

 	
 --place_algorithm

 	vpr command line option

 	
 --place_bounding_box_mode

 	vpr command line option

 	
 --place_chan_width

 	vpr command line option

 	
 --place_cost_exp

 	vpr command line option

 	
 --place_delay_model

 	vpr command line option

 	
 --place_delay_model_reducer

 	vpr command line option

 	
 --place_delay_offset

 	vpr command line option

 	
 --place_delay_ramp_delta_threshold

 	vpr command line option

 	
 --place_delay_ramp_slope

 	vpr command line option

 	
 --place_effort_scaling

 	vpr command line option

 	
 --place_file

 	vpr command line option

 	
 --place_quench_algorithm

 	vpr command line option

 	
 --place_reward_fun

 	vpr command line option

 	
 --place_rlim_escape

 	vpr command line option

 	
 --place_tsu_abs_margin

 	vpr command line option

 	
 --place_tsu_rel_margin

 	vpr command line option

 	
 --placer_debug_block

 	vpr command line option

 	
 --placer_debug_net

 	vpr command line option

 	
 --post_place_timing_report

 	vpr command line option

 	
 --post_synth_netlist_unconn_inputs

 	vpr command line option

 	
 --post_synth_netlist_unconn_outputs

 	vpr command line option

 	
 --power

 	vpr command line option

 	
 --pres_fac_mult

 	vpr command line option

 	
 --quench_recompute_divider

 	vpr command line option

 	
 --read_placement_delay_lookup

 	vpr command line option

 	
 --read_router_lookahead

 	vpr command line option

 	
 --read_rr_graph

 	vpr command line option

 	
 --read_vpr_constraints

 	vpr command line option

 	
 --recompute_crit_iter

 	vpr command line option

 	
 --RL_agent_placement

 	vpr command line option

 	
 --route

 	vpr command line option

 	
 --route_bb_update

 	vpr command line option

 	
 --route_chan_width

 	vpr command line option

 	
 --route_file

 	vpr command line option

 	
 --route_type

 	vpr command line option

 	
 --router_algorithm

 	vpr command line option

 	
 --router_debug_net

 	vpr command line option

 	
 --router_debug_sink_rr

 	command line option

 	vpr command line option

 	
 --router_first_iter_timing_report

 	vpr command line option

 	
 --router_high_fanout_threshold

 	vpr command line option

 	
 --router_init_wirelength_abort_threshold

 	vpr command line option

 	
 --router_initial_timing

 	vpr command line option

 	
 --router_lookahead

 	vpr command line option

 	
 --router_max_convergence_count

 	vpr command line option

 	
 --router_profiler_astar_fac

 	vpr command line option

 	
 --router_reconvergence_cpd_threshold

 	vpr command line option

 	
 --router_update_lower_bound_delays

 	vpr command line option

 	
 --routing_budgets_algorithm

 	vpr command line option

 	
 --routing_failure_predictor

 	vpr command line option

 	
 --save_graphics

 	vpr command line option

 	
 --save_routing_per_iteration

 	vpr command line option

 	
 --sdc_file

 	vpr command line option

 	
 --seed

 	vpr command line option

 	
 --sink_rr_node

 	command line option

 	
 --source_rr_node

 	command line option

 	
 --strict_checks

 	vpr command line option

 	
 --sweep_constant_primary_outputs

 	vpr command line option

 	
 --sweep_dangling_blocks

 	vpr command line option

 	
 --sweep_dangling_nets

 	vpr command line option

 	
 --sweep_dangling_primary_ios

 	vpr command line option

 	
 --target_ext_pin_util

 	vpr command line option

 	
 --target_utilization

 	vpr command line option

 	
 --td_place_exp_first

 	vpr command line option

 	
 --td_place_exp_last

 	vpr command line option

 	
 --tech_properties

 	vpr command line option

 	
 --terminate_if_timing_fails

 	vpr command line option

 	
 --timing_analysis

 	vpr command line option

 	
 --timing_driven_clustering

 	vpr command line option

 	
 --timing_report_detail

 	vpr command line option

 	
 --timing_report_npaths

 	vpr command line option

 	
 --timing_report_skew

 	vpr command line option

 	
 --timing_tradeoff

 	vpr command line option

 	
 --two_stage_clock_routing

 	vpr command line option

 	
 --verify_binary_search

 	vpr command line option

 	
 --verify_file_digests

 	vpr command line option

 	
 --version

 	vpr command line option

 	
 --write_block_usage

 	vpr command line option

 	
 --write_initial_place_file

 	vpr command line option

 	
 --write_placement_delay_lookup

 	vpr command line option

 	
 --write_router_lookahead

 	vpr command line option

 	
 --write_rr_graph

 	vpr command line option

 	
 	
 --write_timing_summary

 	vpr command line option

 	
 --write_vpr_constraints

 	vpr command line option

 	
 -a

 	command line option

 	
 -adder_cin_global

 	run_vtr_flow.py command line option

 	
 -c

 	command line option

 	
 -check_golden

 	parse_vtr_task.py command line option

 	
 -clock<virtualornetlistclock>

 	

 Page Not Found

Page Not Found

Sorry, we couldn't find that page.

Try using the search box or go to the homepage.

 Dusty’s Simulated Annealing Schedule

Dusty’s Simulated Annealing Schedule

This simulated annealing schedule is designed to quickly characterize the search space and maintain a target success ratio (accepted moves.)

It starts at the minimum alpha (--alpha_min) to allow it to quickly find the target.

