
Verilog-to-Routing Documentation
Release 8.1.0-dev

VTR Developers

Apr 29, 2024

QUICK START

1 VTR Quick Start 3
1.1 Setting Up VTR . 3
1.2 Running VPR . 4
1.3 Running the VTR Flow . 6
1.4 Next Steps . 16

2 VTR 17
2.1 VTR CAD Flow . 17
2.2 Get VTR . 19
2.3 Building VTR . 21
2.4 Optional Build Information . 22
2.5 Running the VTR Flow . 27
2.6 Benchmarks . 28
2.7 Power Estimation . 33
2.8 Tasks . 45
2.9 run_vtr_flow . 49
2.10 run_vtr_task . 53
2.11 parse_vtr_flow . 56
2.12 parse_vtr_task . 56
2.13 Parse Configuration . 58
2.14 Pass Requirements . 59
2.15 VTR Flow Python library . 60

3 FPGA Architecture Description 61
3.1 Architecture Reference . 61
3.2 Example Architecture Specification . 127

4 VPR 141
4.1 Basic flow . 141
4.2 Command-line Options . 143
4.3 Graphics . 176
4.4 Timing Constraints . 184
4.5 VPR Placement Constraints . 185
4.6 SDC Commands . 188
4.7 File Formats . 198
4.8 Debugging Aids . 222
4.9 Placer and Router Debugger . 223

5 Parmys 227
5.1 Quickstart . 227

i

5.2 Yosys . 228
5.3 Parmys Plugin . 228
5.4 Structure . 229

6 Odin II 231
6.1 Quickstart . 231
6.2 User guide . 232
6.3 Verilog Support . 235
6.4 Contributing . 236
6.5 Regression Tests . 239
6.6 Verify Script . 248
6.7 TESTING ODIN II . 250

7 ABC 253

8 Tutorials 255
8.1 Design Flow Tutorials . 255
8.2 Architecture Modeling . 256
8.3 Running the Titan Benchmarks . 313
8.4 Post-Implementation Timing Simulation . 315

9 Utilities 323
9.1 FPGA Assembly (FASM) Output Support . 323
9.2 Router Diagnosis Tool . 328

10 Developer Guide 329
10.1 Contribution Guidelines . 329
10.2 Commit Procedures . 332
10.3 Commit Messages and Structure . 334
10.4 Code Formatting . 335
10.5 Running Tests . 336
10.6 Evaluating Quality of Result (QoR) Changes . 340
10.7 Adding Tests . 372
10.8 Debugging Aids . 374
10.9 Speeding up the edit-compile-test cycle . 376
10.10 Speeding Compilation . 376
10.11 Profiling VTR . 377
10.12 External Subtrees . 378
10.13 Finding Bugs with Coverity . 380
10.14 Release Procedures . 381
10.15 Sphinx API Documentation for C/C++ Projects . 382
10.16 Documenting VTR Code with Doxygen . 383
10.17 Developer Tutorials . 387
10.18 VTR Support Resources . 394
10.19 VTR License . 395

11 VTR Change Log 397
11.1 Unreleased . 397
11.2 v8.0.0 - 2020-03-24 . 397
11.3 v8.0.0-rc2 - 2019-08-01 . 400
11.4 v8.0.0-rc1 - 2019-06-13 . 400

12 Contact 403
12.1 Mailing Lists . 403
12.2 Issue Tracker . 403

ii

13 Glossary 405

14 Publications & References 407

15 VPR API 409
15.1 Contexts . 409
15.2 Netlist mapping . 414
15.3 Netlists . 415
15.4 Route Tree . 437
15.5 Routing Resource Graph . 443

16 VTRUTIL API 455
16.1 IDs - Ranges . 455
16.2 Containers . 463
16.3 Container Utils . 499
16.4 Logging - Errors - Assertions . 504
16.5 Geometry . 508
16.6 Other . 512

17 VPR INTERNALS 533
17.1 VPR Draw Structures . 533
17.2 VPR UI . 537
17.3 VPR Draw Files . 538
17.4 VPR NoC . 541

18 Indices and tables 565

Bibliography 567

Index 571

iii

iv

Verilog-to-Routing Documentation, Release 8.1.0-dev

For more information on the Verilog-to-Routing (VTR) project see VTR and VTR CAD Flow.

For documentation and tutorials on the FPGA architecture description language see: FPGA Architecture Description.

For more specific documentation about VPR see VPR.

QUICK START 1

Verilog-to-Routing Documentation, Release 8.1.0-dev

2 QUICK START

CHAPTER

ONE

VTR QUICK START

This is a quick introduction to VTR which covers how to run VTR and some if its associated tools (VPR, Odin II ,
ABC).

1.1 Setting Up VTR

1.1.1 Download VTR

The first step is to download VTR and extract VTR on your local machine.

Note: Developers planning to modify VTR should clone the VTR git repository.

1.1.2 Environment Setup

If you cloned the repository you will need to set up the git submodules (if you downloaded and extracted a release, you
can skip this step):

> git submodule init
> git submodule update

VTR requires several system packages and Python packages to build and run the flow. You can install the required
system packages using the following command (this works on Ubuntu 18.04, 20.04 and 22.04, but you may require
different packages on other Linux distributions). Our CI testing is on Ubuntu 22.04, so that is the best tested platform
and recommended for development.

> ./install_apt_packages.sh

Then, to install the required Python packages (optionally within a new Python virtual environment):

> make env # optional: install python virtual environment
> source .venv/bin/activate # optional: activate python virtual environment
> pip install -r requirements.txt # install python packages (in virtual environment if␣
→˓prior commands run, system wide otherwise)

3

https://verilogtorouting.org/download/
https://github.com/verilog-to-routing/vtr-verilog-to-routing/

Verilog-to-Routing Documentation, Release 8.1.0-dev

1.1.3 Build VTR

On most unix-like systems you can run:

> make

from the VTR root directory (hereafter referred to as $VTR_ROOT) to build VTR.

Note: In the VTR documentation lines starting with > (like > make above), indicate a command (i.e. make) to run
from your terminal. When the \ symbol appears at the end of a line, it indicates line continuation.

Note: $VTR_ROOT refers to the root directory of the VTR project source tree. To run the examples in this guide on
your machine, either:

• define VTR_ROOT as a variable in your shell (e.g. if ~/trees/vtr is the path to the VTR source tree on your
machine, run the equivalent of VTR_ROOT=~/trees/vtr in BASH) which will allow you to run the commands
as written in this guide, or

• manually replace $VTR_ROOT in the example commands below with your path to the VTR source tree.

For more details on building VTR on various operating systems/platforms see Building VTR.

1.2 Running VPR

Lets now try taking a simple pre-synthesized circuit (consisting of LUTs and Flip-Flops) and use the VPR tool to
implement it on a specific FPGA architecture.

1.2.1 Running VPR on a Pre-Synthesized Circuit

First, lets make a directory in our home directory where we can work:

#Move to our home directory
> cd ~

#Make a working directory
> mkdir -p vtr_work/quickstart/vpr_tseng

#Move into the working directory
> cd ~/vtr_work/quickstart/vpr_tseng

Now, lets invoke the VPR tool to implement:

• the tseng circuit ($VTR_ROOT/vtr_flow/benchmarks/blif/tseng.blif), on

• the EArch FPGA architecture ($VTR_ROOT/vtr_flow/arch/timing/EArch.xml).

We do this by passing these files to the VPR tool, and also specifying that we want to route the circuit on a version of
EArch with a routing architecture channel width of 100 (--route_chan_wdith 100):

4 Chapter 1. VTR Quick Start

Verilog-to-Routing Documentation, Release 8.1.0-dev

> $VTR_ROOT/vpr/vpr \
$VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
$VTR_ROOT/vtr_flow/benchmarks/blif/tseng.blif \
--route_chan_width 100

This will produce a large amount of output as VPR implements the circuit, but you should see something similar to:

VPR FPGA Placement and Routing.
Version: 8.1.0-dev+2b5807ecf
Revision: v8.0.0-1821-g2b5807ecf
Compiled: 2020-05-21T16:39:33
Compiler: GNU 7.3.0 on Linux-4.15.0-20-generic x86_64
Build Info: release VTR_ASSERT_LEVEL=2

University of Toronto
verilogtorouting.org
vtr-users@googlegroups.com
This is free open source code under MIT license.

#
#Lots of output trimmed for brevity....
#

Geometric mean non-virtual intra-domain period: 6.22409 ns (160.666 MHz)
Fanout-weighted geomean non-virtual intra-domain period: 6.22409 ns (160.666 MHz)

VPR suceeded
The entire flow of VPR took 3.37 seconds (max_rss 40.7 MiB)

which shows that VPR as successful (VPR suceeded), along with how long VPR took to run (~3 seconds in this case).

You will also see various result files generated by VPR which define the circuit implementation:

> ls *.net *.place *.route

tseng.net tseng.place tseng.route

along with a VPR log file which contains what VPR printed when last invoked:

> ls *.log

vpr_stdout.log

and various report files describing the characteristics of the implementation:

> ls *.rpt

packing_pin_util.rpt report_timing.hold.rpt report_unconstrained_timing.
→˓hold.rpt
pre_pack.report_timing.setup.rpt report_timing.setup.rpt report_unconstrained_timing.
→˓setup.rpt

1.2. Running VPR 5

Verilog-to-Routing Documentation, Release 8.1.0-dev

1.2.2 Visualizing Circuit Implementation

Note: This section requires that VPR was compiled with graphic support. See VPR Graphics for details.

The .net, .place and .route files (along with the input .blif and architecture .xml files) fully defined the circuit
implementation. We can visualize the circuit implementation by:

• Re-running VPR’s analysis stage (--analysis), and

• enabling VPR’s graphical user interface (--disp on).

This is done by running the following:

> $VTR_ROOT/vpr/vpr \
$VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
$VTR_ROOT/vtr_flow/benchmarks/blif/tseng.blif \
--route_chan_width 100 \
--analysis --disp on

which should open the VPR graphics and allow you to explore the circuit implementation.

As an exercise try the following:

• View the connectivity of a block (connections which drive it, and those which it drives)

• View the internals of a logic block (e.g. try to find the LUTs/.names and Flip-Flops/.latch)

• Visualize all the routed circuit connections

See also:
For more details on the various graphics options, see VPR Graphics

Note: If you do not provide --analysis, VPR will re-implement the circuit from scratch. If you also specify --disp
on, you can see how VPR modifies the implementation as it runs. By default --disp on stops at key stages to allow
you to view and explore the implementation. You will need to press the Proceed button in the GUI to allow VPR to
continue to the next stage.

1.3 Running the VTR Flow

In the previous section we have implemented a pre-synthesized circuit onto a pre-existing FPGA architecture using
VPR, and visualized the result. We now turn to how we can implement our own circuit on a pre-existing FPGA
architecture.

To do this we begin by describing a circuit behaviourly using the Verilog Hardware Description Language (HDL). This
allows us to quickly and consisely define the circuit’s behaviour. We will then use the VTR Flow to synthesize the
behavioural Verilog description it into a circuit netlist, and implement it onto an FPGA.

6 Chapter 1. VTR Quick Start

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 1.1: Routed net connections of tseng on EArch.

1.3. Running the VTR Flow 7

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 1.2: Input (blue)/output (red) nets of block n_n3199 (highlighted green).

8 Chapter 1. VTR Quick Start

Verilog-to-Routing Documentation, Release 8.1.0-dev

1.3.1 Example Circuit

We will use the following simple example circuit, which causes it’s output to toggle on and off:

Listing 1.1: blink.v ($VTR_ROOT/doc/src/quickstart/blink.v)

1 //A simple cricuit which blinks an LED on and off periodically
2 module blink(
3 input clk, //Input clock
4 input i_reset, //Input active-high reset
5 output o_led); //Output to LED
6

7 //Sequential logic
8 //
9 //A reset-able counter which increments each clock cycle

10 reg[4:0] r_counter;
11 always @(posedge clk) begin
12 if (i_reset) begin //When reset is high, clear counter
13 r_counter <= 5'd0;
14 end else begin //Otherwise increment counter each clock (note that it will␣

→˓overflow back to zero)
15 r_counter <= r_counter + 1'b1;
16 end
17 end
18

19 //Combinational logic
20 //
21 //Drives o_led high if count is below a threshold
22 always @(*) begin
23 if (r_counter < 5'd16) begin
24 o_led <= 1'b1;
25 end else begin
26 o_led <= 1'b0;
27 end
28 end
29

30 endmodule

This Verilog creates a sequential 5-bit register (r_counter) which increments every clock cycle. If the count is below
16 it drives the output (o_led) high, otherwise it drives it low.

1.3.2 Manually Running the VTR Flow

Lets start by making a fresh directory for us to work in:

> mkdir -p ~/vtr_work/quickstart/blink_manual
> cd ~/vtr_work/quickstart/blink_manual

Next we need to run the three main sets of tools:

• Odin II performs ‘synthesis’ which converts our behavioural Verilog (.v file) into a circuit netlist (.blif file)
consisting of logic equations and FPGA architecture primitives (Flip-Flops, adders etc.),

• ABC performs ‘logic optimization’ which simplifies the circuit logic, and ‘technology mapping’ which converts
logic equations into the Look-Up-Tables (LUTs) available on an FPGA, and

1.3. Running the VTR Flow 9

Verilog-to-Routing Documentation, Release 8.1.0-dev

• VPR which performs packing, placement and routing of the circuit to implement it on the targetted FPGA archi-
tecture.

Synthesizing with ODIN II

First we’ll run ODIN II on our Verilog file to synthesize it into a circuit netlist, providing the options:

• -a $VTR_ROOT/vtr_flow/arch/timing/EArch.xml which specifies what FPGA architecture we are target-
ting,

• -V $VTR_ROOT/doc/src/quickstart/blink.v which specifies the verilog file we want to synthesize, and

• -o blink.odin.blif which specifies the name of the generated .blif circuit netlist.

The resulting command is:

> $VTR_ROOT/odin_ii/odin_ii \
-a $VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
-V $VTR_ROOT/doc/src/quickstart/blink.v \
-o blink.odin.blif

which when run should end with something like:

Total time: 14.7ms
Odin ran with exit status: 0
Odin II took 0.01 seconds (max_rss 5.1 MiB)

where Odin ran with exit status: 0 indicates Odin successfully synthesized our verilog.

We can now take a look at the circuit which ODIN produced (blink.odin.blif). The file is long and likely harder
to follow than our code in blink.v; however it implements the same functionality. Some interesting highlights are
shown below:

Listing 1.2: Instantiations of rising-edge triggered Latches (i.e. Flip-
Flops) in blink.odin.blif (implements part of r_counter in blink.v)

.latch blink^nMUX~0^MUX_2~23 blink^r_counter~0_FF re blink^clk 3

.latch blink^nMUX~0^MUX_2~27 blink^r_counter~4_FF re blink^clk 3

Listing 1.3: Adder primitive instantiations in blink.odin.blif, used
to perform addition (implements part of the + operator in blink.v)

.subckt adder a[0]=blink^r_counter~0_FF b[0]=vcc cin[0]=blink^ADD~2-0[0]\
cout[0]=blink^ADD~2-1[0] sumout[0]=blink^ADD~2-1[1]

.subckt adder a[0]=blink^r_counter~1_FF b[0]=gnd cin[0]=blink^ADD~2-1[0]\
cout[0]=blink^ADD~2-2[0] sumout[0]=blink^ADD~2-2[1]

Listing 1.4: Logic equation (.names truth-table) in blink.odin.blif,
implementing logical OR (implements part of the < operator in blink.v)

.names blink^LT~4^GT~10 blink^LT~4^GT~12 blink^LT~4^GT~14 blink^LT~4^GT~16 blink^LT~4^GT~
→˓18 blink^LT~4^lOR~9
1---- 1
-1--- 1
--1-- 1

(continues on next page)

10 Chapter 1. VTR Quick Start

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

---1- 1
----1 1

See also:
For more information on the BLIF file format see BLIF Netlist (.blif).

Optimizing and Technology Mapping with ABC

Next, we’ll optimize and technology map our circuit using ABC, providing the option:

• -c <script>, where <script> is a set of commands telling ABC how to synthesize our circuit.

We’ll use the following, simple ABC commands:

read blink.odin.blif; #Read the circuit synthesized by ODIN
if -K 6; #Technology map to 6 input LUTs (6-
→˓LUTs)
write_hie blink.odin.blif blink.abc_no_clock.blif #Write new circuit to blink.abc_no_
→˓clock.blif

Note: Usually you should use a more complicated script (such as that used by run_vtr_flow) to ensure ABC optitmizes
your circuit well.

The corresponding command to run is:

> $VTR_ROOT/abc/abc \
-c 'read blink.odin.blif; if -K 6; write_hie blink.odin.blif blink.abc_no_clock.blif'

When run, ABC’s output should look similar to:

ABC command line: "read blink.odin.blif; if -K 6; write_hie blink.odin.blif blink.abc_no_
→˓clock.blif".

Hierarchy reader converted 6 instances of blackboxes.
The network was strashed and balanced before FPGA mapping.
Hierarchy writer reintroduced 6 instances of blackboxes.