For each alpha, the temperature decays by a factor of alpha after each outer loop iteration.

The temperature before which the success ratio drops below the target (--anneal_success_target) is recorded; after hitting the minimum success ratio (--anneal_success_min), the temperature resets to a little before recorded temperature, and alpha parameter itself decays according to --alpha_decay.

The effect of this is many fast, but slowing sweeps in temperature, focused where they can make the most effective progress. Unlike fixed and adaptive schedules that monotonically decrease temperature, this allows the global properties of the search space to affect the schedule.

In addition, move_lim (which controls the number of iterations in the inner loop) is scaled with the target success ratio over the current success ratio, which reduces the time to reach the target ratio.

The schedule terminates when the maximum alpha (--alpha_max) is reached. Termination is ensured by the narrowing range between the recorded upper temperature and the minimum success ratio, which will eventually cause alpha to reach its maximum.

This algorithm was inspired by Lester Ingber’s adaptive simulated annealing algorithm [ASA93].

See update_state() in place.cpp for the algorithm details.

[ASA93]
Ingber, Lester. “Adaptive simulated annealing (ASA).” Global optimization C-code, Caltech Alumni Association, Pasadena, CA (1993).

_images/test.png
& verilog-to-routing / vtr-verilog-to-routing ' Pubiic

<> Code (© Issues 290 1% Pullrequests 34 () Discussions (® Actions

Workflows New workflow Test

test.yml
All workflows

Q_ Filter workflow runs
‘Eu Containers

‘Eu Pull Request Labeler 2,263 workflow runs

@ Security

This workflow has a workflow_dispatch event trigger.

e Changing Some Mallocs to News for Test PR

Test #2303: Pull request #2028 synchronize by jmah76

® Fixed typo in power_callibrate
Test #2302: Commit 19a2e3c pushed by jmah76

e Changing Some Mallocs to News for Test PR

Test #2301: Pull request #2028 opened by jmah76

® Watch 68 ~

|~ Insights

Event v

malloc_to_new

malloc_to_new

malloc_to_new

% Fork 285

Status v

Yy Star 655 -

Branch v Actor v

Run workflow ~

2 hours ago

@ Queued

2 hours ago

@ Queued

2 hours ago

@ Queued

_images/timing_simulation.png

_images/sub_tiles_grid.png
S
\@«.\6«0&
+

SIS Yo0|q NS

X coordinates

_images/switch_point_diagram.png
[==1 switch block

==

switch point 0

_images/tseng_blk1.png
¥ || Q search.) search

Zoom Fit
Window
o i EE Toggle Nets:
None v
e o Toggle Block Internal ;
RSy —[+]
n Toggle Block Pin Util:
L None -

Toggle Placement Macros:

None -
Toggle RR:
None -

Toggle Congestion:

M | None. -

Toggle Routing Cong Cost:

7 | None
LAl Toggle Routing Boun
[«

i Toggle Routing Util:

None -

it Toggle Router Expansion Cos!

None -
i Toggle Crit. Path:
2 None -
save
Pause
Proceed

Block #1(n_n3199) at (3, 3) selected.

_images/tseng_nets.png
Search

i [E 1 i

Zoom Fit

Window
Toggle Nets:

Toggle Block Internal:

0 +
Toggle Block Pin Uil
None -
Toggle Placement Macros:
None -
Toggle RR:

None -
Toggle Congestion:
None -
Toggle Routing Cong Cost:
None -
Toggle Routing Bounding Box:
- +
Toggle Routing Util:
None -

Toggle Router Expansion Costs:

None -
Toggle Crit. Path:
None -

save

Pause

_images/soft_logic_cluster.jpg
Fully
Populated
Crossbar

M BLEL L

BLE,

BLEN

BLE

LT

{—— Flip-Flop
>

_static/file.png

_static/plus.png

_static/minus.png

_images/math/ff56e6f9a47ff7632e56ea952ba812a32a8bafce.png
0.9« Lijntere + Licrosshar

_images/math/f998369d7924303ae54a0a140002b69111e5ee5b.png
Ag(clk

_images/frac_lut_le_lut6_mode.png
ing
1 ——
iz

in3

ind
ins

L]

outd

_images/fracturable_multiplier.jpg
mult_36x36_slice

Oor

block_mult

divisible_mult_18x18

divisible_mult_18x18

[mult_18x18_siice |

[mult_18x18_slice |

Or

or

| mult_9x9_slice |

| mult_9x9_slice I

| mult_9x9_slice |

| mult_9x9_slice |

B out

_images/frac_lut_le.png
LUT6 output

I Louto

cLid

T —outt

Fracturable 6-input LUT oL

_images/frac_lut_le_dual_lut5_mode.png
ct

L

outd

outl

_images/hclk_ioi.png
HCLK_IOI3 TILE

BUFR

BUFR

BUFIO

BUFIO

BUFR

BUFR

BUFIO

BUFIO

IDELAYCTRL

_images/fracturable_multiplier_cluster.jpg
block_mult
A [35:0] [17:0] [35:0]
ouT
17:01 divisible_mult_18x18
clk [73:0]
B b
[35:0]
[35:18 A
ouT
B58] B divisible_mult_18x18 (71:36]
clk
i

ouT

_images/fracturable_multiplier_slice.jpg
mult_36x36_slice

_36x36_A

736:36_8

A out

mult_36x36

reg|36x36_out

OUT _cfg

_images/ipin_diagram.png
Logic Block ——

L L] Connection

N Block

Routing Track \ 4&
A - Isolation Buffer

_images/math/0bf809ceb8fb82c2291c3c115d5559d2ab20bb06.png

_images/manual_move.png
(L] Manual Move
Toggle Critical Path:

None

_images/math/2715ff0feadc8b1e7a2f0e1c0a146201b05db45a.png
lgag+ H-C,u

_images/math/0d17adeb0797a3fa2b5de074d881695487d407ed.png
0.9« Lintere

_images/math/52ddc0cde6d632f631533173562fe3ca375b1f32.png

_images/math/2bc776d2b9858c48dbe9d064a5131a7c8dae2318.png

_images/math/0b58c678624f5937c8d4013db20f7f794bf84841.png
n-Ciyv

_images/multiclock_timing_graph_dot.png
Node(0) (SOURCE)

DATA_ARRIVAL
Domain(0) to * [Origin]
time: 0

Domain(0) to Domain(1) for Node(10)

DATA_REQUIRED

time: -5.45526e-10

Domain(0) to Domain(1) for Node(10)

SLACK

time: -5.45526e-10

Node(3) (SOURCE)

time: 0

CLOCK_LAUNCH
Domain(1) to * [Origin]

time: 0

CLOCK_CAPTURE
Domain(0) to Domain(1) [Origin]

CLOCK_CAPTURE
Domain(1) to Domain(1) [Origin]

time: 0
Edge(1) Edge(2)
4.243e11 4.243e11

Node(6) (CPIN)

Node(7) (CPIN)

Domain(1) to * from Node(3)

CLOCK_LAUNCH

time: 4.243e-11

CLOCK_LAUNCH
Domain(1) to * from Node(3)
time: 4.243e-11

Edge(6)
5.21956e-10

Domain(0) to Domain(1) from Node(3)

CLOCK_CAPTURE

time: 4.243e-11

CLOCK_CAPTURE
Domain(0) to Domain(1) from Node(3)
time: 4.243e-11

Domain(1) to Domain(1) from Node(3)

CLOCK_CAPTURE

time: 4.243e-11

CLOCK_CAPTURE
Domain(1) to Domain(1) from Node(3)
time: 4.243e-11

-6.6

Edge(s)

Edge(7)

e-11 (-tsu) [1.24e-10 (tcq)

Edge(8)
[1.24e-10 (tcq)

A
Node(10) (SINK)

Node(11) (SOURCE)

Node(12) (SOURCE)

DATA_ARRIVAL
Domain(0) to * from Node(0)
time: 5.21956e-10

DATA_ARRIVAL
Domain(1) to * [Origin]
time: 1.6643e-

DATA_ARRIVAL
Domain(1) to * [Origin]
time: 1.6643e-10

DATA_REQUIRED
Domain(0) to Domain(1) [Origin]
time: -2.357e-11

Domain(1) to Domain(1) for Node(16)

DATA_REQUIRED

time: -3.7857e-10

DATA_REQUIRED
Domain(1) to Domain(0) for Node(18)
time: -2.0935e-10

SLACK
Domain(0) to Domain(1) [Origin]
time: -5.45526e-10

Domain(1) to Domain(1) for Node(16)

SLACK

time: -5.45e-10

SLACK
Domain(1) to Domain(0) for Node (18)
time: -3.7578e-10

Edge(13)
12e-10

Edge(14)
2.9041e-10

Node(16) (IPIN)

DATA_ARRIVAL
Domain(1) to * from Node(11)
time: 2.8643e-10

Node(17) (IPIN)

Edge(15)
[2.0935e-10

Node(18) (SINK)

DATA_ARRIVAL
Domain(1) to * from Node(12)
time: 3.7578e-10

DATA_REQUIRED
Domain(1) to Domain(1) for Node(22)
time: 2.5857e-10

DATA_ARRIVAL
Domain(1) to * from Node(11)
time: 4.5684e-10

DATA_REQUIRED
Domain(1) to Domain(0) [Origin]
time: 0

SLACK
Domain(1) to Domain(1) for Node(22)
time: -5.45e-10

Edge(19)
35e-10

SLACK
Domain(1) to Domain(0) [Origin]
time: -3.7578e-10

Node(4) (SOURCE)

Node(1) (SOURCE)

Node(2) (SOURCE)

CLOCK_LAUNCH
Domain(2) to * [Origin]
time: 0

DATA_ARRIVAL

time: 0

Domain(0) to * [Origin]

DATA_ARRIVAL
Domain(0) to * [Origin]
time: 0

CLOCK_CAPTURE
Domain(0) to Domain(2) [Origin]
time: 0

DATA_REQUIRED

time: -5.45526e-10

Domain(0) to Domain(2) for Node(14)

DATA_REQUIRED
Domain(0) to Domain(0) for Node(5)
time: -2.0678e-10

CLOCK_CAPTURE
Domain(2) to Domain(2) [Origin]

SLACK

Domain(0) to Domain(2) for Node(14)

SLACK
Domain(0) to Domain(0) for Node(s)

time: 0 time: -5.45526e-10 time: -2.0678e-10
Edge(4) Edge(3) Edge(0)
4.243e11 4.243e-11 [2.0678e-10

Node(9) (CPIN)

Node(8) (CPIN)

Domain(2) to * from Node(4)

CLOCK_LAUNCH

time: 4.243e-11

CLOCK_LAUNCH
Domain(2) to * from Node(4)

time: 4.243e-11

Domain(0) to Domain(2) from Node(4)

CLOCK_CAPTURE

time: 4.243e-11

CLOCK_CAPTURE
Domain(0) to Domain(2) from Node(4)

Edge(11)
52195610
time: 4.243e-11

Domain(2) to Domain(2) from Node(4)

CLOCK_CAPTURE

time: 4.243e-11

CLOCK_CAPTURE
Domain(2) to Domain(2) from Node(4)

time: 4.243e-11

Node(5) (SINK)

DATA_ARRIVAL
Domain(0) to * from Node(2)
time: 2.0678e-10

DATA_REQUIRED
Domain(0) to Domain(0) [Origin]
time: 0

SLACK
Domain(0) to Domain(0) [Origin]
time: -2.0678e-10

Edge(9)
1.24e-10 (tcq)

Node(13) (SOURCE)

DATA_ARRIVAL
Domain(2) to * [Origin]
time: 1.6643e-10

DATA_REQUIRED
Domain(2) to Domain(0) for Node(19)
time: -2.08466e-10

SLACK
Domain(2) to Domain(0) for Node(19)
time: -3.74896e-10

Edge(23)
6.6e-11 (-tsu)

Edge(12) Edge(10)
[1.24e-10 (tcq) <6.6e-11 {tsu)
v
Node(15) (SOURCE) Node(14) (SINK)
DATA_ARRIVAL DATA_ARRIVAL
Domain(2) to * [Origin] Domain(0) to * from Node(1)
time: 1.6643e-10 time: 5.21956e-10
DATA_REQUIRED DATA_REQUIRED
Domain(2) to Domain(2) for Node(21) Domain(0) to Domain(2) [Origin]
time: -3.7857e-10 time: -2.357e-11
SLACK SLACK
Domain(2) to Domain(2) for Node(21) Domain(0) to Domain(2) [Origin]
time: -5.45¢-10 time: -5.45526e-10
Edge(17) Edge(18)
2.9041e-10 12e10
Node(21) (IPIN)
DATA_ARRIVAL
Domain(2) to * from Node(15)
Node(20) (IPIN) time: 2.8643¢-10
DATA_ARRIVAL DATA_REQUIRED Edge(25)

Domain(2) to * from Node(15)

time: 4.5684e-10

Domain(2) to Domain(2) for Node(23)
time: -2.5857e-10

6.6e-11 (-tsu)

Node(22) (OPIN)

DATA_ARRIVAL
Domain(1) to * from Node(16)
time: 5.2143e-10

DATA_ARRIVAL
Domain(2) to * from Node(20)
time: 6.9184e-10

DATA_REQUIRED
Domain(1) to Domain(1) for Node(24)
time: -2.357e-11

SLACK
Domain(1) to Domain(1) for Node (24)
time: -5.45e-10

Edge(24)
0

dge(20)
235e-10

Node(24) (SINK)

DATA_ARRIVAL
Domain(1) to * from Node(22)
time: 5.2143e-10

DATA_ARRIVAL
Domain(2) to * from Node(22)
time: 6.9184e-10

DATA_REQUIRED
Domain(1) to Domain(1) [Origin]
time: 2.357e-11

SLACK
Domain(1) to Domain(1) [Origin]
time: -5.45e-10

Edge(21)
235e-10

SLACK
Domain(2) to Domain(2) for Node(23)
time: -5.45e-10

dge(22)
23510

Node(23) (OPIN)

DATA_ARRIVAL
Domain(1) to * from Node(17)
time: 6.9184e-10

DATA_ARRIVAL
Domain(2) to * from Node(21)
time: 5.2143e-10

DATA_REQUIRED
Domain(2) to Domain(2) for Node(25)
time: -2.357e-11

SLACK
Domain(2) to Domain(2) for Node(25)
time: -5.45e-10

Edge(26)
0

Node(25) (SINK)

DATA_ARRIVAL
Domain(1) to * from Node (23)
time: 6.9184e-10

DATA_ARRIVAL
Domain(2) to * from Node (23)
time: 5.2143e-10

DATA_REQUIRED
Domain(2) to Domain(2) [Origin]
time: -2.357e-11

SLACK

Domain(2) to Domain(2) [Origin]
time: -5.45¢-10

Edge(16)
08466e-10

Node(19) (SINK)

DATA_ARRIVAL
Domain(2) to * from Node(13)
time: 3.74896e-10

DATA_REQUIRED
Domain(2) to Domain(0) [Origin]
time: 0
SLACK
Domain(2) to Domain(0) [Origin]
time: -3.74896e-10

_images/multiclock_timing_graph_dot_node_23.png
Node(3) (SOURCE)

Node(4) (SOURCE)

CLOCK_LAUNCH
Domain(1to * [Origin]
time: 0

CLOCK_LAUNCH
Domain(2] to * (Origin]
time: 0

CLOCK_CAPTURE
Domain(0) to Gomain(1) [Origin]
time: 0

CLOCK_CAPTURE
Domain(0) to Bomain(2) [Origin]
time: 0

CLOCK_CAPTURE
Domain(1) to Gomain(1) [Origin]

CLOCK_CAPTURE
Domain(2) to Bomain(2) [Origin]

time: 0 time: 0
Edoe(1) Edge(d)
203011 203011

Node(6) (CPIN) Node(3) (CPIN)

CLOCK_LAUNCH
Domain(1) to * from Node(3)
time: 424311

CLOCK_LAUNCH
Domain(2) to * from Node(4)
time: 4.243-11

CLOCK_CAPTURE
Domain(0) to Domain(1) from Node(3)
time: 424311

CLOCK_CAPTURE
Domain(0) to Domain(2) from Node(4)
time: 4.243-11

CLOCK_CAPTURE
Domain(1) to Domain(1) from Node(3)
time: 424311

CLOCK_CAPTURE
Domain(2) to Domain(2) from Node(4)
time: 4.243-11

Edge(7)
26010 (tca)