If we now inspect the produced BLIF file (blink.abc_no_clock.blif) we see that ABC was able to significantly
simplify and optimize the circuit’s logic (compared to blink.odin.blif):

Listing 1.5: blink.abc_no_clock.blif

1 # Benchmark "blink" written by ABC on Tue May 19 15:42:50 2020
2 .model blink
3 .inputs blink^clk blink^i_reset
4 .outputs blink^o_led
5

6 .latch n19 blink^r_counter~0_FF 2
7 .latch n24 blink^r_counter~4_FF 2
8 .latch n29 blink^r_counter~3_FF 2
9 .latch n34 blink^r_counter~2_FF 2

(continues on next page)

1.3. Running the VTR Flow 11

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

10 .latch n39 blink^r_counter~1_FF 2
11

12

13 .subckt adder a[0]=blink^r_counter~0_FF b[0]=vcc cin[0]=blink^ADD~2-0[0] cout[0]=blink^
→˓ADD~2-1[0] sumout[0]=blink^ADD~2-1[1]

14 .subckt adder a[0]=blink^r_counter~1_FF b[0]=gnd cin[0]=blink^ADD~2-1[0] cout[0]=blink^
→˓ADD~2-2[0] sumout[0]=blink^ADD~2-2[1]

15 .subckt adder a[0]=blink^r_counter~2_FF b[0]=gnd cin[0]=blink^ADD~2-2[0] cout[0]=blink^
→˓ADD~2-3[0] sumout[0]=blink^ADD~2-3[1]

16 .subckt adder a[0]=blink^r_counter~3_FF b[0]=gnd cin[0]=blink^ADD~2-3[0] cout[0]=blink^
→˓ADD~2-4[0] sumout[0]=blink^ADD~2-4[1]

17 .subckt adder a[0]=blink^r_counter~4_FF b[0]=gnd cin[0]=blink^ADD~2-4[0] cout[0]=blink^
→˓ADD~2-5[0] sumout[0]=blink^ADD~2-5[1]

18 .subckt adder a[0]=gnd b[0]=gnd cin[0]=unconn cout[0]=blink^ADD~2-0[0] sumout[0]=blink^
→˓ADD~2-0~dummy_output~0~1

19

20

21 .names blink^i_reset blink^ADD~2-1[1] n19
22 01 1
23 .names blink^i_reset blink^ADD~2-5[1] n24
24 01 1
25 .names blink^i_reset blink^ADD~2-4[1] n29
26 01 1
27 .names blink^i_reset blink^ADD~2-3[1] n34
28 01 1
29 .names blink^i_reset blink^ADD~2-2[1] n39
30 01 1
31 .names vcc
32 1
33 .names gnd
34 0
35 .names unconn
36 0
37 .names blink^r_counter~4_FF blink^o_led
38 0 1
39 .end
40

41

42 .model adder
43 .inputs a[0] b[0] cin[0]
44 .outputs cout[0] sumout[0]
45 .blackbox
46 .end

ABC has kept the .latch and .subckt adder primitives, but has significantly simplified the other logic (.names).

However, there is an issue with the above BLIF produced by ABC: the latches (rising edge Flip-Flops) do not have any
clocks or edge sensitivity specified, which is information required by VPR.

12 Chapter 1. VTR Quick Start

Verilog-to-Routing Documentation, Release 8.1.0-dev

Re-inserting clocks

We will restore the clock information by running a script which will transfer that information from the original ODIN
BLIF file (writing it to the new file blink.pre-vpr.blif):

> $VTR_ROOT/vtr_flow/scripts/restore_multiclock_latch.pl \
blink.odin.blif \
blink.abc_no_clock.blif \
blink.pre-vpr.blif

If we inspect blink.pre-vpr.blif we now see that the clock (blink^clk) has been restored to the Flip-Flops:

> grep 'latch' blink.pre-vpr.blif

.latch n19 blink^r_counter~0_FF re blink^clk 3

.latch n24 blink^r_counter~4_FF re blink^clk 3

.latch n29 blink^r_counter~3_FF re blink^clk 3

.latch n34 blink^r_counter~2_FF re blink^clk 3

.latch n39 blink^r_counter~1_FF re blink^clk 3

Implementing the circuit with VPR

Now that we have the optimized and technology mapped netlist (blink.pre-vpr.blif), we can invoke VPR to im-
plement it onto the EArch FPGA architecture (in the same way we did with the tseng design earlier). However, since
our BLIF file doesn’t match the design name we explicitly specify:

• blink as the circuit name, and

• the input circuit file with --circuit_file.

to ensure the resulting .net, .place and .route files will have the correct names.

The resulting command is:

> $VTR_ROOT/vpr/vpr \
$VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
blink --circuit_file blink.pre-vpr.blif \
--route_chan_width 100

and after VPR finishes we should see the resulting implementation files:

> ls *.net *.place *.route

blink.net blink.place blink.route

We can then view the implementation as usual by appending --analysis --disp on to the command:

> $VTR_ROOT/vpr/vpr \
$VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
blink --circuit_file blink.pre-vpr.blif \
--route_chan_width 100 \
--analysis --disp on

1.3. Running the VTR Flow 13

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 1.3: blink.v circuit implementation on the EArch FPGA architecture as viewed in the VPR GUI

14 Chapter 1. VTR Quick Start

Verilog-to-Routing Documentation, Release 8.1.0-dev

1.3.3 Automatically Running the VTR Flow

Running each stage of the flow manually is time consuming (and potentially error prone). For convenience, VTR
provides a script (run_vtr_flow) which automates this process.

First, make sure you sure you have activated the Python virtual environment created at the beginning of this tutorial:

> source $VTR_ROOT/.venv/bin/activate

Next, make a new directory to work in named blink_run_flow:

> mkdir -p ~/vtr_work/quickstart/blink_run_flow
> cd ~/vtr_work/quickstart/blink_run_flow

Now lets run the script ($VTR_ROOT/vtr_flow/scripts/run_vtr_flow.py) passing in:

• The circuit verilog file ($VTR_ROOT/doc/src/quickstart/blink.v)

• The FPGA architecture file ($VTR_ROOT/vtr_flow/arch/timing/EArch.xml)

and also specifying the options:

• -temp_dir . to run in the current directory (. on unix-like systems)

• --route_chan_width 100 a fixed FPGA routing architecture channel width.

The resulting command is:

> $VTR_ROOT/vtr_flow/scripts/run_vtr_flow.py \
$VTR_ROOT/doc/src/quickstart/blink.v \
$VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
-temp_dir . \
--route_chan_width 100

Note: Options unrecognized by run_vtr_flow (like --route_chan_width) are passed on to VPR.

which should produce output similar to:

EArch/blink OK (took 0.26 seconds)

There are also multiple log files (including for ABC, ODIN and VPR), which by convention the script names with the
.out suffix:

> ls *.out

0_blackboxing_latch.out odin.out report_clocks.abc.out vanilla_restore_clocks.
→˓out
abc0.out report_clk.out restore_latch0.out vpr.out

With the main log files of interest including the ODIN log file (odin.out), log files produced by ABC (e.g. abc0.out),
and the VPR log file (vpr.out).

Note: ABC may be invoked multiple times if a circuit has multiple clock domains, producing multiple log files
(abc0.out, abc1.out, . . .)

You will also see there are several BLIF files produced:

1.3. Running the VTR Flow 15

Verilog-to-Routing Documentation, Release 8.1.0-dev

> ls *.blif

0_blink.abc.blif 0_blink.raw.abc.blif blink.odin.blif
0_blink.odin.blif blink.abc.blif blink.pre-vpr.blif

With the main files of interest being blink.odin.blif (netlist produced by ODIN), blink.abc.blif (final netlist
produced by ABC after clock restoration), blink.pre-vpr.blif netlist used by VPR (usually identical to blink.
abc.blif).

Like before, we can also see the implementation files generated by VPR:

> ls *.net *.place *.route

blink.net blink.place blink.route

which we can visualize with:

> $VTR_ROOT/vpr/vpr \
$VTR_ROOT/vtr_flow/arch/timing/EArch.xml \
blink --circuit_file blink.pre-vpr.blif \
--route_chan_width 100 \
--analysis --disp on

1.4 Next Steps

Now that you’ve finished the VTR quickstart, you’re ready to start experimenting and using VTR.

Here are some possible next steps for users wishing to use VTR:

• Try modifying the Verilog file (e.g. blink.v) or make your own circuit and try running it through the flow.

• Learn about FPGA architecture modelling (Tutorials, Reference), and try modifying a copy of EArch to see how
it changes the implementation of blink.v.

• Read more about the VTR CAD Flow, and Task automation framework.

• Find out more about using other benchmark sets, like how to run the Titan Benchmark Suite.

• Discover how to generate FASM for bitstream creation.

• Suggest or make enhancements to VTR’s documentation.

Here are some possible next steps for developers wishing to modify and improve VTR:

• Try the next steps listed for users above to learn how VTR is used.

• Work through the new developer tutorial.

• Read through the developer guide.

• Look for open issues to which you can contribute.

• Begin exploring the source code for the main tools in VTR (e.g. VPR in $VTR_ROOT/vpr/src).

16 Chapter 1. VTR Quick Start

CHAPTER

TWO

VTR

The Verilog-to-Routing (VTR) project [LAK+14, RLY+12] is a world-wide collaborative effort to provide a open-
source framework for conducting FPGA architecture and CAD research and development. The VTR design flow takes
as input a Verilog description of a digital circuit, and a description of the target FPGA architecture.

It then perfoms:

• Elaboration & Synthesis (Odin II)

• Logic Optimization & Technology Mapping (ABC)

• Packing, Placement, Routing & Timing Analysis (VPR)

Generating FPGA speed and area results.

VTR also includes a set of benchmark designs known to work with the design flow.

2.1 VTR CAD Flow

In the standard VTR Flow (Fig. 2.1), Parmys converts a Verilog Hardware Destription Language (HDL) design into
a flattened netlist consisting of logic gates, flip-flops, and blackboxes representing heterogeneous blocks (e.g. adders,
multipliers, RAM slices).

Next, the ABC synthesis package is used to perform technology-independent logic optimization, and technology-maps
the circuit into LUTs [CCMB07, PHMB07, SG]. The output of ABC is a .blif format netlist of LUTs, flip flops, and
blackboxes.

VPR then packs this netlist into more coarse-grained logic blocks, places and then routes the circuit [BR97a, Bet98,
BR96a, BR96b, BR97b, BR00, BRM99, MBR99, MBR00]. Generating output files for each stage. VPR will analyze
the resulting implementation, producing various statistics such as the minimum number of tracks per channel required
to successfully route, the total wirelength, circuit speed, area and power. VPR can also produce a post-implementation
netlist for simulation and formal verification.

17

Verilog-to-Routing Documentation, Release 8.1.0-dev

FPGA
Architecture

HDL

Parmys
Quartus
Map

Yosys

VQM to BLIF ABC

ABC

Tech. Mapped
Netlist

VPR
Pack

Packing
Other
Pack

VPR
Place

Placement
Other
Place

VPR
Route

Routing Other
Route

VPR
Analysis

Bitstream Gen.

RR-Graph

Bitstream
Timing
Metrics

Area
Metrics

Power
Metrics

Post-Impl.
Netlist

Device
Description

Design

CAD Tool
Stage

VTR Flow

Titan Flow

Standard
Optional

Fig. 2.1: VTR CAD flow (and variants)

18 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.1.1 CAD Flow Variations

Titan CAD Flow

The Titan CAD Flow [KTK23, MWL+13, MWL+15] interfaces Intel’s Quartus tool with VPR. This allows designs
requiring industrial strength language coverage and IP to be brought into VPR.

Other CAD Flow Variants

Many other CAD flow variations are possible.

For instance, it is possible to use other logic synthesis tools like Yosys [Wol] to generate the design netlist. One could
also use logic optimizers and technology mappers other than ABC; just put the output netlist from your technology-
mapper into .blif format and pass it into VPR.

It is also possible to use tools other than VPR to perform the different stages of the implementation.

For example, if the logic block you are interested in is not supported by VPR, your CAD flow can bypass VPR’s packer
by outputting a netlist of logic blocks in .net format. VPR can place and route netlists of any type of logic block – you
simply have to create the netlist and describe the logic block in the FPGA architecture description file.

Similarly, if you want only to route a placement produced by another CAD tool you can create a .place file, and have
VPR route this pre-existing placement.

If you only need to analyze an implementation produced by another tool, you can create a .route file, and have VPR
analyze the implementation, to produce area/delay/power results.

Finally, if your routing architecture is not supported by VPR’s architecture generator, you can describe your routing
architecture in an rr_graph.xml file, which can be loaded directly into VPR.

2.1.2 Bitstream Generation

The technology mapped netlist and packing/placement/routing results produced by VPR contain the information needed
to generate a device programming bitstreams.

VTR focuses on the core physical design optimization tools and evaluation capabilities for new architectures and does
not directly support generating device programming bitstreams. Bitstream generators can either ingest the implemen-
tation files directly or make use of VTR utilities to emit FASM.

2.2 Get VTR

2.2.1 How to Cite

Citations are important in academia, as they ensure contributors receive credit for their efforts. Therefore please use
the following paper as a general citation whenever you use VTR:

K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. ElDafrawy, J.-P. Legault, E. Sha, A. G. Graham, J. Wu, M.
J. P. Walker, H. Zeng, P. Patros, J. Luu, K. B. Kent and V. Betz “VTR 8: High Performance CAD and
Customizable FPGA Architecture Modelling”, ACM TRETS, 2020

Bibtex:

2.2. Get VTR 19

Verilog-to-Routing Documentation, Release 8.1.0-dev

@article{vtr8,
title={VTR 8: High Performance CAD and Customizable FPGA Architecture Modelling},
author={Murray, Kevin E. and Petelin, Oleg and Zhong, Sheng and Wang, Jai Min and␣

→˓ElDafrawy, Mohamed and Legault, Jean-Philippe and Sha, Eugene and Graham, Aaron G. and␣
→˓Wu, Jean and Walker, Matthew J. P. and Zeng, Hanqing and Patros, Panagiotis and Luu,␣
→˓Jason and Kent, Kenneth B. and Betz, Vaughn},
journal={ACM Trans. Reconfigurable Technol. Syst.},
year={2020}

}

We are always interested in how VTR is being used, so feel free email the vtr-users list with how you are using VTR.

2.2.2 Download

The official VTR release is available from:

https://verilogtorouting.org/download

2.2.3 VTR Docker Image

A docker image for VTR is available. This image provides all the required packages and python libraries required.
However, this ease to compile and run comes at the cost of some runtime increase (<10%). To pull and run the docker
image of latest VTR repository, you can run the following commands:

> sudo docker pull mohamedelgammal/vtr-master:latest
> sudo docker run -it mohamedelgammal/vtr-master:latest

2.2.4 Release

The VTR 8.1 release provides the following:

• benchmark circuits,

• sample FPGA architecture description files,

• the full CAD flow, and

• scripts to run that flow.

The FPGA CAD flow takes as input, a user circuit (coded in Verilog) and a description of the FPGA architecture. The
CAD flow then maps the circuit to the FPGA architecture to produce, as output, a placed-and-routed FPGA. Here are
some highlights of the 8.1 full release:

• Timing-driven logic synthesis, packing, placement, and routing with multi-clock support.

• Power Analysis

• Benchmark digital circuits consisting of real applications that contain both memories and multipliers.

Seven of the 19 circuits contain more than 10,000 6-LUTs. The largest of which is just under 100,000 6-LUTs.

• Sample architecture files of a wide range of different FPGA architectures including:

1. Timing annotated architectures

2. Various fracturable LUTs (dual-output LUTs that can function as one large LUT or two smaller LUTs with
some shared inputs)

20 Chapter 2. VTR

https://verilogtorouting.org/contact/
https://verilogtorouting.org/download

Verilog-to-Routing Documentation, Release 8.1.0-dev

3. Various configurable embedded memories and multiplier hard blocks

4. One architecture containing embedded floating-point cores, and

5. One architecture with carry chains.

• A front-end Verilog elaborator that has support for hard blocks.

This tool can automatically recognize when a memory or multiplier instantiated in a user circuit is too large
for a target FPGA architecture. When this happens, the tool can automatically split that memory/multiplier
into multiple smaller components (with some glue logic to tie the components together). This makes it easier
to investigate different hard block architectures because one does not need to modify the Verilog if the circuit
instantiates a memory/multiplier that is too large.

• Packing/Clustering support for FPGA logic blocks with widely varying functionality.

This includes memories with configurable aspect ratios, multipliers blocks that can fracture into smaller multi-
pliers, soft logic clusters that contain fracturable LUTs, custom interconnect within a logic block, and more.

• Ready-to-run scripts that guide a user through the complexities of building the tools as well as using the tools to
map realistic circuits (written in Verilog) to FPGA architectures.

• Regression tests of experiments that we have conducted to help users error check and/or compare their work.

Along with experiments for more conventional FPGAs, we also include an experiment that explores FPGAs with
embedded floating-point cores investigated in [HYL+09] to illustrate the usage of the VTR framework to explore
unconventional FPGA architectures.

2.2.5 Development Repository

The development repository for the Verilog-to-Routing project is hosted at:

https://github.com/verilog-to-routing/vtr-verilog-to-routing

Unlike the nicely packaged official releases the code in a constant state of flux. You should expect that the tools are not
always stable and that more work is needed to get the flow to run.

2.3 Building VTR

2.3.1 Setting up Your Environment

If you cloned the repository you will need to set up the git submodules (if you downloaded and extracted a release, you
can skip this step):

git submodule init
git submodule update

VTR requires several system packages. From the top-level directory, run the following script to install the required
packages on a modern Debian or Ubuntu system:

./install_apt_packages.sh

You will also need several Python packages. You can optionally install and activate a Python virtual environment so
that you do not need to modify your system Python installation:

make env
source .venv/bin/activate

2.3. Building VTR 21

https://github.com/verilog-to-routing/vtr-verilog-to-routing

Verilog-to-Routing Documentation, Release 8.1.0-dev

Then to install the Python packages:

pip install -r requirements.txt

Note: If you chose to install the Python virtual environment, you will need to remember to activate it on any new
terminal window you use, before you can run the VTR flow or regressions tests (source .venv/bin/activate).

2.3.2 Building

From the top-level, run:

make

which will build all the required tools.

The complete VTR flow has been tested on 64-bit Linux systems. The flow should work in other platforms (32-bit
Linux, Windows with cygwin) but this is untested.

Full information about building VTR, including setting up required system packages and Python packages, can be found
in Optional Build Information page.

Please let us know your experience with building VTR so that we can improve the experience for others.

The tools included official VTR releases have been tested for compatibility. If you download a different version of those
tools, then those versions may not be mutually compatible with the VTR release.

2.3.3 Verifying Installation

To verfiy that VTR has been installed correctly run::

./vtr_flow/scripts/run_vtr_task.py regression_tests/vtr_reg_basic/basic_timing

The expected output is::

k6_N10_mem32K_40nm/single_ff OK
k6_N10_mem32K_40nm/single_ff OK
k6_N10_mem32K_40nm/single_wire OK
k6_N10_mem32K_40nm/single_wire OK
k6_N10_mem32K_40nm/diffeq1 OK
k6_N10_mem32K_40nm/diffeq1 OK
k6_N10_mem32K_40nm/ch_intrinsics OK
k6_N10_mem32K_40nm/ch_intrinsics OK

2.4 Optional Build Information

This page contains additional information about the VTR build system, and how to build VTR on other OS platforms
or with non-standard build options. If you only need to the default features of VTR on a Debian/Ubuntu system, the
previous Building VTR page should be sufficient and you can skip this page.

22 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.4.1 Dependencies

Most package and Python dependencies can be installed using the instructions on the previous Building VTR page.
However, more detailed information is provided here.

CMake

VTR uses CMake as it’s build system.

CMake provides a portable cross-platform build systems with many useful features.

For unix-like systems we provide a wrapper Makefile which supports the traditional make and make clean commands,
but calls CMake behind the scenes.

Tested Compilers

VTR requires a C++-14 compliant compiler. It is tested against the default compilers of all Debian and Ubuntu releases
within their standard support lifetime. Currently, those are the following:

• GCC/G++: 9, 10, 11, 12

• Clang/Clang++: 11, 12, 13, 14

Other compilers may work but are untested (your milage may vary).

Package Dependencies

• On Linux, the fastest way to set up all dependencies is to enter the commands listed in the VTR Quick Start
Environment Setup.

• At minimum you will require:

– A modern C++ compiler supporting C++14 (such as GCC >= 4.9 or clang >= 3.6)

– cmake, make

– bison, flex, pkg-config

• Additional packages are required for the VPR GUI (Cairo, FreeType, libXft, libX11, fontconfig, libgtk-3-dev)

• The scripts to run the entire VTR flow, as well as the regressions scripts, require Python3 and Python packages
listed in the requirements.txt file.

• Developers may also wish to install other packages (git, ctags, gdb, valgrind, clang-format-7)

• To generate the documentation you will need Sphinx, Doxygen, and several Python packages. The Python pack-
ages can be installed with the following command:

pip install -r doc/requirements.txt

2.4. Optional Build Information 23

https://cmake.org
https://docs.verilogtorouting.org/en/latest/quickstart/#environment-setup

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.4.2 Build Options

Build Type

You can specify the build type by passing the BUILD_TYPE parameter.

For instance to create a debug build (no optimization and debug symbols):

#In the VTR root
$ make BUILD_TYPE=debug
...
[100%] Built target vpr

Passing parameters to CMake

You can also pass parameters to CMake.

For instance to set the CMake configuration variable VTR_ENABLE_SANITIZE on:

#In the VTR root
$ make CMAKE_PARAMS="-DVTR_ENABLE_SANITIZE=ON"
...
[100%] Built target vpr

Both the BUILD_TYPE and CMAKE_PARAMS can be specified concurrently:

#In the VTR root
$ make BUILD_TYPE=debug CMAKE_PARAMS="-DVTR_ENABLE_SANITIZE=ON"
...
[100%] Built target vpr

Using CMake directly

You can also use cmake directly.

First create a build directory under the VTR root:

#In the VTR root
$ mkdir build
$ cd build

#Call cmake pointing to the directory containing the root CMakeLists.txt
$ cmake ..

#Build
$ make

24 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Changing configuration on the command line

You can change the CMake configuration by passing command line parameters.

For instance to set the configuration to debug:

#In the build directory
$ cmake . -DCMAKE_BUILD_TYPE=debug

#Re-build
$ make

Changing configuration interactively with ccmake

You can also use ccmake to to modify the build configuration.

#From the build directory
$ ccmake . #Make some configuration change

#Build
$ make

2.4.3 Other platforms

CMake supports a variety of operating systems and can generate project files for a variety of build systems and IDEs.
While VTR is developed primarily on Linux, it should be possible to build on different platforms (your milage may
vary). See the CMake documentation for more details about using cmake and generating project files on other platforms
and build systems (e.g. Eclipse, Microsoft Visual Studio).

Nix

Nix can be used to build VTR on other platforms, such as MacOS.

If you don’t have Nix, you can get it with:

$ curl -L https://nixos.org/nix/install | sh

These commands will set up dependencies for Linux and MacOS and build VTR:

#In the VTR root
$ nix-shell dev/nix/shell.nix
$ make

2.4. Optional Build Information 25

https://cmake.org
https://nixos.org/nix/
https://nixos.org/nix/download.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

Microsoft Windows

NOTE: VTR support on Microsoft Windows is considered experimental

WSL

The Windows Subsystem for Linux (WSL), “lets developers run a GNU/Linux environment – including most command-
line tools, utilities, and applications – directly on Windows, unmodified, without the overhead of a traditional virtual
machine or dual-boot setup.”

This is the recommended way to run VTR on Windows systems.

Cygwin

Cygwin provides a POSIX (i.e. unix-like) environment for Microsoft Windows.

From within the cygwin terminal follow the Unix-like build instructions listed above.

Note that the generated executables will rely upon Cygwin (e.g. cygwin1.dll) for POSIX compatibility.

Cross-compiling from Linux to Microsoft Windows with MinGW-W64

It is possible to cross-compile from a Linux host system to generate Microsoft Windows executables using the MinGW-
W64 compilers. These can usually be installed with your Linux distribution’s package manager (e.g. sudo apt-get
install mingw-w64 on Debian/Ubuntu).

Unlike Cygwin, MinGW executables will depend upon the standard Microsoft Visual C++ run-time.

To build VTR using MinGW:

#In the VTR root
$ mkdir build_win64
$ cd build_win64

#Run cmake specifying the toolchain file to setup the cross-compilation environment
$ cmake .. -DCMAKE_TOOLCHAIN_FILE ../cmake/toolchains/mingw-linux-cross-compile-to-
→˓windows.cmake

#Building will produce Windows executables
$ make

Note that by default the MS Windows target system will need to dynamically link to the libgcc and libstdc++DLLs.
These are usually found under /usr/lib/gcc on the Linux host machine.

See the toolchain file for more details.

26 Chapter 2. VTR

https://docs.microsoft.com/en-us/windows/wsl/
https://www.cygwin.com/
https://mingw-w64.org
https://mingw-w64.org
https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/cmake/toolchains/mingw-linux-cross-compile-to-windows.cmake

Verilog-to-Routing Documentation, Release 8.1.0-dev

Microsoft Visual Studio

CMake can generate a Microsft Visual Studio project, enabling VTR to be built with the Microsoft Visual C++ (MSVC)
compiler.

Installing additional tools

VTR depends on some external unix-style tools during it’s buid process; in particular the flex and bison parser
generators.

One approach is to install these tools using MSYS2, which provides up-to-date versions of many unix tools for MS
Windows.

To ensure CMake can find the flex and bison executables you must ensure that they are available on your system
path. For instance, if MSYS2 was installed to C:\msys64 you would need to ensure that C:\msys64\usr\bin was
included in the system PATH environment variable.

Generating the Visual Studio Project

CMake (e.g. the cmake-gui) can then be configured to generate the MSVC project.

2.5 Running the VTR Flow

VTR is a collection of tools that perform the full FPGA CAD flow from Verilog to routing.

The design flow consists of:

• Parmys (Logic Synthesis & Partial Mapping)

• ABC (Logic Optimization & Technology Mapping)

• VPR (Pack, Place & Route)

There is no single executable for the entire flow.

Instead, scripts are provided to allow the user to easily run the entire tool flow. The following provides instructions on
using these scripts to run VTR.

2.5.1 Running a Single Benchmark

The run_vtr_flow script is provided to execute the VTR flow for a single benchmark and architecture.

Note: In the following $VTR_ROOT means the root directory of the VTR source code tree.

$VTR_ROOT/vtr_flow/scripts/run_vtr_flow.py <circuit_file> <architecture_file>

It requires two arguments:

• <circuit_file> A benchmark circuit, and

• <architecture_file> an FPGA architecture file

Circuits can be found under:

2.5. Running the VTR Flow 27

http://www.msys2.org/

Verilog-to-Routing Documentation, Release 8.1.0-dev

$VTR_ROOT/vtr_flow/benchmarks/

Architecture files can be found under:

$VTR_ROOT/vtr_flow/arch/

The script can also be used to run parts of the VTR flow.

See also:
run_vtr_flow for the detailed command line options of run_vtr_flow.py.

2.5.2 Running Multiple Benchmarks & Architectures with Tasks

VTR also supports tasks, which manage the execution of the VTR flow for multiple benchmarks and architectures. By
default, tasks execute the run_vtr_flow for every circuit/architecture combination.

VTR provides a variety of standard tasks which can be found under:

$VTR_ROOT/vtr_flow/tasks

Tasks can be executed using run_vtr_task:

$VTR_ROOT/vtr_flow/scripts/run_vtr_task.py <task_name>

See also:
run_vtr_task for the detailed command line options of run_vtr_task.py.

See also:
Tasks for more information on creating, modifying and running tasks.

2.5.3 Extracting Information & Statistics

VTR can also extract useful information and statistics from executions of the flow such as area, speed tool execution
time etc.

For single benchmarks parse_vtr_flow extrastics statistics from a single execution of the flow.

For a Task, parse_vtr_task can be used to parse and assemble statistics for the entire task (i.e. multiple circuits and
architectures).

For regression testing purposes these results can also be verified against a set of golden reference results. See
parse_vtr_task for details.

2.6 Benchmarks

There are several sets of benchmark designs which can be used with VTR.

28 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.6.1 VTR Benchmarks

The VTR benchmarks [LAK+14, RLY+12] are a set of medium-sized benchmarks included with VTR. They are fully
compatible with the full VTR flow. They are suitable for FPGA architecture research and medium-scale CAD research.

Table 2.1: The VTR 7.0 Benchmarks.

Benchmark Domain
bgm Finance
blob_merge Image Processing
boundtop Ray Tracing
ch_intrinsics Memory Init
diffeq1 Math
diffeq2 Math
LU8PEEng Math
LU32PEEng Math
mcml Medical Physics
mkDelayWorker32B Packet Processing
mkPktMerge Packet Processing
mkSMAdapter4B Packet Processing
or1200 Soft Processor
raygentop Ray Tracing
sha Cryptography
stereovision0 Computer Vision
stereovision1 Computer Vision
stereovision2 Computer Vision
stereovision3 Computer Vision

The VTR benchmarks are provided as Verilog under:

$VTR_ROOT/vtr_flow/benchmarks/verilog

This provides full flexibility to modify and change how the designs are implemented (including the creation of new
netlist primitives).

The VTR benchmarks are also included as pre-synthesized BLIF files under:

$VTR_ROOT/vtr_flow/benchmarks/vtr_benchmarks_blif

2.6.2 Titan Benchmarks

The Titan benchmarks are a set of large modern FPGA benchmarks compatible with Intel Stratix IV [MWL+13,
MWL+15] and Stratix 10 [KTK23] devices. The pre-synthesized versions of these benchmarks are compatible with
recent versions of VPR.

The Titan benchmarks are suitable for large-scale FPGA CAD research, and FPGA architecture research which does
not require synthesizing new netlist primitives.

Note: The Titan benchmarks are not included with the VTR release (due to their size). However they can be down-
loaded and extracted by running make get_titan_benchmarks from the root of the VTR tree. They can also be
downloaded manually.

2.6. Benchmarks 29

https://www.eecg.utoronto.ca/~vaughn/titan/

Verilog-to-Routing Documentation, Release 8.1.0-dev

See also:
Running the Titan Benchmarks

2.6.3 Koios 2.0 Benchmarks

The Koios benchmarks [ABR+21] are a set of Deep Learning (DL) benchmarks. They are suitable for DL related
architecture and CAD research. There are 40 designs that include several medium-sized benchmarks and some large
benchmarks. The designs target different network types (CNNs, RNNs, MLPs, RL) and layer types (fully-connected,
convolution, activation, softmax, reduction, eltwise). Some of the designs are generated from HLS tools as well. These
designs use many precisions including binary, different fixed point types int8/16/32, brain floating point (bfloat16), and
IEEE half-precision floating point (fp16).

Table 2.2: The Koios Benchmarks.

Benchmark Description
dla_like Intel-DLA-like accelerator
clstm_like CLSTM-like accelerator
deepfreeze ARM FixyNN design
tdarknet_like Accelerator for Tiny Darknet
bwave_like Microsoft-Brainwave-like design
lstm LSTM engine
bnn 4-layer binary neural network
lenet Accelerator for LeNet-5
dnnweaver DNNWeaver accelerator
tpu_like Google-TPU-v1-like accelerator
gemm_layer 20x20 matrix multiplication engine
attention_layer Transformer self-attention layer
conv_layer GEMM based convolution
robot_rl Robot+maze application
reduction_layer Add/max/min reduction tree
spmv Sparse matrix vector multiplication
eltwise_layer Matrix elementwise add/sub/mult
softmax Softmax classification layer
conv_layer_hls Sliding window convolution
proxy Proxy/synthetic benchmarks

The Koios benchmarks are provided as Verilog (enabling full flexibility to modify and change how the designs are
implemented) under:

$VTR_ROOT/vtr_flow/benchmarks/verilog/koios

To use these benchmarks, please see the documentation in the README file at: https://github.com/verilog-to-routing/
vtr-verilog-to-routing/tree/master/vtr_flow/benchmarks/verilog/koios

30 Chapter 2. VTR

https://github.com/verilog-to-routing/vtr-verilog-to-routing/tree/master/vtr_flow/benchmarks/verilog/koios
https://github.com/verilog-to-routing/vtr-verilog-to-routing/tree/master/vtr_flow/benchmarks/verilog/koios

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.6.4 MCNC20 Benchmarks

The MCNC benchmarks [Yan91] are a set of small and old (circa 1991) benchmarks. They consist primarily of logic
(i.e. LUTs) with few registers and no hard blocks.

Warning: The MCNC20 benchmarks are not recommended for modern FPGA CAD and architecture research.
Their small size and design style (e.g. few registers, no hard blocks) make them unrepresentative of modern FPGA
usage. This can lead to misleading CAD and/or architecture conclusions.

The MCNC20 benchmarks included with VTR are available as .blif files under:

$VTR_ROOT/vtr_flow/benchmarks/blif/

The versions used in the VPR 4.3 release, which were mapped to 𝐾-input look-up tables using FlowMap [CD94], are
available under:

$VTR_ROOT/vtr_flow/benchmarks/blif/<#>

where 𝐾 = <#>.

Table 2.3: The MCNC20 benchmarks.

Benchmark Approximate Number of Netlist Primitives
alu4 934
apex2 1116
apex4 916
bigkey 1561
clma 3754
des 1199
diffeq 1410
dsip 1559
elliptic 3535
ex1010 2669
ex5p 824
frisc 3291
misex3 842
pdc 2879
s298 732
s38417 4888
s38584.1 4726
seq 1041
spla 2278
tseng 1583

2.6. Benchmarks 31

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.6.5 SymbiFlow Benchmarks

SymbiFlow benchmarks are a set of small and medium sized tests to verify and test the SymbiFlow-generated archi-
tectures, including primarily the Xilinx Artix-7 device families.

The tests are generated by nightly builds from the symbiflow-arch-defs repository, and uploaded to a Google Cloud
Platform from where they are fetched and executed in the VTR benchmarking suite.

The circuits are the following:

Table 2.4: The SymbiFlow benchmarks.

Benchmark Description
picosoc @100 MHz simple SoC with a picorv32 CPU running @100MHz
picosoc @50MHz simple SoC with a picorv32 CPU running @50MHz
base-litex LiteX-based SoC with a VexRiscv CPU booting into a BIOS only
ddr-litex LiteX-based SoC with a VexRiscv CPU and a DDR controller
ddr-eth-litex LiteX=based SoC with a VexRiscv CPU, a DDR controller and an Ethernet core
linux-litex LiteX-based SoC with a VexRiscv CPU capable of booting linux

The SymbiFlow benchmarks can be downloaded and extracted by running the following:

cd $VTR_ROOT
make get_symbiflow_benchmarks

Once downloaded and extracted, benchmarks are provided as post-synthesized blif files under:

$VTR_ROOT/vtr_flow/benchmarks/symbiflow

2.6.6 NoC Benchmarks

NoC benchmarks are composed of synthetic and MLP benchmarks and target NoC-enhanced FPGA architectures.
Synthetic benchmarks include a wide variety of traffic flow patters and are divided into two groups: 1) simple and 2)
complex benchmarks. As their names imply, simple benchmarks use very simple and small logic modules connected to
NoC routers, while complex benchmarks implement more complicated functionalities like encryption. These bench-
marks do not come from real application domains. On the other hand, MLP benchmarks include modules that perform
matrix-vector multiplication and move data. Pre-synthesized netlists for the synthetic benchmarks are added to VTR
project, but MLP netlists should be downloaded separately.

Note: The NoC MLP benchmarks are not included with the VTR release (due to their size). However they can be
downloaded and extracted by running make get_noc_mlp_benchmarks from the root of the VTR tree. They can also
be downloaded manually.

32 Chapter 2. VTR

https://github.com/SymbiFlow/symbiflow-arch-defs
https://www.eecg.utoronto.ca/~vaughn/titan/

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.7 Power Estimation

VTR provides transistor-level dynamic and static power estimates for a given architecture and circuit.

Fig. 2.2 illustrates how power estimation is performed in the VTR flow. The actual power estimation is performed
within the VPR executable; however, additional files must be provided. In addition to the circuit and architecture files,
power estimation requires files detailing the signal activities and technology properties.

Running VTR with Power Estimation details how to run power estimation for VTR. Supporting Tools provides details
on the supporting tools that are used to generate the signal activities and technology properties files. Architecture
Modelling provides details about how the tool models architectures, including different modelling methods and options.
Other Architecture Options & Techniques provides more advanced configuration options.

2.7.1 Running VTR with Power Estimation

VTR Flow

The easiest way to run the VTR flow is to use the run_vtr_flow script.

In order to perform power estimation, you must add the following options:

• run_vtr_flow.py -power

• run_vtr_flow.py -cmos_tech <cmos_tech_properties_file>

The CMOS technology properties file is an XML file that contains relevant process-dependent information needed for
power estimation. XML files for 22nm, 45nm, and 130nm PTM models can be found here:

$VTR_ROOT/vtrflow/tech/*

See Technology Properties for information on how to generate an XML file for your own SPICE technology model.

In this mode, the VTR will run ODIN->ABC->ACE->VPR. The ACE stage is additional and specific to this power
estimation flow. Using run_vtr_flow.py will automatically run ACE 2.0 to generate activity information and a new
BLIF file (see :ACE 2.0 Activity Estimation for details).

The final power estimates will be available in file named <circuit_name>.power in the result directory.

Here is an example command:

VPR

Power estimation can also be run directly from VPR with the following (all required) options:

• vpr --power: Enables power estimation.

• vpr --activity_file <activities.act>: The activity file, produce by ACE 2.0, or another tool.

• vpr --tech_properties <tech_properties.xml>: The technology properties file.

Power estimation requires an activity file, which can be generated as described in ACE 2.0 Activity Estimation.

2.7. Power Estimation 33

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 2.2: Power Estimation in the VTR Flow

34 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.7.2 Supporting Tools

Technology Properties

Power estimation requires information detailing the properties of the CMOS technology. This information, which
includes transistor capacitances, leakage currents, etc. is included in an .xml file, and provided as a parameter to VPR.
This XML file is generated using a script which automatically runs HSPICE, performs multiple circuit simulations,
and extract the necessary values.