Edoe(12)
24010 (tca)

Node(L1) (SOURCE)

Node(15) (SOURCE)

DATA_ARRIVAL
Domain(1) to * [Origin]
time: 1.6643e-10

DATA_ARRIVAL
Domain(2) to * [Origin]
time: 1.66436-10

DATA_REQUIRED
Domain(1) to Damain(1) for Node(16)
time:-3.7857e-10

DATA_REQUIRED
Domain(2) to Domain(2) for Node(21)
time:-3.7857¢-10

SLACK
Domain(1) to Domain(1) for Nodel(16)
times -5.45¢.10

SLACK
Domain(2) to Domain(2) for Node(21)
time: 5.45e-10

Edge(14) dge(18)
[29041e-10 12e10
Node(2L) (PIN)
DATA_ARRIVAL
Domain(2) to * from Nodel(15)
Node(17) (PIN) time: 2864310
DATA_ARRIVAL DATA REQURED

Domain(1) to * from Node(11)
time: 45684610

Domain(2) to Domain(2) for Node(23)
time: -2.5857e-10

Edge(21)
235010

SLACK
Domain(2) to Domain(2) for Node(23)
time: -5.45e-10

dge(22)
23510

Node(23) (OPIN)

DATA_ARRIVAL
Domain(1) to * from Node(17)
time: 6.9184-10

DATA_ARRIVAL
Domain(2) to * from Node(21)
time: 5.2143¢-10

DATA_REQUIRED
Domain(2) to Domain2) for Node(25)
time: 2.357e.11

SLACK
Domain(2) to Domain(2) for Node(25)
time: -5.45e-10

[Edoet26)

o

Node(25) (SINK)

DATA_ARRIVAL
Domain(1) to * from Node(23)
time: 6.9184-10

DATA_ARRIVAL
Domain(2) to * from Node(23)
time: 5.2143¢.10

DATA_REQUIRED
Domain(2) 6 Domain(2) 0rigin]
time: 2.357e-11

SLACK
Domain(2) to Domain(2) [Origin]
time: -5.45e-10

_images/neuron_nets.gif

_images/neuron_placement_macros.gif

_images/mux_example.png

_images/neuron_cpd.gif

_images/neuron_routing_util.gif

_images/v6_logic_slice.jpg

_images/view_menu.png
t Settings | View | Misc.

View: Transparency: (0 - 255)

[Layero (o |- +]
[JLayer1 ' 0 + ‘

[Cross Layer Connections ’ 0 + ‘

_images/manual_move_cost_dialog.png
Move Costs and Outcomes

Delta Cost: 0.003534
Delta Timing: 0.000000
Delta Bounding Box Cost: 0220743
‘Annealing Decision: Accepted

Accept || Refect

_images/path_2.png

_images/math/cef30e332268c6ed61a9250e0fd25fbfd4562870.png
y = starty + k - repeaty

_images/math/e01a34745f052d046b8120cd577ecef96c18d55e.png
width [height

_images/math/da7fe679217da7889545c8ba3dbd5dfc34424dd5.png
L 2
Pip = 50CV*

_images/math/f0d06b37206c7e0b7f0ec54e8153a541837c9b56.png

_images/math/eaaeaaefd68a45be60e597dc7691613c290a69b0.png
r = startr + k1 * repeatx

_images/math/f982091e23ec338bbde43af3159e744b25a16daf.png
Py(clk

_images/math/f0e9457e8bc21423ddd848d78ebb0f513839516b.png

_images/math/b9de4dc8726e7fb08b7a101eb479f52d93987ad8.png

_images/math/ac5e0cccb6505e0d77b08baff9c74dc7146086d0.png

_images/math/c037b17151b3683e2fde2ac41457f035de7b4148.png

_images/math/bfe57938b1d63689c09781a2645b7b3ae666600c.png
signal _probability

_images/pack_pattern_example.png
BLE

LuT

ble

>

Flip-Flop

Pack pattern LUT+FF pair

Pre -group LUT+FF

_images/parse_result_dir.png
vtr_flow
L— tasks
L— regression_tests

L— vtr_reg_nightly_test3

vtr_reg_qor
L— run6o1

L— parse results.txt

_images/routing_arch.gif
e

_images/sb_pattern.png
><] Switch Box

& Connection Box

N4

>
|
| =—
S S
=7

N

>
|
=T
Sl S
=]

_images/math/9334ee4773ed8007e0f7fe616a53115cf09bdbe2.png
(1 — signal_probability)

_images/math/8f7709e22d83e1210c1560a87a8ca5d351dfdd97.png

_images/math/96b7cfbeb26b8dcdbaeaea289d2180f2d1c2cdda.png

_images/math/9630132210b904754c9ab272b61cb527d12263ca.png

_images/math/aa45bcd1b9efca2e06da764c1cb6aae71986328f.png
(2 fLE)

_images/math/9f6ea2fccfb2bd6714b8d91275c0d528a0ccbe65.png

_images/math/6a793a90b691dc1b9e432e64531e9d88fb31471a.png
Crnv

_images/math/5438de73434513b2bf0b562b9fbd66a63690f12b.png
r = startr + k - repeatx

_images/math/77fab57ccf2a974b5becd71882fb172e502d6b6b.png
y = starty + ko * repeaty