Some of these technology XML files are included with the release, and are located here:

$VTR_ROOT/vtr_flow/tech/*

If the user wishes to use a different CMOS technology file, they must run the following script:

Note: HSPICE must be available on the users path

$VTR_ROOT/vtr_flow/scripts/generate_cmos_tech_data.pl <tech_file> <tech_size> <vdd>
→˓<temp>

where:

• <tech_file>: Is a SPICE technology file, containing a pmos and nmos models.

• <tech_size>: The technology size, in meters.

Example:
A 90nm technology would have the value 90e-9.

• <vdd>: Supply voltage in Volts.

• <temp>: Operating temperature, in Celcius.

ACE 2.0 Activity Estimation

Power estimation requires activity information for the entire netlist. This ativity information consists of two values:

1. The Signal Probability, 𝑃1, is the long-term probability that a signal is logic-high.

Example:
A clock signal with a 50% duty cycle will have 𝑃1(𝑐𝑙𝑘) = 0.5.

2. The Transition Density (or switching activity), 𝐴𝑆 , is the average number of times the signal will switch during
each clock cycle.

Example:
A clock has 𝐴𝑆(𝑐𝑙𝑘) = 2.

The default tool used to perform activity estimation in VTR is ACE 2.0 [LW06]. This tool was originally designed to
work with the (now obsolete) Berkeley SIS tool ACE 2.0 was modifed to use ABC, and is included in the VTR package
here:

$VTR_ROOT/ace2

The tool can be run using the following command-line arguments:

2.7. Power Estimation 35

Verilog-to-Routing Documentation, Release 8.1.0-dev

$VTR_ROOT/ace2/ace -b <abc.blif> -c <clock_name> -o <activities.act> -n <new.blif>

where

• <abc.blif>: Is the input BLIF file produced by ABC.

• <clock_name>: Is the name of the clock in the input BLIF file

• <activities.act>: Is the activity file to be created.

• <new.blif>: The new BLIF file.

This will be functionally identical in function to the ABC blif; however, since ABC does not maintain
internal node names, a new BLIF must be produced with node names that match the activity file. This
blif file is fed to the subsequent parts of the flow (to VPR). If a user is using run_vtr_flow.py (which
will run ACE 2.0 underneath if the options mentioned earlier like -power are used), then the flow will
copy this ACE2 generated blif file (<circuit_name>.ace.blif) to <circuit_name>.pre-vpr.blif and then
launch VPR with this new file.

User’s may with to use their own activity estimation tool. The produced activity file must contain one line for each net
in the BLIF file, in the following format:

<net name> <signal probability> <transistion density>

2.7.3 Architecture Modelling

The following section describes the architectural assumptions made by the power model, and the related parameters in
the architecture file.

Complex Blocks

The VTR architecture description language supports a hierarchichal description of blocks. In the architecture file,
each block is described as a pb_type, which may includes one or more children of type pb_type, and interconnect
structures to connect them.

The power estimation algorithm traverses this hierarchy recursively, and performs power estimation for each pb_type.
The power model supports multiple power estimation methods, and the user specifies the desired method in the archi-
tecture file:

<pb_type>
<power method="<estimation-method>"/>

</pb_type>

The following is a list of valid estimation methods. Detailed descriptions of each type are provided in the following
sections. The methods are listed in order from most accurate to least accurate.

1. specify-size: Detailed transistor level modelleling.

The user supplies all buffer sizes and wire-lengths. Any not provided by the user are ignored.

2. auto-size: Detailed transistor level modelleling.

The user can supply buffer sizes and wire-lengths; however, they will be automatically inserted when not pro-
vided.

3. pin-toggle: Higher-level modelling.

The user specifies energy per toggle of the pins. Static power provided as an absolute.

36 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

4. C-internal: Higher-level modelling.

The user supplies the internal capacitance of the block. Static power provided as an absolute.

5. absolute: Highest-level modelling.

The user supplies both dynamic and static power as absolutes.

Other methods of estimation:

1. ignore: The power of the pb_type is ignored, including any children.

2. sum-of-children: Power of pb_type is solely the sum of all children pb_types.

Interconnect between the pb_type and its children is ignored.

Note: If no estimation method is provided, it is inherited from the parent pb_type.

Note: If the top-level pb_type has no estimation method, auto-size is assumed.

specify-size

This estimation method provides a detailed transistor level modelling of CLBs, and will provide the most accurate
power estimations. For each pb_type, power estimation accounts for the following components (see Fig. 2.3).

• Interconnect multiplexers

• Buffers and wire capacitances

• Child pb_types

Multiplexers: Interconnect multiplexers are modelled as 2-level pass-transistor multiplexers, comprised of minimum-
size NMOS transistors. Their size is determined automatically from the <interconnect/> structures in the architec-
ture description file.

Buffers and Wires: Buffers and wire capacitances are not defined in the architecture file, and must be explicitly added
by the user. They are assigned on a per port basis using the following construct:

<pb_type>
<input name="my_input" num_pins="1">

<power ...options.../>
</input>

</pb_type>

The wire and buffer attributes can be set using the following options. If no options are set, it is assumed that the wire
capacitance is zero, and there are no buffers present. Keep in mind that the port construct allows for multiple pins per
port. These attributes will be applied to each pin in the port. If necessary, the user can seperate a port into multiple
ports with different wire/buffer properties.

• wire_capacitance=1.0e-15: The absolute capacitance of the wire, in Farads.

• wire_length=1.0e-7: The absolute length of the wire, in meters.

The local interconnect capacitance option must be specified, as described in Local Interconnect Ca-
pacitance.

• wire_length=auto: The wirelength is automatically sized. See Local Wire Auto-Sizing.

• buffer_size=2.0: The size of the buffer at this pin. See for more Buffer Sizing information.

2.7. Power Estimation 37

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 2.3: Sample Block

38 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

• buffer_size=auto: The size of the buffer is automatically sized, assuming it drives the above wire capacitance
and a single multiplexer. See Buffer Sizing for more information.

Primitives: For all child pb_types, the algorithm performs a recursive call. Eventually pb_types will be reached
that have no children. These are primitives, such as flip-flops, LUTs, or other hard-blocks. The power model includes
functions to perform transistor-level power estimation for flip-flops and LUTs (Note: the power model doesn’t, by
default, include power estimation for single-bit adders that are commonly found in logic blocks of modern FPGAs). If
the user wishes to use a design with other primitive types (memories, multipliers, etc), they must provide an equivalent
function. If the user makes such a function, the power_usage_primitive function should be modified to call it.
Alternatively, these blocks can be configured to use higher-level power estimation methods.

auto-size

This estimation method also performs detailed transistor-level modelling. It is almost identical to the specify-size
method described above. The only difference is that the local wire capacitance and buffers are automatically inserted
for all pins, when necessary. This is equivalent to using the specify-size method with the wire_length=auto and
buffer_size=auto options for every port.

Note: This is the default power estimation method.

Although not as accurate as user-provided buffer and wire sizes, it is capable of automatically capturing trends in power
dissipation as architectures are modified.

pin-toggle

This method allows users to specify the dynamic power of a block in terms of the energy per toggle (in Joules) of each
input, output or clock pin for the pb_type. The static power is provided as an absolute (in Watts). This is done using
the following construct:

<pb_type>
...
<power method="pin-toggle">

<port name="A" energy_per_toggle="1.0e-12"/>
<port name="B[3:2]" energy_per_toggle="1.0e-12"/>
<port name="C" energy_per_toggle="1.0e-12" scaled_by_static_porb="en1"/>
<port name="D" energy_per_toggle="1.0e-12" scaled_by_static_porb_n="en2"/>
<static_power power_per_instance="1.0e-6"/>

</power>
</pb_type>

Keep in mind that the port construct allows for multiple pins per port. Unless an subset index is provided, the en-
ergy per toggle will be applied to each pin in the port. The energy per toggle can be scaled by another signal us-
ing the scaled_by_static_prob. For example, you could scale the energy of a memory block by the read en-
able pin. If the read enable were high 80% of the time, then the energy would be scaled by the 𝑠𝑖𝑔𝑛𝑎𝑙_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦,
0.8. Alternatively scaled_by_static_prob_n can be used for active low signals, and the energy will be scaled by
(1− 𝑠𝑖𝑔𝑛𝑎𝑙_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦).

This method does not perform any transistor-level estimations; the entire power estimation is performed using the above
values. It is assumed that the power usage specified here includes power of all child pb_types. No further recursive
power estimation will be performed.

2.7. Power Estimation 39

Verilog-to-Routing Documentation, Release 8.1.0-dev

C-internal

This method allows the users to specify the dynamic power of a block in terms of the internal capacitance of the block.
The activity will be averaged across all of the input pins, and will be supplied with the internal capacitance to the
standard equation:

𝑃𝑑𝑦𝑛 =
1

2
𝛼𝐶𝑉 2.

Again, the static power is provided as an absolute (in Watts). This is done using the following construct:

<pb_type>
<power method="c-internal">

<dynamic_power C_internal="1.0e-16"/>
<static_power power_per_instance="1.0e-16"/>

</power>
</pb_type>

It is assumed that the power usage specified here includes power of all child pb_types. No further recursive power
estimation will be performed.

absolute

This method is the most basic power estimation method, and allows users to specify both the dynamic and static power
of a block as absolute values (in Watts). This is done using the following construct:

<pb_type>
<power method="absolute">

<dynamic_power power_per_instance="1.0e-16"/>
<static_power power_per_instance="1.0e-16"/>

</power>
</pb_type>

It is assumed that the power usage specified here includes power of all child pb_types. No further recursive power
estimation will be performed.

Global Routing

Global routing consists of switch boxes and input connection boxes.

Switch Boxes

Switch boxes are modelled as the following components (Fig. 2.4):

1. Multiplexer

2. Buffer

3. Wire capacitance

Multiplexer: The multiplexer is modelled as 2-level pass-transistor multiplexer, comprised of minimum-size NMOS
transistors. The number of inputs to the multiplexer is automatically determined.

Buffer: The buffer is a multistage CMOS buffer. The buffer size is determined based upon output capacitance provided
in the architecture file:

40 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 2.4: Switch Box

<switchlist>
<switch type="mux" ... C_out="1.0e-16"/>

</switchlist>

The user may override this method by providing the buffer size as shown below:

<switchlist>
<switch type="mux" ... power_buf_size="16"/>

</switchlist>

The size is the drive strength of the buffer, relative to a minimum-sized inverter.

Input Connection Boxes

Input connection boxes are modelled as the following components (Fig. 2.5):

• One buffer per routing track, sized to drive the load of all input multiplexers to which the buffer is connected
(For buffer sizing see Buffer Sizing).

• One multiplexer per block input pin, sized according to the number of routing tracks that connect to the pin.

Clock Network

The clock network modelled is a four quadrant spine and rib design, as illustrated in Fig. 2.6. At this time, the power
model only supports a single clock. The model assumes that the entire spine and rib clock network will contain buffers
separated in distance by the length of a grid tile. The buffer sizes and wire capacitances are specified in the architecture
file using the following construct:

<clocks>
<clock ... clock_options ... />

</clocks>

The following clock options are supported:

• C_wire=1e-16: The absolute capacitance, in fards, of the wire between each clock buffer.

2.7. Power Estimation 41

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 2.5: Connection Box

• C_wire_per_m=1e-12: The wire capacitance, in fards per m.

The capacitance is calculated using an automatically determined wirelength, based on the area of a
tile in the FPGA.

• buffer_size=2.0: The size of each clock buffer.

This can be replaced with the auto keyword. See Buffer Sizing for more information on buffer sizing.

2.7.4 Other Architecture Options & Techniques

Local Wire Auto-Sizing

Due to the significant user effort required to provide local buffer and wire sizes, we developed an algorithm to es-
timate them automatically. This algorithm recursively calculates the area of all entities within a CLB, which con-
sists of the area of primitives and the area of local interconnect multiplexers. If an architecture uses new primitives
in CLBs, it should include a function that returns the transistor count. This function should be called from within
power_count_transistors_primitive().

In order to determine the wire length that connects a parent entity to its children, the following assumptions are made:

• Assumption 1:
All components (CLB entities, multiplexers, crossbars) are assumed to be contained in a square-shaped
area.

• Assumption 2:
All wires connecting a parent entity to its child pass through the interconnect square, which is the sum area
of all interconnect multiplexers belonging to the parent entity.

Fig. 2.7 provides an illustration of a parent entity connected to its child entities, containing one of each interconnect
type (direct, many-to-1, and complete). In this figure, the square on the left represents the area used by the transistors
of the interconnect multiplexers. It is assumed that all connections from parent to child will pass through this area.
Real wire lengths could me more or less than this estimate; some pins in the parent may be directly adjacent to child
entities, or they may have to traverse a distance greater than just the interconnect area. Unfortuantely, a more rigorous
estimation would require some information about the transistor layout.

42 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 2.6: The clock network. Squares represent CLBs, and the wires represent the clock network.

2.7. Power Estimation 43

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 2.7: Local interconnect wirelength.

Table 2.5: Local interconnect wirelength and capacitance. 𝐶𝑖𝑛𝑣 is the
input capacitance of a minimum-sized inverter.

Connection from Entity Pin to: Estimated Wirelength Transistor Capacitance
Direct (Input or Output) 0.5 · 𝐿𝑖𝑛𝑡𝑒𝑟𝑐 0
Many-to-1 (Input or Output) 0.5 · 𝐿𝑖𝑛𝑡𝑒𝑟𝑐 𝐶𝐼𝑁𝑉

Complete m:n (Input) 0.5 · 𝐿𝑖𝑛𝑡𝑒𝑟𝑐 + 𝐿𝑐𝑟𝑜𝑠𝑠𝑏𝑎𝑟 𝑛 · 𝐶𝐼𝑁𝑉

Complete m:n (Output) 0.5 · 𝐿𝑖𝑛𝑡𝑒𝑟𝑐 𝐶𝐼𝑁𝑉

Table 2.5 details how local wire lengths are determined as a function of entity and interconnect areas. It is assumed that
each wire connecting a pin of a pb_type to an interconnect structure is of length 0.5 · 𝐿𝑖𝑛𝑡𝑒𝑟𝑐. In reality, this length
depends on the actual transistor layout, and may be much larger or much smaller than the estimated value. If desired,
the user can override the 0.5 constant in the architecture file:

<architecture>
<power>

<local_interconnect factor="0.5"/>
</power>

</architecture>

44 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Buffer Sizing

In the power estimator, a buffer size refers to the size of the final stage of multi-stage buffer (if small, only a single stage
is used). The specified size is the 𝑊

𝐿 of the NMOS transistor. The PMOS transistor will automatically be sized larger.
Generally, buffers are sized depending on the load capacitance, using the following equation:

Buffer Size =
1

2 · 𝑓𝐿𝐸
* 𝐶𝐿𝑜𝑎𝑑

𝐶𝐼𝑁𝑉

In this equation, 𝐶𝐼𝑁𝑉 is the input capacitance of a minimum-sized inverter, and 𝑓𝐿𝐸 is the logical effort factor. The
logical effort factor is the gain between stages of the multi-stage buffer, which by default is 4 (minimal delay). The
term (2 · 𝑓𝐿𝐸) is used so that the ratio of the final stage to the driven capacitance is smaller. This produces a much
lower-area, lower-power buffer that is still close to the optimal delay, more representative of common design practises.
The logical effort factor can be modified in the architecture file:

<architecture>
<power>

<buffers logical_effor_factor="4"/>
</power>

</architecture>

Local Interconnect Capacitance

If using the auto-size or wire-length options (Architecture Modelling), the local interconnect capacitance must be
specified. This is specified in the units of Farads/meter.

<architecture>
<power>

<local_interconnect C_wire="2.5e-15"/>
</power>

</architecture>

2.8 Tasks

Tasks provide a framework for running the VTR flow on multiple benchmarks, architectures and with multiple CAD
tool parameters.

A task specifies a set of benchmark circuits, architectures and CAD tool parameters to be used. By default, tasks execute
the run_vtr_flow script for every circuit/architecture/CAD parameter combination.

2.8.1 Example Tasks

• basic_flow: Runs the VTR flow mapping a simple Verilog circuit to an FPGA architecture.

• timing: Runs the flagship VTR benchmarks on a comprehensive, realistic architecture file.

• timing_chain: Same as timing but with carry chains.

• regression_mcnc: Runs VTR on the historical MCNC benchmarks on a legacy architecture file. (Note: This
is only useful for comparing to the past, it is not realistic in the modern world)

• regression_titan/titan_small: Runs a small subset of the Titan benchmarks targetting a simplified Altera
Stratix IV (commercial FPGA) architecture capture

• regression_fpu_hard_block_arch: Custom hard FPU logic block architecture

2.8. Tasks 45

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.8.2 Directory Layout

All of VTR’s included tasks are located here:

$VTR_ROOT/vtr_flow/tasks

If users wishes to create their own task, they must do so in this location.

All tasks must contain a configuration file located here:

$VTR_ROOT/vtr_flow/tasks/<task_name>/config/config.txt

Fig. 2.8 illustrates the directory layout for a VTR task. Every time the task is run a new run<#> directory is created to
store the output files, where <#> is the smallest integer to make the run directory name unique.

The symbolic link latest will point to the most recent run<#> directory.

<task name>

config run001 run002 run003 latest

config.txt <arch1> <arch2> ...

<circuit1> <circuit2> ...

<params1> <params2> ...

parmys.out
abc.out
vpr.out

parmys.out
abc.out
vpr.out

Fig. 2.8: Task directory layout.

2.8.3 Creating a New Task

1. Create the folder $VTR_ROOT/vtr_flow/tasks/<task_name>

2. Create the folder $VTR_ROOT/vtr_flow/tasks/<task_name>/config

3. Create and configure the file $VTR_ROOT/vtr_flow/tasks/<task_name>/config/config.txt

46 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.8.4 Task Configuration File

The task configuration file contains key/value pairs separated by the = character. Comment line are indicted using the
symbol.

Example configuration file:

Path to directory of circuits to use
circuits_dir=benchmarks/verilog

Path to directory of architectures to use
archs_dir=arch/timing

Add circuits to list to sweep
circuit_list_add=ch_intrinsics.v
circuit_list_add=diffeq1.v

Add architectures to list to sweep
arch_list_add=k6_N10_memSize16384_memData64_stratix4_based_timing_sparse.xml

Parse info and how to parse
parse_file=vpr_standard.txt

Note: run_vtr_task will invoke the script (default run_vtr_flow) for the cartesian product of circuits, architectures and
script parameters specified in the config file.