_images/math/70e8f2d3a818beffe7352ea265b4e87899956221.png

_images/math/8943cf6f9edb2d47fa980ff434024c3cb11618b7.png
Buffer Size =

_images/re_run_tests.png
@ Test Test #2260

() Summary

Job!

o Select the test

@ Run-tests (vtr_reg_ni st1, 8)
@ Run-tests (vtr_reg_nightly_test2, 16)

@ Run-tests (vtr_reg_nightly_test3, 16)

@ Run-tests (vtr_reg_nightly_test4, 16)

@ Run-tests (vtr_reg_strong, 16, -DVTR_AS...
@ Run-tests (vtr_reg_strong, 16, -skip_qor, ...
Q Run-tests (vtr_reg_yosys, 16, -DWITH_YO...
@ Run-tests (vtr_reg_yosys_odin, 16, -DODI...

@ Run-tests (odin_tech_str 16, -DODIN...

@ Run-tests (odin_reg_sti 16)

Run-tests (vtr_reg_nightly_test1, 8)

succeeded 2 days ago in 4h 39m 30s

O 0 0000 0 00O

Set up VM

Set up job

Run actions/checkout@v2
Setup

Execute test script

Run actions/upload-artifact@v2
Post Run actions/checkout@v2
Teardown VM

Complete job

Run all jobs again Re-run all jobs

Q Search logs

_images/Block_Settings.png
Block ID v | Q Search

Block Settings

Net Settings

Search

Routing Options

Misc.

Toggle Block Internals:
n -+
Toggle Block Pin Util:
None -

Toggle Placement Macros:
None -

[_| Draw Partitions
[+ Block Outline
[+ Block Text

X

clb

flen_n4106

fle[1021]
flen_n3614

fle[992]
fle[1285]

flen_n4218
flepvl0_ 5 5_
fle[1754]
fle[1752]

flen_n3987

_images/Net_Settings.png

_images/ToggleBlockInternal.gif
Search

% search

Block D

Zoom it

Window

Toggle Nets:

“Toggle lock intemal:

Toggle Block pin Ul

Toggle Placement Macios:

None

Toggle Crit. Path:

ooo®

(L clip Routing il

@ Block Outtine

P Block Text

Debug
Pause
Proceed

_images/action_button.png
& verilog-to-routing / vtr-verilog-to-routing ' Pubiic

<> code (O Issues 290 1% Pullrequests 34) Discussions

¥ master ~ ¥ 60 branches © 11 tags

® Watch 68 ~ ‘f Fork 285

@ security |22 Insights

Go to file Add file ~ About

Yy Star 655

_images/Overall_view.png
Block ID

- ‘ Q Search...

Block Settings |

= = | o] = = = | o] | o]
E0OCDODDODOCOODOO
1
1

M [I

E N
|
|
g ———————
= H p H

_l ,___l
1 ' 1
-t Lo
ey

1

EODOOOOO

Zoom Fit

Window

_images/Routing_Options.png
Block ID v | Q search...] Search Zoom Fit

Block Settings ‘ Net Settings | Routing Options | Misc. Window
[M ™ "Cogera: ™ "l
i None St &l Noie
H . ~ Toggle Congestion: -1 il

EZ5
==
OO00000OO
I
1
1

[l “ 10 Il
Uil

Toggle Routing Cong. Cost:

= -
-1

EE2)

Toggle Routing Bounding Box:

I O - + 1
Toggle Routing Expansion Cost:

|]l . None A4 I El]l]]

Toggle Routing Util:

- None l l]]
e m—

|
|
L

=]

=]

_images/advancedWindow.png
move.um ot can use 36 == > < <= >= & | operators with temp_num.

temp_rum move.num, and from block to set your Gesired breakpoint. To
from biock seethe ul st of variables refer o the variables tab on the left
i biacks affected ‘ex.move_num == 4 | from_block == 83
Router Variables:
oute_iter

retid

e expression below:

_images/artifact.png
Basic with NO_GRAPHICS_results

Basic with NO_GRAPHICS_run_files

Basic with
VTR_ENABLE_DEBUG_LOGGING_results

Basic with
VTR_ENABLE_DEBUG_LOGGING_run_files

Basic_results

Basic_run_files

Strong_results

Strong_run_files

Valgrind Memory_results

Q@ & & & & & & & K

Valgrind Memory_run_files

S

371 KB

64.2 MB

372 KB

64.2 MB

371 KB

64.2 MB

8.65 MB

574 MB

68 KB

50.9 MB

artifact 204 MB

ch

ch

ch

ch

ch

ch

ch

ch

ch

ch

ch

_images/bitcoin_congestion.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Verilog-to-Routing’s documentation!