2.8.5 Required Fields

• circuit_dir: Directory path of the benchmark circuits.

Absolute path or relative to $VTR_ROOT/vtr_flow/.

• arch_dir: Directory path of the architecture XML files.

Absolute path or relative to $VTR_ROOT/vtr_flow/.

• circuit_list_add: Name of a benchmark circuit file.

Use multiple lines to add multiple circuits.

• arch_list_add: Name of an architecture XML file.

Use multiple lines to add multiple architectures.

• parse_file: Parse Configuration file used for parsing and extracting the statistics.

Absolute path or relative to $VTR_ROOT/vtr_flow/parse/parse_config.

2.8. Tasks 47

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.8.6 Optional Fields

• script_path: Script to run for each architecture/circuit combination.

Absolute path or relative to $VTR_ROOT/vtr_flow/scripts/ or $VTR_ROOT/vtr_flow/tasks/
<task_name>/config/)

Default: run_vtr_flow

Users can set this option to use their own script instead of the default. The circuit path will be provided
as the first argument, and architecture path as the second argument to the user script.

• script_params_common: Common parameters to be passed to all script invocations.

This can be used, for example, to run partial VTR flows.

Default: none

• script_params: Alias for script_params_common

• script_params_list_add: Adds a set of command-line arguments

Multiple script_params_list_add can be provided which are addded to the cartesian product of con-
figurations to be evaluated.

• sdc_dir: Directory path to benchmark SDC files.

Absolute path or relative to $VTR_ROOT/vtr_flow/.

If provided, each benchmark will look for a similarly named SDC file.

For instance with circuit_list_add=my_circuit.v or circuit_list_add=my_circuit.
blif, the flow would look for an SDC file named my_circuit.sdc within the specified sdc_dir.

• includes_dir: Directory path to benchmark _include_ files

Absolute path or relative to $VTR_ROOT/vtr_flow/.

Note: Multiple includes_dir are NOT allowed in a task config file.

• include_list_add: A path to an include file, which is relative to includes_dir

Multiple include_list_add can be provided.

include files could act as the top module complementary, like definitions, memory initialization files,
macros or sub-modules.

Note: Only include files, written in supported HDLs by each frontend, are synthesized. The others
are only copied to the destination folder.

Note: include files will be shared among all benchmark circuits in the task config file.

• pass_requirements_file: Pass Requirements file.

Absolute path or relative to $VTR_ROOT/vtr_flow/parse/pass_requirements/ or $VTR_ROOT/
vtr_flow/tasks/<task_name>/config/

Default: none

48 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.9 run_vtr_flow

This script runs the VTR flow for a single benchmark circuit and architecture file.

The script is located at:

$VTR_ROOT/vtr_flow/scripts/run_vtr_flow.py

2.9.1 Basic Usage

At a minimum run_vtr_flow.py requires two command-line arguments:

run_vtr_flow.py <circuit_file> <architecture_file>

where:

• <circuit_file> is the circuit to be processed

• <architecture_file> is the target FPGA architecture

Note: The script will create a ./temp directory, unless otherwise specified with the -temp_dir option. The circuit
file and architecture file will be copied to the temporary directory. All stages of the flow will be run within this directory.
Several intermediate files will be generated and deleted upon completion. Users should ensure that no important
files are kept in this directory as they may be deleted.

2.9.2 Output

The standard out of the script will produce a single line with the format:

<architecture>/<circuit_name>...<status>

If execution completed successfully the status will be ‘OK’. Otherwise, the status will indicate which stage of execution
failed.

The script will also produce an output files (*.out) for each stage, containing the standout output of the executable(s).

2.9.3 Advanced Usage

Additional optional command arguments can also be passed to run_vtr_flow.py:

run_vtr_flow.py <circuit_file> <architecture_file> [<options>] [<vpr_options>]

where:

• <options> are additional arguments passed to run_vtr_flow.py (described below),

• <vpr_options> are any arguments not recognized by run_vtr_flow.py. These will be forwarded to VPR.

For example:

run_vtr_flow.py my_circuit.v my_arch.xml -track_memory_usage --pack --place

2.9. run_vtr_flow 49

Verilog-to-Routing Documentation, Release 8.1.0-dev

will run the VTR flow to map the circuit my_circuit.v onto the architecture my_arch.xml; the arguments --pack
and --place will be passed to VPR (since they are unrecognized arguments to run_vtr_flow.py). They will cause
VPR to perform only packing and placement.

Using the Yosys conventional Verilog parser
./run_vtr_flow <path/to/Verilog/File> <path/to/arch/file>

Using the Yosys-SystemVerilog plugin if installed, otherwise the Yosys conventional␣
→˓Verilog parser
./run_vtr_flow <path/to/SystemVerilog/File> <path/to/arch/file> -parser system-verilog

Running the VTR flow with the default configuration using the Yosys standalone front-end. The parser for these runs
is considered the Yosys conventional Verilog/SystemVerilog parser (i.e., read_verilog -sv), as the parser is not
explicitly specified.

Using the Yosys-SystemVerilog plugin if installed, otherwise the Yosys conventional␣
→˓Verilog parser
./run_vtr_flow <path/to/SystemVerilog/File> <path/to/arch/file> -parser system-verilog

Using the Surelog plugin if installed, otherwise failure on the unsupported file type
./run_vtr_flow <path/to/UHDM/File> <path/to/arch/file> -parser surelog

Running the default VTR flow using the Parmys standalone front-end. The Yosys HDL parser is considered as Yosys-
SystemVerilog plugin (i.e., read_systemverilog) and Yosys UHDM plugin (i.e., read_uhdm), respectively. Utiliz-
ing Yosys plugins requires passing the -DYOSYS_F4PGA_PLUGINS=ON compile flag to build and install the plugins for
the Parmys front-end.

Using the Parmys (Partial Mapper for Yosys) plugin as partial mapper
./run_vtr_flow <path/to/Verilog/File> <path/to/arch/file>

Will run the VTR flow (default configuration) with Yosys frontend using Parmys plugin as partial mapper. To utilize
the Parmys plugin, the -DYOSYS_PARMYS_PLUGIN=ON compile flag should be passed while building the VTR project
with Yosys as a frontend.

2.9.4 Detailed Command-line Options

Note: Any options not recognized by this script is forwarded to VPR.

-starting_stage <stage>

Start the VTR flow at the specified stage.

Accepted values:

• odin

• parmys

• abc

• scripts

• vpr

Default: parmys

50 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

-ending_stage <stage>

End the VTR flow at the specified stage.

Accepted values:

• odin

• parmys

• abc

• scripts

• vpr

Default: vpr
-power

Enables power estimation.

See Power Estimation

-cmos_tech <file>

CMOS technology XML file.

See Technology Properties

-delete_intermediate_files

Delete intermediate files (i.e. .dot, .xml, .rc, etc)

-delete_result_files

Delete result files (i.e. VPR’s .net, .place, .route outputs)

-track_memory_usage

Record peak memory usage and additional statistics for each stage.

Note: Requires /usr/bin/time -v command. Some operating systems do not report peak memory.

Default: off

-limit_memory_usage

Kill benchmark if it is taking up too much memory to avoid slow disk swaps.

Note: Requires ulimit -Sv command.

Default: off

-timeout <float>

Maximum amount of time to spend on a single stage of a task in seconds.

Default: 14 days

-temp_dir <path>

Temporary directory used for execution and intermediate files. The script will automatically create this directory
if necessary.

Default: ./temp

2.9. run_vtr_flow 51

Verilog-to-Routing Documentation, Release 8.1.0-dev

-valgrind

Run the flow with valgrind while using the following valgrind options:

• –leak-check=full

• –errors-for-leak-kinds=none

• –error-exitcode=1

• –track-origins=yes

-min_hard_mult_size <int>

Tells Parmys/ODIN II the minimum multiplier size that should be implemented using hard multiplier (if avail-
able). Smaller multipliers will be implemented using soft logic.

Default: 3

-min_hard_adder_size <int>

Tells Parmys/ODIN II the minimum adder size that should be implemented using hard adders (if available).
Smaller adders will be implemented using soft logic.

Default: 1

-adder_cin_global

Tells Parmys/ODIN II to connect the first cin in an adder/subtractor chain to a global gnd/vdd net. Instead of
creating a dummy adder to generate the input signal of the first cin port of the chain.

-odin_xml <path_to_custom_xml>

Tells VTR flow to use a custom ODIN II configuration value. The default behavior is to use the
vtr_flow/misc/basic_odin_config_split.xml. Instead, an alternative config file might be supplied; compare the
default and vtr_flow/misc/custom_odin_config_no_mults.xml for usage scenarios. This option is needed for
running the entire VTR flow with additional parameters for ODIN II that are provided from within the .xml file.

-use_odin_simulation

Tells ODIN II to run simulation.

-min_hard_mult_size <min_hard_mult_size>

Tells Parmys/ODIN II the minimum multiplier size (in bits) to be implemented using hard multiplier.

Default: 3

-min_hard_adder_size <MIN_HARD_ADDER_SIZE>

Tells Parmys/ODIN II the minimum adder size (in bits) that should be implemented using hard adder.

Default: 1

-top_module <TOP_MODULE>

Specifies the name of the module in the design that should be considered as top

-yosys_script <YOSYS_SCRIPT>

Supplies Parmys(Yosys) with a .ys script file (similar to Tcl script), including the synthesis steps.

Default: None

-parser <PARSER>

Specify a parser for the Yosys synthesizer [default (Verilog-2005), surelog (UHDM), system-verilog]. The script
uses the default conventional Verilog parser if this argument is not used.

Default: default

52 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Note: Universal Hardware Data Model (UHDM) is a complete modeling of the IEEE SystemVerilog Object Model
with VPI Interface, Elaborator, Serialization, Visitor and Listener. UHDM is used as a compiled interchange for-
mat in between SystemVerilog tools. Typical inputs to the UHDM flow are files with .v or .sv extensions. The
system-verilog parser, which represents the read_systemverilog command, reads SystemVerilog files directly
in Yosys. It executes Surelog with provided filenames and converts them (in memory) into UHDM file. Then, this
UHDM file is converted into Yosys AST. [Yosys-SystemVerilog] On the other hand, the surelog parser, which uses
the read_uhdm Yosys command, walks the design tree and converts its nodes into Yosys AST nodes using Surelog.
[UHDM-Yosys, Surelog]

Note: Parmys is a Yosys plugin which provides intelligent partial mapping features (inference, binding, and hard/soft
logic trade-offs) from Odin-II for Yosys. For more information on available paramters see the Parmys plugin page.

2.10 run_vtr_task

This script is used to execute one or more tasks (i.e. collections of benchmarks and architectures).

See also:
See Tasks for creation and configuration of tasks.

This script runs the VTR flow for a single benchmark circuit and architecture file.

The script is located at:

$VTR_ROOT/vtr_flow/scripts/run_vtr_task.py

2.10.1 Basic Usage

Typical usage is:

run_vtr_task.py <task_name1> <task_name2> ...

Note: At least one task must be specified, either directly as a parameter or via the -l options.

2.10.2 Output

Each task will execute the script specified in the configuration file for every benchmark/circuit/option combination.
The standard output of the underlying script will be forwarded to the output of this script.

If golden results exist (see parse_vtr_task), they will be inspected for runtime and memory usage.

2.10. run_vtr_task 53

https://github.com/antmicro/yosys-systemverilog#usage
https://github.com/chipsalliance/UHDM-integration-tests#uhdm-yosys
https://github.com/chipsalliance/Surelog#surelog
https://github.com/CAS-Atlantic/parmys-plugin.git

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.10.3 Detailed Command-line Options

-s <script_param> ...

Treat the remaining command line options as parameters to forward to the underlying script (e.g. run_vtr_flow).

-j <N>

Perform parallel execution using N threads.

Note: Only effective for -system local

Warning: Large benchmarks will use very large amounts of memory (several to 10s of gigabytes). Because
of this, parallel execution often saturates the physical memory, requiring the use of swap memory, which
significantly slows execution. Be sure you have allocated a sufficiently large swap memory or errors may
result.

-l <task_list_file>

A file containing a list of tasks to execute.

Each task name should be on a separate line, e.g.:

<task_name1>
<task_name2>
<task_name3>
...

-temp_dir <path>

Alternate directory for files generated by a set of tasks. The script will automatically create this directory if
necessary.

Default: config/.. for each task being run

Specifies the parent directory for the output of this set of tasks, which will contain <task_name>/run<#> di-
rectories, as well as any generated parse results.

A task folder or list with a config directory must still be specified when invoking the script.

-system {local | scripts}

Controls how the actions (e.g. invocations of run_vtr_flow) are called.

Default: local
• local: Runs the flow invocations on the local machine (potentially in parallel with the -j option).

Example:

#From $VTR_ROOT/vtr_flow/tasks

$../scripts/run_vtr_task.py regression_tests/vtr_reg_basic/basic_timing
regression_tests/vtr_reg_basic/basic_timing: k6_N10_mem32K_40nm.xml/ch_
→˓intrinsics.v/common OK (took 2.24 seconds)
regression_tests/vtr_reg_basic/basic_timing: k6_N10_mem32K_40nm.xml/
→˓diffeq1.v/common OK (took 10.94 seconds)

• scripts: Prints out all the generated script files (instead of calling them to run all the flow invocations).

54 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Example:

#From $VTR_ROOT/vtr_flow/tasks

$../scripts/run_vtr_task.py regression_tests/vtr_reg_basic/basic_timing␣
→˓-system scripts
/project/trees/vtr/vtr_flow/tasks/regression_tests/vtr_reg_basic/basic_
→˓timing/run001/k6_N10_mem32K_40nm.xml/ch_intrinsics.v/common/vtr_flow.sh
/project/trees/vtr/vtr_flow/tasks/regression_tests/vtr_reg_basic/basic_
→˓timing/run001/k6_N10_mem32K_40nm.xml/diffeq1.v/common/vtr_flow.sh

Each generated script file (vtr_flow.sh) corresponds to a particular flow invocation generated
by the task, and is located within its own directory.

This list of scripts can be used to run flow invocations on different computing infrastructures (e.g.
a compute cluster).

Using the output of -system scripts to run a task
An example of using the output would be:

#From $VTR_ROOT/vtr_flow/tasks

$../scripts/run_vtr_task.py regression_tests/vtr_reg_basic/basic_timing␣
→˓-system scripts | parallel -j4 'cd $(dirname {}) && {}'
regression_tests/vtr_reg_basic/basic_timing: k6_N10_mem32K_40nm.xml/ch_
→˓intrinsics.v/common OK (took 2.11 seconds)
regression_tests/vtr_reg_basic/basic_timing: k6_N10_mem32K_40nm.xml/
→˓diffeq1.v/common OK (took 10.94 seconds)

where {} is a special variable interpretted by the parallel command to represent the input line
(i.e. a script, see parallel’s documentation for details). This will run the scripts generated by
run_vtr_task.py in parallel (up to 4 at-a-time due to -j4). Each script is invoked in the script’s con-
taining directory (cd $(dirname {})), which mimics the behaviour of -system local -j4.

Note: While this example shows how the flow invocations could be run locally, similar techniques
can be used to submit jobs to other compute infrastructures (e.g. a compute cluster)

Determining Resource Requirements
Often, when running in a cluster computing enviroment, it is useful to know what compute re-
sources are required for each flow invocation.

Each generated vtr_flow.sh scripts contains the expected run-time and memory use of each
flow invocation (derived from golden reference results). These can be inspected to determine
compute requirements:

$ grep VTR_RUNTIME_ESTIMATE_SECONDS /project/trees/vtr/vtr_flow/tasks/
→˓regression_tests/vtr_reg_basic/basic_timing/run001/k6_N10_mem32K_40nm.
→˓xml/ch_intrinsics.v/common/vtr_flow.sh
VTR_RUNTIME_ESTIMATE_SECONDS=2.96

$ grep VTR_MEMORY_ESTIMATE_BYTES /project/trees/vtr/vtr_flow/tasks/
→˓regression_tests/vtr_reg_basic/basic_timing/run001/k6_N10_mem32K_40nm.
→˓xml/ch_intrinsics.v/common/vtr_flow.sh
VTR_MEMORY_ESTIMATE_BYTES=63422464

2.10. run_vtr_task 55

Verilog-to-Routing Documentation, Release 8.1.0-dev

Note: If the resource estimates are unkown they will be set to 0

2.11 parse_vtr_flow

This script parses statistics generated by a single execution of the VTR flow.

Note: If the user is using the Tasks framework, parse_vtr_task should be used.

The script is located at:

$VTR_ROOT/vtr_flow/scripts/python_libs/vtr/parse_vtr_flow.py

2.11.1 Usage

Typical usage is:

parse_vtr_flow.py <parse_path> <parse_config_file>

where:

• <parse_path> is the directory path that contains the files to be parsed (e.g. vpr.out, parmys.out, etc).

• <parse_config_file> is the path to the Parse Configuration file.

2.11.2 Output

The script will produce no standard output. A single file named parse_results.txt will be produced in the
<parse_path> folder. The file is tab delimited and contains two lines. The first line is a list of field names that
were searched for, and the second line contains the associated values.

2.12 parse_vtr_task

This script is used to parse the output of one or more Tasks. The values that will be parsed are specified using a Parse
Configuration file, which is specified in the task configuration.

The script will always parse the results of the latest execution of the task.

The script is located at:

$VTR_ROOT/vtr_flow/scripts/python_libs/vtr/parse_vtr_task.py

56 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.12.1 Usage

Typical usage is:

parse_vtr_task.py <task_name1> <task_name2> ...

Note: At least one task must be specified, either directly as a parameter or through the -l option.

2.12.2 Output

By default this script produces no standard output. A tab delimited file containing the parse results will be produced
for each task. The file will be located here:

$VTR_ROOT/vtr_flow/tasks/<task_name>/run<#>/parse_results.txt

If the -check_golden is used, the script will output one line for each task in the format:

<task_name>...<status>

where <status> will be [Pass], [Fail], or [Error].

2.12.3 Detailed Command-line Options

-l <task_list_file>

A file containing a list of tasks to parse. Each task name should be on a separate line.

-temp_dir <path>

Alternate directory containing task results to parse (see run_vtr_task).

Default: config/.. for each task being parsed

Specifies the parent directory for the output of a set of tasks, which will contain <task_name>/run<#> direc-
tories, as well as any generated parse results.

A task folder or list with a config directory must still be specified when invoking the script.

-create_golden

The results will be stored as golden results. If previous golden results exist they will be overwritten.

The golden results are located here:

$VTR_ROOT/vtr_flow/tasks/<task_name>/config/golden_results.txt

-check_golden

The results will be compared to the golden results using the Pass Requirements file specified in the task configu-
ration. A Pass or Fail will be output for each task (see below). In order to compare against the golden results,
they must already exist, and have the same architectures, circuits and parse fields, otherwise the script will report
Error.

If the golden results are missing, or need to be updated, use the -create_golden option.

2.12. parse_vtr_task 57

Verilog-to-Routing Documentation, Release 8.1.0-dev

2.13 Parse Configuration

A parse configuration file defines a set of values that will be searched for within the specified files.

2.13.1 Format

The configuration file contains one line for each value to be searched for. Each line contains a semicolon delimited
tuple in the following format:

<field_name>;<file_to_search_within>;<regex>;<default_value>

• <field_name>: The name of the value to be searched for.

This name is used when generating the output files of parse_vtr_task and parse_vtr_flow.

• <file_to_search_within>: The name of the file that will be searched (vpr.out, parmys.out, etc.)

• <regex>: A perl regular expression used to find the desired value.

The regex must contain a single grouping () which will contain the desired value to be recorded.

• <default_value>: The default value for the given <field_name> if the <regex> does not match.

If no <default_value> is specified the value -1 is used.

Or an include directive to import parsing patterns from a separate file:

%include "<filepath>"

• <filepath> is a file containing additional parse specifications which will be included in the current file.

Comments can be specified with #. Anything following a # is ignored.

2.13.2 Example File

The following is an example parse configuration file:

vpr_status;output.txt;vpr_status=(.*)
vpr_seconds;output.txt;vpr_seconds=(\d+)
width;vpr.out;Best routing used a channel width factor of (\d+)
pack_time;vpr.out;Packing took (.*) seconds
place_time;vpr.out;Placement took (.*) seconds
route_time;vpr.out;Routing took (.*) seconds
num_pre_packed_nets;vpr.out;Total Nets: (\d+)
num_pre_packed_blocks;vpr.out;Total Blocks: (\d+)
num_post_packed_nets;vpr.out;Netlist num_nets:\s*(\d+)
num_clb;vpr.out;Netlist clb blocks:\s*(\d+)
num_io;vpr.out;Netlist inputs pins:\s*(\d+)
num_outputs;vpr.out;Netlist output pins:\s*(\d+)
num_lut0;vpr.out;(\d+) LUTs of size 0
num_lut1;vpr.out;(\d+) LUTs of size 1
num_lut2;vpr.out;(\d+) LUTs of size 2
num_lut3;vpr.out;(\d+) LUTs of size 3
num_lut4;vpr.out;(\d+) LUTs of size 4
num_lut5;vpr.out;(\d+) LUTs of size 5

(continues on next page)

58 Chapter 2. VTR

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

num_lut6;vpr.out;(\d+) LUTs of size 6
unabsorb_ff;vpr.out;(\d+) FFs in input netlist not absorbable
num_memories;vpr.out;Netlist memory blocks:\s*(\d+)
num_mult;vpr.out;Netlist mult_36 blocks:\s*(\d+)
equiv;abc.out;Networks are (equivalent)
error;output.txt;error=(.*)

%include "my_other_metrics.txt" #Include metrics from the file 'my_other_metrics.txt'

2.14 Pass Requirements

The parse_vtr_task scripts allow you to compare an executed task to a golden reference result. The comparison, which
is performed when using the parse_vtr_task.py -check_golden option, which reports either Pass or Fail. The
requirements that must be met to qualify as a Pass are specified in the pass requirements file.

2.14.1 Task Configuration

Tasks can be configured to use a specific pass requirements file using the pass_requirements_file keyword in the Tasks
configuration file.

2.14.2 File Location

All provided pass requirements files are located here:

$VTR_ROOT/vtr_flow/parse/pass_requirements

Users can also create their own pass requirement files.

2.14.3 File Format

Each line of the file indicates a single metric, data type and allowable values in the following format:

<metric>;<requirement>

• <metric>: The name of the metric.

• <requirement>: The metric’s pass requirement.

Valid requiremnt types are:

– Equal(): The metric value must exactly match the golden reference result.

– Range(<min_ratio>,<max_ratio>): The metric value (normalized to the golden result) must
be between <min_ratio> and <max_ratio>.

– RangeAbs(<min_ratio>,<max_ratio>,<abs_threshold>): The metric value (normalized
to the golden result) must be between <min_ratio> and <max_ratio>, or the metric’s absolute
value must be below <abs_threshold>.

Or an include directive to import metrics from a separate file:

2.14. Pass Requirements 59

Verilog-to-Routing Documentation, Release 8.1.0-dev

%include "<filepath>"

• <filepath>: a relative path to another pass requirements file, whose metric pass requirements will be added to
the current file.

In order for a Pass to be reported, all requirements must be met. For this reason, all of the specified metrics must be
included in the parse results (see Parse Configuration).

Comments can be specified with #. Anything following a # is ignored.

2.14.4 Example File

vpr_status;Equal() #Pass if precisely equal
vpr_seconds;RangeAbs(0.80,1.40,2) #Pass if within -20%, or +40%, or absolute value␣
→˓less than 2
num_pre_packed_nets;Range(0.90,1.10) #Pass if withing +/-10%

%include "routing_metrics.txt" #Import all pass requirements from the file
→˓'routing_metrics.txt'

2.15 VTR Flow Python library

The VTR flow can be imported and implemented as a python library. Below are the descriptions of the useful functions.

2.15.1 VTR flow

2.15.2 Parmys

2.15.3 ODIN II

2.15.4 ABC

2.15.5 ACE

2.15.6 VPR

60 Chapter 2. VTR

CHAPTER

THREE

FPGA ARCHITECTURE DESCRIPTION

VTR uses an XML-based architecture description language to describe the targeted FPGA architecture. This flexible
description langauge allows the user to describe a large number of hypothetical and commercial-like FPGA architec-
tures.

See the Architecture Modeling for an introduction to the architecture description langauge. For a detailed reference on
the supported options see the Architecture Reference.

3.1 Architecture Reference

This section provides a detailed reference for the FPGA Architecture description used by VTR. The Architecture de-
scription uses XML as its representation format.

As a convention, curly brackets { } represents an option with each option separated by |. For example, a={1 | 2 |
open} means field a can take a value of 1, 2, or open.

3.1.1 Top Level Tags

The first tag in all architecture files is the <architecture> tag. This tag contains all other tags in the architecture file.
The architecture tag contains the following tags:

• <models>

• <tiles>

• <layout>

• <device>

• <switchlist>

• <segmentlist>

• <directlist>

• <complexblocklist>

• <noc>

61

Verilog-to-Routing Documentation, Release 8.1.0-dev

3.1.2 Recognized BLIF Models (<models>)

The <models> tag contains <model name="string" never_prune="string"> tags. Each <model> tag describes
the BLIF .subckt model names that are accepted by the FPGA architecture. The name of the model must match the
corresponding name of the BLIF model.

The never_prune flag is optional and can be either:

• false (default)

• true

Normally blocks with no output nets are pruned away by the netlist sweepers in vpr (removed from the netlist); this is
the default behaviour. If never_prune = “true” is set on a model, then blocks that are instances of that model will not
be swept away during netlist cleanup. This can be helpful for some special blocks that do have only input nets and are
required to be placed on the device for some features to be active, so space on the chip is still reserved for them, despite
them not driving any connection. One example is the IDELAYCTRL of the Series7 devices, which takes as input a
reference clock and internally controls and synchronizes all the IDELAYs in a specific clock region, with no output net
necessary for it to function correctly.

Note: Standard blif structures (.names, .latch, .input, .output) are accepted by default, so these models should
not be described in the <models> tag.

Each model tag must contain 2 tags: <input_ports> and <output_ports>. Each of these contains <port> tags:

<port name="string" is_clock="{0 | 1} clock="string" combinational_sink_ports="string1 string2 .
.."/>

Required Attributes
• name – The port name.

Optional Attributes
• is_clock – Identifies if the port as a clock port.

See also:
The Primitive Timing Modelling Tutorial for usage of is_clock to model clock control
blocks such as clock generators, clock buffers/gates and clock muxes.

Default: 0

• clock – Indicates the port is sequential and controlled by the specified clock (which must
be another port on the model marked with is_clock=1). Default: port is treated as combi-
national (if unspecified)

• combinational_sink_ports – A space-separated list of output ports which are combi-
nationally connected to the current input port. Default: No combinational connections (if
unspecified)

Defines the port for a model.

An example models section containing a combinational primitive adder and a sequential primitive single_port_ram
follows:

<models>
<model name="single_port_ram">
<input_ports>
<port name="we" clock="clk" />

(continues on next page)

62 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<port name="addr" clock="clk" combinational_sink_ports="out"/>
<port name="data" clock="clk" combinational_sink_ports="out"/>
<port name="clk" is_clock="1"/>

</input_ports>
<output_ports>
<port name="out" clock="clk"/>

</output_ports>
</model>

<model name="adder">
<input_ports>
<port name="a" combinational_sink_ports="cout sumout"/>
<port name="b" combinational_sink_ports="cout sumout"/>
<port name="cin" combinational_sink_ports="cout sumout"/>

</input_ports>
<output_ports>
<port name="cout"/>
<port name="sumout"/>

</output_ports>
</model>

</models>

Note that for single_port_ram above, the ports we, addr, data, and out are sequential since they have a clock
specified. Additionally addr and data are shown to be combinationally connected to out; this corresponds to an
internal timing path between the addr and data input registers, and the out output registers.

For the adder the input ports a, b and cin are each combinationally connected to the output ports cout and sumout
(the adder is a purely combinational primitive).

See also:
For more examples of primitive timing modeling specifications see the Primitive Block Timing Modeling Tutorial

3.1.3 Global FPGA Information

<tiles>content</tiles>

Content inside this tag contains a group of <pb_type> tags that specify the types of functional blocks and their
properties.

<layout/>

Content inside this tag specifies device grid layout.

See also:
FPGA Grid Layout

<layer die='int'>content</layer>

Content inside this tag specifies the layout of a single (2D) die; using multiple layer tags one can describe multi-
die FPGAs (e.g. 3D stacked FPGAs).

<device>content</device>

Content inside this tag specifies device information.

See also:
FPGA Device Information

3.1. Architecture Reference 63

Verilog-to-Routing Documentation, Release 8.1.0-dev

<switchlist>content</switchlist>

Content inside this tag contains a group of <switch> tags that specify the types of switches and their properties.

<segmentlist>content</segmentlist>

Content inside this tag contains a group of <segment> tags that specify the types of wire segments and their
properties.

<complexblocklist>content</complexblocklist>

Content inside this tag contains a group of <pb_type> tags that specify the types of functional blocks and their
properties.

<noc link_bandwidth="float" link_latency="float" router_latency="float" noc_router_tile_name="string">content</
noc>

Content inside this tag specifies the Network-on-Chip (NoC) architecture on the FPGA device and its properties.

3.1.4 FPGA Grid Layout

The valid tags within the <layout> tag are:

<auto_layout aspect_ratio="float">

Optional Attributes
• aspect_ratio – The device grid’s target aspect ratio (𝑤𝑖𝑑𝑡ℎ/ℎ𝑒𝑖𝑔ℎ𝑡)

Default: 1.0
Defines a scalable device grid layout which can be automatically scaled to a desired size.

Note: At most one <auto_layout> can be specified.

<fixed_layout name="string" width="int" height="int">

Required Attributes
• name – The unique name identifying this device grid layout.

• width – The device grid width

• height – The device grid height

Defines a device grid layout with fixed dimensions.

Note: Multiple <fixed_layout> tags can be specified.

Each <auto_layout> or <fixed_layout> tag should contain a set of grid location tags.

64 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

3.1.5 FPGA Layer Information

The layer tag is an optional tag to specify multi-die FPGAs. If not specified, a single-die FPGA with a single die (with
index 0) is assumed.

<layer die="int">

Optional Attributes
• die – Specifies the index of the die; index 0 is assumed to be at the bottom of a stack.

Default: 0

Note: If die number left unspecified, a single-die FPGA (die number = 0) is assumed.

<!-- Describe 3D FPGA using layer tag -->
<fixed_layout name="3D-FPGA" width="device_width" height="device_height">

<!-- First die (base die) -->
<layer die="0"/>

<!-- Specifiy base die Grid layout (e.g., fill with Network-on-Chips) -->
<fill type="NoC">

</layer>
<!-- Second die (upper die) -->
<layer die="1">

<!-- Specifiy upper die Grid layout (e.g., fill with logic blocks) -->
<fill type="LAB">

</layer>
</fixed_layout>

Note: Note that all dice have the same width and height. Since we can always fill unused parts of a die with
EMPTY blocks this does not restrict us to have the same usable area on each die.

Grid Location Priorities

Each grid location specification has an associated numeric priority. Larger priority location specifications override
those with lower priority.

Note: If a grid block is partially overlapped by another block with higher priority the entire lower priority block is
removed from the grid.

3.1. Architecture Reference 65

Verilog-to-Routing Documentation, Release 8.1.0-dev

Empty Grid Locations

Empty grid locations can be specified using the special block type EMPTY.

Note: All grid locations default to EMPTY unless otherwise specified.

Grid Location Expressions

Some grid location tags have attributes (e.g. startx) which take an expression as their argument. An expression can
be an integer constant, or simple mathematical formula evaluated when constructing the device grid.

Supported operators include: +, -, *, /, along with (and) to override the default evaluation order. Expressions may
contain numeric constants (e.g. 7) and the following special variables:

• W: The width of the device

• H: The height of the device

• w: The width of the current block type

• h: The height of the current block type

Warning: All expressions are evaluated as integers, so operations such as division may have their result truncated.

As an example consider the expression W/2 - w/2. For a device width of 10 and a block type of width 3, this would
be evaluated as ⌊𝑊

2 ⌋ − ⌊𝑤
2 ⌋ = ⌊ 10

2 ⌋ − ⌊ 3
2⌋ = 5− 1 = 4.

Grid Location Tags

<fill type="string" priority="int"/>

Required Attributes
• type – The name of the top-level complex block type (i.e. <pb_type>) being specified.

• priority – The priority of this layout specification. Tags with higher priority override those
with lower priority.

Fills the device grid with the specified block type.

Example:

<!-- Fill the device with CLB blocks -->
<fill type="CLB" priority="1"/>

<perimeter type="string" priority="int"/>

Required Attributes
• type – The name of the top-level complex block type (i.e. <pb_type>) being specified.

• priority – The priority of this layout specification. Tags with higher priority override those
with lower priority.

66 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 3.1: <fill> CLB example

3.1. Architecture Reference 67

Verilog-to-Routing Documentation, Release 8.1.0-dev

Sets the perimeter of the device (i.e. edges) to the specified block type.

Note: The perimeter includes the corners

Example:

<!-- Create io blocks around the device perimeter -->
<perimeter type="io" priority="10"/>

Fig. 3.2: <perimeter> io example

<corners type="string" priority="int"/>

Required Attributes
• type – The name of the top-level complex block type (i.e. <pb_type>) being specified.

• priority – The priority of this layout specification. Tags with higher priority override those
with lower priority.

68 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Sets the corners of the device to the specified block type.

Example:

<!-- Create PLL blocks at all corners -->
<corners type="PLL" priority="20"/>

Fig. 3.3: <corners> PLL example

<single type="string" priority="int" x="expr" y="expr"/>

Required Attributes
• type – The name of the top-level complex block type (i.e. <pb_type>) being specified.

• priority – The priority of this layout specification. Tags with higher priority override those
with lower priority.

• x – The horizontal position of the block type instance.

• y – The vertical position of the block type instance.

3.1. Architecture Reference 69

Verilog-to-Routing Documentation, Release 8.1.0-dev

Specifies a single instance of the block type at a single grid location.

Example:

<!-- Create a single instance of a PCIE block (width 3, height 5)
at location (1,1)-->

<single type="PCIE" x="1" y="1" priority="20"/>

Fig. 3.4: <single> PCIE example

<col type="string" priority="int" startx="expr" repeatx="expr" starty="expr" incry="expr"/
>

Required Attributes
• type – The name of the top-level complex block type (i.e. <pb_type>) being specified.

• priority – The priority of this layout specification. Tags with higher priority override those
with lower priority.

• startx – An expression specifying the horizontal starting position of the column.

70 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Optional Attributes
• repeatx – An expression specifying the horizontal repeat factor of the column.

• starty – An expression specifying the vertical starting offset of the column.

Default: 0
• incry – An expression specifying the vertical increment between block instantiations within

the region.

Default: h
Creates a column of the specified block type at startx.

If repeatx is specified the column will be repeated wherever 𝑥 = 𝑠𝑡𝑎𝑟𝑡𝑥 + 𝑘 · 𝑟𝑒𝑝𝑒𝑎𝑡𝑥, is satisfied for any
positive integer 𝑘.

A non-zero starty is typically used if a <perimeter> tag is specified to adjust the starting position of blocks
with height > 1.

Example:

<!-- Create a column of RAMs starting at column 2, and
repeating every 3 columns -->

<col type="RAM" startx="2" repeatx="3" priority="3"/>

Example:

<!-- Create IO's around the device perimeter -->
<perimeter type="io" priority=10"/>

<!-- Create a column of RAMs starting at column 2, and
repeating every 3 columns. Note that a vertical offset
of 1 is needed to avoid overlapping the IOs-->

<col type="RAM" startx="2" repeatx="3" starty="1" priority="3"/>

<row type="string" priority="int" starty="expr" repeaty="expr" startx="expr"/>

Required Attributes
• type – The name of the top-level complex block type (i.e. <pb_type>) being specified.

• priority – The priority of this layout specification. Tags with higher priority override those
with lower priority.

• starty – An expression specifying the vertical starting position of the row.

Optional Attributes
• repeaty – An expression specifying the vertical repeat factor of the row.

• startx – An expression specifying the horizontal starting offset of the row.

Default: 0
• incrx – An expression specifying the horizontal increment between block instantiations

within the region.

Default: w
Creates a row of the specified block type at starty.

If repeaty is specified the column will be repeated wherever 𝑦 = 𝑠𝑡𝑎𝑟𝑡𝑦 + 𝑘 · 𝑟𝑒𝑝𝑒𝑎𝑡𝑦, is satisfied for any
positive integer 𝑘.