 		
 VTR Quick Start

 		
 Setting Up VTR

 		
 Download VTR

 		
 Environment Setup

 		
 Build VTR

 		
 Running VPR

 		
 Running VPR on a Pre-Synthesized Circuit

 		
 Visualizing Circuit Implementation

 		
 Running the VTR Flow

 		
 Example Circuit

 		
 Manually Running the VTR Flow

 		
 Automatically Running the VTR Flow

 		
 Next Steps

 		
 VTR

 		
 VTR CAD Flow

 		
 CAD Flow Variations

 		
 Bitstream Generation

 		
 Get VTR

 		
 How to Cite

 		
 Download

 		
 VTR Docker Image

 		
 Release

 		
 Development Repository

 		
 Building VTR

 		
 Setting up Your Environment

 		
 Building

 		
 Verifying Installation

 		
 Optional Build Information

 		
 Dependencies

 		
 Build Options

 		
 Other platforms

 		
 Running the VTR Flow

 		
 Running a Single Benchmark

 		
 Running Multiple Benchmarks & Architectures with Tasks

 		
 Extracting Information & Statistics

 		
 Benchmarks

 		
 VTR Benchmarks

 		
 Titan Benchmarks

 		
 Koios 2.0 Benchmarks

 		
 MCNC20 Benchmarks

 		
 SymbiFlow Benchmarks

 		
 NoC Benchmarks

 		
 Power Estimation

 		
 Running VTR with Power Estimation

 		
 Supporting Tools

 		
 Architecture Modelling

 		
 Other Architecture Options & Techniques

 		
 Tasks

 		
 Example Tasks

 		
 Directory Layout

 		
 Creating a New Task

 		
 Task Configuration File

 		
 Required Fields

 		
 Optional Fields

 		
 run_vtr_flow

 		
 Basic Usage

 		
 Output

 		
 Advanced Usage

 		
 Detailed Command-line Options

 		
 run_vtr_task

 		
 Basic Usage

 		
 Output

 		
 Detailed Command-line Options

 		
 parse_vtr_flow

 		
 Usage

 		
 Output

 		
 parse_vtr_task

 		
 Usage

 		
 Output

 		
 Detailed Command-line Options

 		
 Parse Configuration

 		
 Format

 		
 Example File

 		
 Pass Requirements

 		
 Task Configuration

 		
 File Location

 		
 File Format

 		
 Example File

 		
 VTR Flow Python library

 		
 VTR flow

 		
 Parmys

 		
 ODIN II

 		
 ABC

 		
 ACE

 		
 VPR

 		
 FPGA Architecture Description

 		
 Architecture Reference

 		
 Top Level Tags

 		
 Recognized BLIF Models (<models>)

 		
 Global FPGA Information

 		
 FPGA Grid Layout

 		
 FPGA Layer Information

 		
 FPGA Device Information

 		
 Switches

 		
 Physical Tiles

 		
 Complex Blocks

 		
 NoC Description

 		
 Wire Segments

 		
 Clocks

 		
 Power

 		
 Direct Inter-block Connections

 		
 Custom Switch Blocks

 		
 Architecture metadata

 		
 Example Architecture Specification

 		
 VPR

 		
 Basic flow

 		
 Packing

 		
 Placement

 		
 Routing

 		
 Analysis

 		
 Command-line Options

 		
 Basic Usage

 		
 Detailed Command-line Options

 		
 Command-line Auto Completion

 		
 Graphics

 		
 Enabling Graphics

 		
 Navigation

 		
 Visualizing Placement

 		
 Visualizing Netlist Connectivity

 		
 Visualizing the Critical Path

 		
 Visualizing Routing Architecture

 		
 Visualizing Routing Congestion

 		
 Visualizing Routing Utilization

 		
 Toggle Block Internal

 		
 View Menu

 		
 Button Description Table

 		
 Manual Moves

 		
 Timing Constraints

 		
 Default Timing Constraints

 		
 VPR Placement Constraints

 		
 A Constraints File Example

 		
 Constraints File Format

 		
 Partitions, Atoms, and Regions

 		
 SDC Commands

 		
 create_clock

 		
 set_clock_groups

 		
 set_false_path

 		
 set_max_delay/set_min_delay

 		
 set_multicycle_path

 		
 set_input_delay/set_output_delay

 		
 set_clock_uncertainty

 		
 set_clock_latency

 		
 set_disable_timing

 		
 Special Characters

 		
 SDC Examples

 		
 File Formats

 		
 FPGA Architecture (.xml)

 		
 BLIF Netlist (.blif)

 		
 Extended BLIF (.eblif)

 		
 Timing Constraints (.sdc)

 		
 Packed Netlist Format (.net)

 		
 Placement File Format (.place)

 		
 Routing File Format (.route)

 		
 Routing Resource Graph File Format (.xml)

 		
 Network-on-Chip (NoC) Traffic Flows Format (.flows)

 		
 Block types usage summary (.txt .xml or .json)

 		
 Timing summary (.txt .xml or .json)

 		
 Debugging Aids

 		
 Placer and Router Debugger

 		
 Overview

 		
 Adding a breakpoint

 		
 Enabling/Disabling a breakpoint

 		
 Deleting a breakpoint

 		
 Reaching a breakpoint

 		
 Available Variables

 		
 Available Operators

 		
 Parmys

 		
 Quickstart

 		
 Prerequisites

 		
 Building

 		
 Basic Usage

 		
 Yosys

 		
 Parmys Plugin

 		
 Available parameters

 		
 Structure

 		
 Structure of Parmys Frontend (Yosys + Parmys Plugin)

 		
 Odin II

 		
 Quickstart

 		
 Prerequisites

 		
 Building

 		
 Basic Usage

 		
 Example Usage

 		
 User guide

 		
 Synthesis Arguments

 		
 Simulation Arguments

 		
 Examples

 		
 Getting Help

 		
 Reporting Bugs and Feature Requests

 		
 Verilog Support

 		
 Lexicon

 		
 Syntax

 		
 Contributing

 		
 Creating a Pull Request (PR)

 		
 Odin II’s Flow

 		
 Useful tools of Odin II for Developers

 		
 Regression Tests

 		
 Benchmarks

 		
 Creating Regression Tests

 		
 Regression Test Summaries

 		
 Verify Script

 		
 Arguments

 		
 Examples

 		
 TESTING ODIN II

 		
 USING MODELSIM TO TEST ODIN II

 		
 ABC

 		
 Tutorials

 		
 Design Flow Tutorials

 		
 Basic Design Flow Tutorial

 		
 Architecture Modeling

 		
 Classic Soft Logic Block Tutorial

 		
 Multi-mode Logic Block Tutorial

 		
 Configurable Memory Bus-Based Tutorial

 		
 Fracturable Multiplier Bus-Based Tutorial

 		
 Fracturable Multiplier Example

 		
 Configurable Memory Block Example

 		
 Virtex 6 like Logic Slice Example

 		
 Equivalent Sites tutorial

 		
 Heterogeneous tiles tutorial

 		
 Primitive Block Timing Modeling Tutorial

 		
 Running the Titan Benchmarks

 		
 Integrating the Titan benchmarks into VTR

 		
 Running benchmarks manually

 		
 Post-Implementation Timing Simulation

 		
 Generating the Post-Implementation Netlist

 		
 Inspecting the Post-Implementation Netlist

 		
 Creating a Test Bench

 		
 Performing Timing Simulation in Modelsim

 		
 Utilities

 		
 FPGA Assembly (FASM) Output Support

 		
 FASM metadata

 		
 Invoking genfasm

 		
 FASM prefixing

 		
 Simple FASM feature emissions

 		
 Emitting LUTs

 		
 Within tile interconnect features

 		
 Passing parameters through to the FASM Output

 		
 Router Diagnosis Tool

 		
 Developer Guide

 		
 Contribution Guidelines

 		
 Common Scenarios

 		
 The Details

 		
 Commit Procedures

 		
 Commit Messages and Structure

 		
 Commit Messages

 		
 Commit Structure

 		
 Code Formatting

 		
 Large Scale Reformatting

 		
 Python Linting

 		
 Running Tests

 		
 Tests

 		
 Running in a large cluster using SLURM

 		
 Continuous integration (CI)

 		
 Odin Functionality Tests

 		
 Unit Tests

 		
 Evaluating Quality of Result (QoR) Changes

 		
 General QoR Evaluation Principles

 		
 Collecting QoR Measurements

 		
 Comparing QoR Measurements

 		
 Adding Tests

 		
 Adding a test to vtr_reg_strong

 		
 Debugging Aids

 		
 Sanitizers

 		
 Valgrind

 		
 Assertion Levels

 		
 GDB Pretty Printers

 		
 RR (Record Replay) Debugger

 		
 Speeding up the edit-compile-test cycle

 		
 Speeding Compilation

 		
 Profiling VTR

 		
 External Subtrees

 		
 Updating an existing Subtree

 		
 Adding a new Subtree

 		
 Subtree Rational

 		
 Finding Bugs with Coverity

 		
 Browsing Defects

 		
 Submitting a build

 		
 No files emitted

 		
 Release Procedures

 		
 General Principles

 		
 Checklist

 		
 Sphinx API Documentation for C/C++ Projects

 		
 Create Doxyfile

 		
 Breathe Configuration

 		
 Create RST with API Documentation

 		
 Generate the Documentation

 		
 Documenting VTR Code with Doxygen

 		
 Documenting Code

 		
 Documenting Files

 		
 Validation of Doxygen Comments (Updating API Reference)

 		
 Additional Resources

 		
 Developer Tutorials

 		
 New Developer Tutorial

 		
 Timing Graph Debugging Tutorial

 		
 VPR UI and Graphics

 		
 VTR Support Resources

 		
 VTR License

 		
 VTR Change Log

 		
 Unreleased

 		
 Added

 		
 Changed

 		
 Fixed

 		
 Deprecated

 		
 Removed

 		
 v8.0.0 - 2020-03-24

 		
 Added

 		
 Changed

 		
 Fixed

 		
 Removed

 		
 Deprecated

 		
 Docker Image

 		
 v8.0.0-rc2 - 2019-08-01

 		
 Changed

 		
 v8.0.0-rc1 - 2019-06-13

 		
 Added

 		
 Changed

 		
 Fixed

 		
 Deprecated

 		
 Removed

 		
 Contact

 		
 Mailing Lists

 		
 Issue Tracker

 		
 Glossary

 		
 Publications & References

 		
 VPR API

 		
 Contexts

 		
 Classes

 		
 Structures

 		
 Netlist mapping

 		
 Block Id

 		
 Net Id

 		
 Netlists

 		
 Netlist

 		
 Clustered Netlist

 		
 Atom Netlist

 		
 Route Tree

 		
 RouteTree

 		
 RouteTreeNode

 		
 Routing Resource Graph

 		
 RRGraphView

 		
 RRGraphBuilder

 		
 RRSpatialLookup

 		
 VTRUTIL API

 		
 IDs - Ranges

 		
 vtr_range

 		
 vtr_strong_id

 		
 vtr_strong_id_range

 		
 Containers

 		
 vtr_vector

 		
 vtr_small_vector

 		
 vtr_vector_map

 		
 vtr_linear_map

 		
 vtr_flat_map

 		
 vtr_bimap

 		
 vtr_vec_id_set

 		
 vtr_list

 		
 vtr_ragged_matrix

 		
 vtr_ndmatrix

 		
 vtr_ndoffsetmatrix

 		
 vtr_array_view

 		
 vtr_string_view

 		
 vtr_cache

 		
 vtr_dynamic_bitset

 		
 Container Utils

 		
 vtr_hash

 		
 vtr_memory

 		
 vtr_pair_util

 		
 vtr_map_util