3.1. Architecture Reference 71

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 3.5: <col> RAM example

72 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 3.6: <col> RAM and <perimeter> io example

3.1. Architecture Reference 73

Verilog-to-Routing Documentation, Release 8.1.0-dev

A non-zero startx is typically used if a <perimeter> tag is specified to adjust the starting position of blocks
with width > 1.

Example:

<!-- Create a row of DSPs (width 1, height 3) at
row 1 and repeating every 7th row -->

<row type="DSP" starty="1" repeaty="7" priority="3"/>

Fig. 3.7: <row> DSP example

<region type="string" priority="int" startx="expr" endx="expr repeatx="expr" incrx="expr" starty="expr" endy="expr" repeaty="expr" incry="expr"/
>

Required Attributes
• type – The name of the top-level complex block type (i.e. <pb_type>) being specified.

• priority – The priority of this layout specification. Tags with higher priority override those
with lower priority.

74 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Optional Attributes
• startx – An expression specifying the horizontal starting position of the region (inclusive).

Default: 0
• endx – An expression specifying the horizontal ending position of the region (inclusive).

Default: W - 1

• repeatx – An expression specifying the horizontal repeat factor of the column.

• incrx – An expression specifying the horizontal increment between block instantiations
within the region.

Default: w
• starty – An expression specifying the vertical starting position of the region (inclusive).

Default: 0
• endy – An expression specifying the vertical ending position of the region (inclusive).

Default: H - 1

• repeaty – An expression specifying the vertical repeat factor of the column.

• incry – An expression specifying the vertical increment between block instantiations within
the region.

Default: h
Fills the rectangular region defined by (startx, starty) and (endx, endy) with the specified block type.

Note: endx and endy are included in the region

If repeatx is specified the region will be repeated wherever 𝑥 = 𝑠𝑡𝑎𝑟𝑡𝑥 + 𝑘1 * 𝑟𝑒𝑝𝑒𝑎𝑡𝑥, is satisified for any
positive integer 𝑘1.

If repeaty is specified the region will be repeated wherever 𝑦 = 𝑠𝑡𝑎𝑟𝑡𝑦 + 𝑘2 * 𝑟𝑒𝑝𝑒𝑎𝑡𝑦, is satisified for any
positive integer 𝑘2.

Example:

<!-- Fill RAMs withing the rectangular region bounded by (1,1) and (5,4) -->
<region type="RAM" startx="1" endx="5" starty="1" endy="4" priority="4"/>

Example:

<!-- Create RAMs every 2nd column withing the rectangular region bounded
by (1,1) and (5,4) -->

<region type="RAM" startx="1" endx="5" starty="1" endy="4" incrx="2" priority="4"/>

Example:

<!-- Fill RAMs within a rectangular 2x4 region and repeat every 3 horizontal
and 5 vertical units -->

<region type="RAM" startx="1" endx="2" starty="1" endy="4" repeatx="3" repeaty="5"␣
→˓priority="4"/>

Example:

3.1. Architecture Reference 75

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 3.8: <region> RAM example

76 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 3.9: <region> RAM increment example

3.1. Architecture Reference 77

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 3.10: <region> RAM repeat example

78 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

<!-- Create a 3x3 mesh of NoC routers (width 2, height 2) whose relative positions
will scale with the device dimensions -->

<region type="NoC" startx="W/4 - w/2" starty="W/4 - w/2" incrx="W/4" incry="W/4"␣
→˓priority="3"/>

Fig. 3.11: <region> NoC mesh example

3.1. Architecture Reference 79

Verilog-to-Routing Documentation, Release 8.1.0-dev

Grid Layout Example

<layout>
<!-- Specifies an auto-scaling square FPGA floorplan -->
<auto_layout aspect_ratio="1.0">

<!-- Create I/Os around the device perimeter -->
<perimeter type="io" priority=10"/>

<!-- Nothing in the corners -->
<corners type="EMPTY" priority="100"/>

<!-- Create a column of RAMs starting at column 2, and
repeating every 3 columns. Note that a vertical offset (starty)
of 1 is needed to avoid overlapping the IOs-->

<col type="RAM" startx="2" repeatx="3" starty="1" priority="3"/>

<!-- Create a single PCIE block along the bottom, overriding
I/O and RAM slots -->

<single type="PCIE" x="3" y="0" priority="20"/>

<!-- Create an additional row of I/Os just above the PCIE,
which will not override RAMs -->

<row type="io" starty="5" priority="2"/>

<!-- Fill remaining with CLBs -->
<fill type="CLB" priority="1"/>

</auto_layout>
</layout>

3.1.6 FPGA Device Information

The tags within the <device> tag are:

<sizing R_minW_nmos="float" R_minW_pmos="float"/>

Required Attributes
• R_minW_nmos – The resistance of minimum-width nmos transistor. This data is used only

by the area model built into VPR.

• R_minW_pmos – The resistance of minimum-width pmos transistor. This data is used only
by the area model built into VPR.

Required
Yes

Specifies parameters used by the area model built into VPR.

<connection_block input_switch_name="string"/>

Required Attributes
• switch_name – Specifies the name of the <switch> in the <switchlist> used to connect

routing tracks to block input pins (i.e. the input connection block switch).

80 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 3.12: Example FPGA grid

Fig. 3.13: Input Pin Diagram.

3.1. Architecture Reference 81

Verilog-to-Routing Documentation, Release 8.1.0-dev

Required
Yes

<area grid_logic_tile_area="float"/>

Required
Yes

Specifies the default area used by each 1x1 grid logic tile (in MWTAs), excluding routing.

Used for an area estimate of the amount of area taken by all the functional blocks.

Note: This value can be overriden for specific <pb_type>``s with the ``area attribute.

<switch_block type="{wilton | subset | universal | custom}" fs="int"/>

Required Attributes
• type – The type of switch block to use.

• fs – The value of 𝐹𝑠

Required
Yes

This parameter controls the pattern of switches used to connect the (inter-cluster) routing segments. Three fairly
simple patterns can be specified with a single keyword each, or more complex custom patterns can be specified.

Non-Custom Switch Blocks:
When using bidirectional segments, all the switch blocks have 𝐹𝑠 = 3 [BFRV92]. That is, whenever horizontal
and vertical channels intersect, each wire segment can connect to three other wire segments. The exact topology
of which wire segment connects to which can be one of three choices. The subset switch box is the planar or
domain-based switch box used in the Xilinx 4000 FPGAs – a wire segment in track 0 can only connect to other
wire segments in track 0 and so on. The wilton switch box is described in [Wil97], while the universal switch
box is described in [CWW96]. To see the topology of a switch box, simply hit the “Toggle RR” button when a
completed routing is on screen in VPR. In general the wilton switch box is the best of these three topologies and
leads to the most routable FPGAs.

When using unidirectional segments, one can specify an 𝐹𝑠 that is any multiple of 3. We use a modified wilton
switch block pattern regardless of the specified switch_block_type. For all segments that start/end at that switch
block, we follow the wilton switch block pattern. For segments that pass through the switch block that can also
turn there, we cannot use the wilton pattern because a unidirectional segment cannot be driven at an intermediate
point, so we assign connections to starting segments following a round robin scheme (to balance mux size).

Note: The round robin scheme is not tileable.

Custom Switch Blocks:
Specifying custom allows custom switch blocks to be described under the <switchblocklist> XML node,
the format for which is described in Custom Switch Blocks. If the switch block is specified as custom, the fs
field does not have to be specified, and will be ignored if present.

<chan_width_distr>content</chan_width_distr>

Content inside this tag is only used when VPR is in global routing mode. The contents of this tag are described
in Global Routing Information.

82 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

<default_fc in_type="{frac|abs}" in_val="{int|float}" out_type="{frac|abs}" out_val="{int|float}"/
>

This defines the default Fc specification, if it is not specified within a <fc> tag inside a top-level complex block.
The attributes have the same meaning as the <fc> tag attributes.

3.1.7 Switches

The tags within the <switchlist> tag specifies the switches used to connect wires and pins together.

<switch type="{mux|tristate|pass_gate|short|buffer}" name="string" R="float" Cin="float" Cout="float" Cinternal="float" Tdel="float" buf_size="{auto|float}" mux_trans_size="float",
power_buf_size="int"/>

Describes a switch in the routing architecture.

Example:

<switch type="mux" name="my_awesome_mux" R="551" Cin=".77e-15" Cout="4e-15"␣
→˓Cinternal="5e-15" Tdel="58e-12" mux_trans_size="2.630740" buf_size="27.645901"/>

Required Attributes
• type – The type of switch:

– mux: An isolating, configurable multiplexer

– tristate: An isolating, configurable tristate-able buffer

– pass_gate: A non-isolating, configurable pass gate

– short: A non-isolating, non-configurable electrical short (e.g. between two segments).

– buffer: An isolating, non-configurable non-tristate-able buffer (e.g. in-line along a seg-
ment).

Isolation
Isolating switches include a buffer which partition their input and output into separate DC-
connected sub-circuits. This helps reduce RC wire delays.

Non-isolating switch do not isolate their input and output, which can increase RC wire delays.

Configurablity
Configurable switches can be turned on/off at configuration time.

Non-configurable switches can not be controlled at configuration time. These are typically
used to model non-optional connections such as electrical shorts and in-line buffers.

• name – A unique name identifying the switch

• R – Resistance of the switch.

• Cin – Input capacitance of the switch.

• Cout – Output capacitance of the switch.

Optional Attributes
• Cinternal – Since multiplexers and tristate buffers are modeled as a parallel stream of pass

transistors feeding into a buffer, we would expect an additional “internal capacitance” to arise
when the pass transistor is enabled and the signal must propogate to the buffer. See diagram
of one stream below:

3.1. Architecture Reference 83

Verilog-to-Routing Documentation, Release 8.1.0-dev

Pass Transistor
|

----- Buffer
| | |\

------ -------| \--------
| | | / |

===== ===== |/ =====
===== ===== =====
| | |

Input C Internal C Output C

Note: Only specify a value for multiplexers and/or tristate switches.

• Tdel – Intrinsic delay through the switch. If this switch was driven by a zero resistance
source, and drove a zero capacitance load, its delay would be: 𝑇𝑑𝑒𝑙 +𝑅 · 𝐶𝑜𝑢𝑡.

The ‘switch’ includes both the mux and buffer mux type switches.

Note: Required if no <Tdel> tags are specified

Note: A <switch>’s resistance (R) and output capacitance (Cout) have no effect on
delay when used for the input connection block, since VPR does not model the resis-
tance/capacitance of block internal wires.

• buf_size – Specifies the buffer size in minimum-width transistor area (:term`MWTA`)
units.

If set to auto, sized automatically from the R value. This allows you to use timing models
without R’s and C’s and still be able to measure area.

Note: Required for all isolating switch types.

Default: auto
• mux_trans_size – Specifies the size (in minimum width transistors) of each transistor in

the two-level mux used by mux type switches.

Note: Valid only for mux type switches.

• power_buf_size – Used for power estimation. The size is the drive strength of the buffer,
relative to a minimum-sized inverter.

<Tdel num_inputs="int" delay="float"/>

Instead of specifying a single Tdel value, a list of Tdel values may be specified for different values of switch
fan-in. Delay is linearly extrapolated/interpolated for any unspecified fanins based on the two closest fanins.

Required Attributes
• num_inputs – The number of switch inputs (fan-in)

84 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

• delay – The intrinsic switch delay when the switch topology has the specified number of
switch inputs

Example:

<switch type="mux" name="my_mux" R="522" Cin="3.1e-15" Cout="3e-15" Cinternal=
→˓"5e-15" mux_trans_size="1.7" buf_size="23">
<Tdel num_inputs="12" delay="8.00e-11"/>
<Tdel num_inputs="15" delay="8.4e-11"/>
<Tdel num_inputs="20" delay="9.4e-11"/>

</switch>

Global Routing Information

If global routing is to be performed, channels in different directions and in different parts of the FPGA can be set to
different relative widths. This is specified in the content within the <chan_width_distr> tag.

Note: If detailed routing is to be performed, only uniform distributions may be used

<x distr="{gaussian|uniform|pulse|delta}" peak="float" width=" float" xpeak=" float" dc=" float"/
>

Required Attributes
• distr – The channel width distribution function

• peak – The peak value of the distribution

Optional Attributes
• width – The width of the distribution. Required for pulse and gaussian.

• xpeak – Peak location horizontally. Required for pulse, gaussian and delta.

• dc – The DC level of the distribution. Required for pulse, gaussian and delta.

Sets the distribution of tracks for the x-directed channels – the channels that run horizontally.

Most values are from 0 to 1.

If uniform is specified, you simply specify one argument, peak. This value (by convention between 0 and 1)
sets the width of the x-directed core channels relative to the y-directed channels and the channels between the
pads and core. Fig. 3.14 should clarify the specification of uniform (dashed line) and pulse (solid line) channel
widths. The gaussian keyword takes the same four parameters as the pulse keyword, and they are all interpreted
in exactly the same manner except that in the gaussian case width is the standard deviation of the function.

Fig. 3.14: Channel Distribution

The delta function is used to specify a channel width distribution in which all the channels have the same width
except one. The syntax is chan_width_x delta peak xpeak dc. Peak is the extra width of the single wide channel.

3.1. Architecture Reference 85

Verilog-to-Routing Documentation, Release 8.1.0-dev

Xpeak is between 0 and 1 and specifies the location within the FPGA of the extra-wide channel – it is the fractional
distance across the FPGA at which this extra-wide channel lies. Finally, dc specifies the width of all the other
channels. For example, the statement chan_width_x delta 3 0.5 1 specifies that the horizontal channel in the
middle of the FPGA is four times as wide as the other channels.

Examples:

<x distr="uniform" peak="1"/>
<x distr="gaussian" width="0.5" peak="0.8" xpeak="0.6" dc="0.2"/>

<y distr="{gaussian|uniform|pulse|delta}" peak=" float" width=" float" xpeak=" float" dc=" float"/
>

Sets the distribution of tracks for the y-directed channels.

See also:
<x distr>

3.1.8 Physical Tiles

The content within the <tiles> describes the physical tiles available in the FPGA. Each tile type is specified with the
<tile> tag withing the <tiles> tag.

Tile

<tile name="string" capacity="int" width="int" height="int" area="float"/>

A tile refers to a placeable element within an FPGA architecture and describes its physical compositions on the
grid. The following attributes are applicable to each tile. The only required one is the name of the tile.

Attributes:
Required Attributes

• name – The name of this tile.

The name must be unique with respect to any other sibling <tile> tag.

Optional Attributes
• width – The width of the block type in grid tiles

Default: 1
• height – The height of the block type in grid tiles

Default: 1
• area – The logic area (in MWTA) of the block type

Default: from the <area> tag

The following tags are common to all <tile> tags:

<sub_tile name"string" capacity="{int}">

See also:
For a tutorial on describing the usage of sub tiles for heterogeneous tiles (tiles which support multiple
instances of the same or different Complex Blocks) definition see Heterogeneous tiles tutorial.

86 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Describes one or many sub tiles corresponding to the physical tile. Each sub tile is identifies a set of one or more
stack location on a specific x, y grid location.

Attributes:
Required Attributes

• name – The name of this tile.

The name must be unique with respect to any other sibling <tile> tag.

Optional Attributes
• capacity – The number of instances of this block type at each grid location.

Default: 1
For example:

<sub_tile name="IO" capacity="2"/>
...

</sub_tile>

specifies there are two instances of the block type IO at each of its grid locations.

Note: It is mandatory to have at least one sub tile definition for each physical tile.

<input name="string" num_pins="int" equivalent="{none|full}" is_non_clock_global="{true|false}"/
>

Defines an input port. Multple input ports are described using multiple <input> tags.

Required Attributes
• name – Name of the input port.

• num_pins – Number of pins the input port has.

Optional Attributes
• equivalent – Describes if the pins of the port are logically equivalent. Input logical

equivalence means that the pin order can be swapped without changing functionality. For
example, an AND gate has logically equivalent inputs because you can swap the order
of the inputs and it’s still correct; an adder, on the otherhand, is not logically equivalent
because if you swap the MSB with the LSB, the results are completely wrong. LUTs are
also considered logically equivalent since the logic function (LUT mask) can be rotated to
account for pin swapping.

– none: No input pins are logically equivalent.

Input pins can not be swapped by the router. (Generates a unique SINK rr-node for
each block input port pin.)

– full: All input pins are considered logically equivalent (e.g. due to logical equivalance
or a full-crossbar within the cluster).

All input pins can be swapped without limitation by the router. (Generates a single
SINK rr-node shared by each input port pin.)

default: none
• is_non_clock_global –

3.1. Architecture Reference 87

Verilog-to-Routing Documentation, Release 8.1.0-dev

Note: Applies only to top-level pb_type.

Describes if this input pin is a global signal that is not a clock. Very useful for signals
such as FPGA-wide asynchronous resets. These signals have their own dedicated routing
channels and so should not use the general interconnect fabric on the FPGA.

<output name="string" num_pins="int" equivalent="{none|full|instance}"/>

Defines an output port. Multple output ports are described using multiple <output> tags

Required Attributes
• name – Name of the output port.

• num_pins – Number of pins the output port has.

Optional Attributes
• equivalent – Describes if the pins of the output port are logically equivalent:

– none: No output pins are logically equivalent.

Output pins can not be swapped by the router. (Generates a unique SRC rr-node
for each block output port pin.)

– full: All output pins are considered logically equivalent.

All output pins can be swapped without limitation by the router. For exam-
ple, this option would be appropriate to model an output port which has a full
crossbar between it and the logic within the block that drives it. (Generates a
single SRC rr-node shared by each output port pin.)

– instance: Models that sub-instances within a block (e.g. LUTs/BLEs) can be
swapped to achieve a limited form of output pin logical equivalence.

Like full, this generates a single SRC rr-node shared by each output port pin.
However, each net originating from this source can use only one output pin
from the equivalence group. This can be useful in modeling more complex
forms of equivalence in which you can swap which BLE implements which
function to gain access to different inputs.

Warning: When using instance equivalence you must be careful to
ensure output swapping would not make the cluster internal routing (previ-
ously computed by the clusterer) illegal; the tool does not update the cluster
internal routing due to output pin swapping.

Default: none
<clock name="string" num_pins="int" equivalent="{none|full}"/>

Describes a clock port. Multple clock ports are described using multiple <clock> tags. See above de-
scriptions on inputs

<equivalent_sites>

See also:
For a step-by-step walkthrough on describing equivalent sites see Equivalent Sites tutorial.

88 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Describes the Complex Blocks that can be placed within a tile. Each physical tile can comprehend a
number from 1 to N of possible Complex Blocks, or sites. A site corresponds to a top-level Complex
Block that must be placeable in at least 1 physical tile locations.

<site pb_type="string" pin_mapping="string"/>

Required Attributes
• pb_type – Name of the corresponding pb_type.

Optional Attributes
• pin_mapping – Specifies whether the pin mapping between physical tile and logical

pb_type:

– direct: the pin mapping does not need to be specified as the tile pin definition
is equal to the corresponding pb_type one;

– custom: the pin mapping is user-defined.

Default: direct
Example: Equivalent Sites

<equivalent_sites>
<site pb_type="MLAB_SITE" pin_mapping="direct"/>

</equivalent_sites>

<direct from="string" to="string">

Desctibes the mapping of a physical tile’s port on the logical block’s (pb_type) port.
direct is an option sub-tag of site.

Note: This tag is needed only if the pin_mapping of the site is defined as custom

Attributes:
– from is relative to the physical tile pins
– to is relative to the logical block pins

<direct from="MLAB_TILE.CX" to="MLAB_SITE.BX"/>

<fc in_type="{frac|abs}" in_val="{int|float}" out_type="{frac|abs}" out_val="{int|float}">

Required Attributes
• in_type – Indicates how the 𝐹𝑐 values for input pins should be interpreted.

frac: The fraction of tracks of each wire/segment type.

abs: The absolute number of tracks of each wire/segment type.

• in_val – Fraction or absolute number of tracks to which each input pin is con-
nected.

• out_type – Indicates how the 𝐹𝑐 values for output pins should be interpreted.

frac: The fraction of tracks of each wire/segment type.

abs: The absolute number of tracks of each wire/segment type.

• out_val – Fraction or absolute number of wires/segments to which each output
pin connects.

3.1. Architecture Reference 89

Verilog-to-Routing Documentation, Release 8.1.0-dev

Sets the number of tracks/wires to which each logic block pin connects in each channel bordering the pin.

The 𝐹𝑐 value [BFRV92] is interpreted as applying to each wire/segment type individually (see example).

When generating the FPGA routing architecture VPR will try to make ‘good’ choices about how pins and
wires interconnect; for more details on the criteria and methods used see [BR00].

Note: If <fc> is not specified for a complex block, the architecture’s <default_fc> is used.

Note: For unidirection routing architectures absolute 𝐹𝑐 values must be a multiple of 2.

Example:
Consider a routing architecture with 200 length 4 (L4) wires and 50 length 16 (L16) wires per channel,
and the following Fc specification:

<fc in_type="frac" in_val="0.1" out_type="abs" out_val="25">

The above specifies that each:

• input pin connects to 20 L4 tracks (10% of the 200 L4s) and 5 L16 tracks (10% of the 50 L16s), and

• output pin connects to 25 L4 tracks and 25 L16 tracks.

Overriding Values:
<fc_override fc_type="{frac|abs}" fc_val="{int|float}",
port_name="{string}" segment_name="{string}">

Allows 𝐹𝑐 values to be overriden on a port or wire/segment type basis.

Required Attributes
• fc_type – Indicates how the override 𝐹𝑐 value should be interpreted.

frac: The fraction of tracks of each wire/segment type.

abs: The absolute number of tracks of each wire/segment type.

• fc_val – Fraction or absolute number of tracks in a channel.

Optional Attributes
• port_name – The name of the port to which this override applies. If left un-

specified this override applies to all ports.

• segment_name – The name of the segment (defined under <segmentlist>)
to which this override applies. If left unspecified this override applies to all
segments.

Note: At least one of port_name or segment_name must be specified.

Port Override Example: Carry Chains
If you have complex block pins that do not connect to general interconnect (eg. carry chains), you
would use the <fc_override> tag, within the <fc> tag, to specify them:

<fc_override fc_type="frac" fc_val="0" port_name="cin"/>
<fc_override fc_type="frac" fc_val="0" port_name="cout"/>

90 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Where the attribute port_name is the name of the pin (cin and cout in this example).

Segment Override Example:
It is also possible to specify per <segment> (i.e. routing wire) overrides:

<fc_override fc_type="frac" fc_val="0.1" segment_name="L4"/>

Where the above would cause all pins (both inputs and outputs) to use a fractional 𝐹𝑐 of 0.1 when
connecting to segments of type L4.

Combined Port and Segment Override Example:
The port_name and segment_name attributes can be used together. For example:

<fc_override fc_type="frac" fc_val="0.1" port_name="my_input" segment_name=
→˓"L4"/>
<fc_override fc_type="frac" fc_val="0.2" port_name="my_output" segment_
→˓name="L4"/>

specifies that port my_input use a fractional 𝐹𝑐 of 0.1 when connecting to segments of type L4,
while the port my_output uses a fractional 𝐹𝑐 of 0.2 when connecting to segments of type L4. All
other port/segment combinations would use the default 𝐹𝑐 values.

<pinlocations pattern="{spread|perimeter|custom}">

Required Attributes
• pattern –

– spread denotes that the pins are to be spread evenly on all sides of the complex
block.

Note: Includes internal sides of blocks with width > 1 and/or height > 1.

– perimeter denotes that the pins are to be spread evenly on perimeter sides of
the complex block.

Note: Excludes the internal sides of blocks with width > 1 and/or height
> 1.

– spread_inputs_perimeter_outputs denotes that inputs pins are to be
spread on all sides of the complex block, but output pins are to be spread only
on perimeter sides of the block.

Note: This is useful for ensuring outputs do not connect to wires which
fly-over a width > 1 and height > 1 block (e.g. if using short or buffer
connections instead of a fully configurable switch block within the block).

– custom allows the architect to specify specifically where the pins are to be
placed using <loc> tags.

Describes the locations where the input, output, and clock pins are distributed in a complex logic block.

3.1. Architecture Reference 91

Verilog-to-Routing Documentation, Release 8.1.0-dev

<loc side="{left|right|bottom|top}" xoffset="int" yoffset="int">name_of_complex_logic_block.
port_name[int:int] ... </loc>

Note: ... represents repeat as needed. Do not put ... in the architecture file.

Required Attributes
• side – Specifies which of the four sides of a grid location the pins in the contents

are located.

Optional Attributes
• xoffset – Specifies the horizontal offset (in grid units) from block origin (bot-

tom left corner). The offset value must be less than the width of the block.

Default: 0
• yoffset – Specifies the vertical offset (in grid units) from block origin (bottom

left corner). The offset value must be less than the height of the block.

Default: 0

Physical equivalence for a pin is specified by listing a pin more than once for different locations. For
example, a LUT whose output can exit from the top and bottom of a block will have its output pin specified
twice: once for the top and once for the bottom.

Note: If the <pinlocations> tag is missing, a spread pattern is assumed.

<switchblock_locations pattern="{external_full_internal_straight|all|external|internal|none|custom}" internal_switch="string">

Describes where global routing switchblocks are created in relation to the complex block.

Note: If the <switchblock_locations> tag is left unspecified the default pattern is assumed.

Optional Attributes
• pattern –

– external_full_internal_straight: creates full switchblocks outside and
straight switchblocks inside the complex block

– all: creates switchblocks wherever routing channels cross

– external: creates switchblocks wherever routing channels cross outside the com-
plex block

– internal: creates switchblocks wherever routing channels cross inside the com-
plex block

– none: denotes that no switchblocks are created for the complex block

– custom: allows the architect to specify custom switchblock locations and types
using <sb_loc> tags

Default: external_full_internal_straight
Optional Attributes

92 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 3.15: Switchblock Location Patterns for a width = 2, height = 3 complex block

3.1. Architecture Reference 93

Verilog-to-Routing Documentation, Release 8.1.0-dev

• internal_switch – The name of a switch (from <switchlist>) which should be
used for internal switch blocks.

Default: The default switch for the wire <segment>

Note: This is typically used to specify that internal wire segments are electrically
shorted together using a short type <switch>.

Example: Electrically Shorted Internal Straight Connections
In some architectures there are no switch blocks located ‘within’ a block, and the wires crossing over the block
are instead electrcially shorted to their ‘straight-through’ connections.

To model this we first define a special short type switch to electrically short such segments together:

<switchlist>
<switch type="short" name="electrical_short" R="0" Cin="0" Tdel="0"/>

</switchlist>

Next, we use the pre-defined external_full_internal_straight pattern, and that such connections should
use our electrical_short switch.

<switchblock_locations pattern="external_full_internal_straight" internal_switch=
→˓"electrical_short"/>

<sb_loc type="{full|straight|turns|none}" xoffset="int" yoffset="int",
switch_override="string">

Specifies the type of switchblock to create at a particular location relative to a complex block for the
custom switchblock location pattern.

Required Attributes
• type – Specifies the type of switchblock to be created at this location:

– full: denotes that a full switchblock will be created (i.e. both staight and
turns)

– straight: denotes that a switchblock with only straight-through connections
will be created (i.e. no turns)

– turns: denotes that a switchblock with only turning connections will be cre-
ated (i.e. no straight)

– none: denotes that no switchblock will be created

Default: full
Optional Attributes

• xoffset – Specifies the horizontal offset (in grid units) from block origin (bottom
left corner). The offset value must be less than the width of the block.

Default: 0
• yoffset – Specifies the vertical offset (in grid units) from block origin (bottom left

corner). The offset value must be less than the height of the block.

Default: 0
• switch_override – The name of a switch (from <switchlist>) which should

be used to construct the switch block at this location.

94 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 3.16: Switchblock Types

Default: The default switch for the wire <segment>

Note: The switchblock associated with a grid tile is located to the top-right of the grid tile

Example: Custom Description of Electrically Shorted Internal Straight Connections
If we assume a width=2, height=3 block (e.g. Fig. 3.15), we can use a custom pattern to specify an archi-
tecture equivalent to the ‘Electrically Shorted Internal Straight Connections’ example:

<switchblock_locations pattern="custom">
<!-- Internal: using straight electrical shorts -->
<sb_loc type="straight" xoffset="0" yoffset="0" switch_override=

→˓"electrical_short">
<sb_loc type="straight" xoffset="0" yoffset="1" switch_override=

→˓"electrical_short">

<!-- External: using default switches -->
<sb_loc type="full" xoffset="0" yoffset="2"> <!-- Top edge -->
<sb_loc type="full" xoffset="1" yoffset="0"> <!-- Right edge -->
<sb_loc type="full" xoffset="1" yoffset="1"> <!-- Right edge -->
<sb_loc type="full" xoffset="1" yoffset="2"> <!-- Top Right -->

<switchblock_locations/>

3.1.9 Complex Blocks

See also:
For a step-by-step walkthrough on building a complex block see Architecture Modeling.

The content within the <complexblocklist> describes the complex blocks found within the FPGA. Each type of
complex block is specified with a top-level <pb_type> tag within the <complexblocklist> tag.

3.1. Architecture Reference 95

Verilog-to-Routing Documentation, Release 8.1.0-dev

PB Type

<pb_type name="string" num_pb="int" blif_model="string"/>

Specifies a top-level complex block, or a complex block’s internal components (sub-blocks). Which attributes
are applicable depends on where the <pb_type> tag falls within the hierarchy:

• Top Level: A child of the <complexblocklist>
• Intermediate: A child of another <pb_type>
• Primitive/Leaf: Contains no <pb_type> children

For example:

<complexblocklist>
<pb_type name="CLB"/> <!-- Top level -->

...
<pb_type name="ble"/> <!-- Intermediate -->

...
<pb_type name="lut"/> <!-- Primitive -->

...
</pb_type>
<pb_type name="ff"/> <!-- Primitive -->

...
</pb_type>
...

</pb_type>
...

</pb_type>
...

</complexblocklist>

General:
Required Attributes

• name – The name of this pb_type.

The name must be unique with respect to any parent, sibling, or child <pb_type>.
Top-level, Intermediate or Primitive:

Optional Attributes
• num_pb – The number of instances of this pb_type at the current hierarchy level.

Default: 1
For example:

<pb_type name="CLB">
...
<pb_type name="ble" num_pb="10"/>

...
</pb_type>
...

</pb_type>

would specify that the pb_type CLB contains 10 instances of the ble pb_type.
Primitive Only:

Required Attributes
• blif_model – Specifies the netlist primitive which can be implemented by this pb_type.

Accepted values:

96 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

– .input: A BLIF netlist input

– .output: A BLIF netlist output

– .names: A BLIF .names (LUT) primitive

– .latch: A BLIF .latch (DFF) primitive

– .subckt <custom_type>: A user defined black-box primitive.

For example:

<pb_type name="my_adder" blif_model=".subckt adder"/>
...

</pb_type>

would specify that the pb_type my_adder can implement a black-box BLIF primitive
named adder.

Note: The input/output/clock ports for primitive pb_types must match the ports speci-
fied in the <models> section.

Optional Attributes
• class – Specifies that this primitive is of a specialized type which should be treated

specially.

See also:
Classes for more details.

The following tags are common to all <pb_type> tags:

<input name="string" num_pins="int" equivalent="{none|full}" is_non_clock_global="{true|false}"/
>

Defines an input port. Multple input ports are described using multiple <input> tags.
Required Attributes

• name – Name of the input port.

• num_pins – Number of pins the input port has.

Optional Attributes
• equivalent –

Note: Applies only to top-level pb_type.

Describes if the pins of the port are logically equivalent. Input logical equivalence means
that the pin order can be swapped without changing functionality. For example, an AND
gate has logically equivalent inputs because you can swap the order of the inputs and it’s
still correct; an adder, on the otherhand, is not logically equivalent because if you swap
the MSB with the LSB, the results are completely wrong. LUTs are also considered
logically equivalent since the logic function (LUT mask) can be rotated to account for
pin swapping.

– none: No input pins are logically equivalent.

Input pins can not be swapped by the router. (Generates a unique SINK
rr-node for each block input port pin.)

3.1. Architecture Reference 97

Verilog-to-Routing Documentation, Release 8.1.0-dev

– full: All input pins are considered logically equivalent (e.g. due to logical equiv-
alance or a full-crossbar within the cluster).

All input pins can be swapped without limitation by the router. (Generates
a single SINK rr-node shared by each input port pin.)

default: none
• is_non_clock_global –

Note: Applies only to top-level pb_type.

Describes if this input pin is a global signal that is not a clock. Very useful for signals
such as FPGA-wide asynchronous resets. These signals have their own dedicated routing
channels and so should not use the general interconnect fabric on the FPGA.

<output name="string" num_pins="int" equivalent="{none|full|instance}"/>

Defines an output port. Multple output ports are described using multiple <output> tags
Required Attributes

• name – Name of the output port.

• num_pins – Number of pins the output port has.

Optional Attributes
• equivalent –

Note: Applies only to top-level pb_type.

Describes if the pins of the output port are logically equivalent:

– none: No output pins are logically equivalent.

Output pins can not be swapped by the router. (Generates a unique SRC
rr-node for each block output port pin.)

– full: All output pins are considered logically equivalent.

All output pins can be swapped without limitation by the router. For ex-
ample, this option would be appropriate to model an output port which
has a full crossbar between it and the logic within the block that drives it.
(Generates a single SRC rr-node shared by each output port pin.)

– instance: Models that sub-instances within a block (e.g. LUTs/BLEs) can be
swapped to achieve a limited form of output pin logical equivalence.

Like full, this generates a single SRC rr-node shared by each output port
pin. However, each net originating from this source can use only one output
pin from the equivalence group. This can be useful in modeling more com-
plex forms of equivalence in which you can swap which BLE implements
which function to gain access to different inputs.

Warning: When using instance equivalence you must be careful
to ensure output swapping would not make the cluster internal routing
(previously computed by the clusterer) illegal; the tool does not update
the cluster internal routing due to output pin swapping.

98 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Default: none
<clock name="string" num_pins="int" equivalent="{none|full}"/>

Describes a clock port. Multple clock ports are described using multiple <clock> tags. See above descriptions
on inputs

<mode name="string" disable_packing="bool">

Required Attributes
• name – Name for this mode. Must be unique compared to other modes.

Specifies a mode of operation for the <pb_type>. Each child mode tag denotes a different mode of operation
for the <pb_type>. Each mode tag may contains other <pb_type> and <interconnect> tags.

Note: Modes within the same parent <pb_type> are mutually exclusive.

Note: If a <pb_type> has only one mode of operation the mode tag can be omitted.

Optional Attributes
• disable_packing – Specify if a mode is disabled or not for VPR packer. When a

mode is defined to be disabled for packing (disable_packing="true"), packer will
not map any logic to the mode. This optional syntax aims to help debugging of multi-
mode <pb_type> so that users can spot bugs in their XML definition quickly. By default,
it is set to false.

Note: When a mode is specified to be disabled for packing, its child <pb_type> and the <mode> of
child <pb_type> will be considered as disabled for packing automatically. There is no need to specify
disable_packing for every <mode> in the tree of <pb_type>.

Warning: This is a power-user debugging option. See Multi-mode Logic Block Tutorial for a detailed
how-to-use.

For example:

<!--A fracturable 6-input LUT-->
<pb_type name="lut">

...
<mode name="lut6">

<!--Can be used as a single 6-LUT-->
<pb_type name="lut6" num_pb="1">

...
</pb_type>
...

</mode>
...
<mode name="lut5x2">

<!--Or as two 5-LUTs-->
<pb_type name="lut5" num_pb="2">

...
</pb_type>

(continues on next page)

3.1. Architecture Reference 99

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

...
</mode>

</pb_type>

specifies the lut pb_type can be used as either a single 6-input LUT, or as two 5-input LUTs (but not both).

Interconnect

As mentioned earlier, the mode tag contains <pb_type> tags and an <interconnect> tag. The following describes
the tags that are accepted in the <interconnect> tag.

<complete name="string" input="string" output="string"/>

Required Attributes
• name – Identifier for the interconnect.

• input – Pins that are inputs to this interconnect.

• output – Pins that are outputs of this interconnect.
Describes a fully connected crossbar. Any pin in the inputs can connect to any pin at the output.

Example:

<complete input="Top.in" output="Child.in"/>

<direct name="string" input="string" output="string"/>

Required Attributes
• name – Identifier for the interconnect.

• input – Pins that are inputs to this interconnect.

• output – Pins that are outputs of this interconnect.
Describes a 1-to-1 mapping between input pins and output pins.

Example:

<direct input="Top.in[2:1]" output="Child[1].in"/>

<mux name="string" input="string" output="string"/>

Required Attributes
• name – Identifier for the interconnect.

• input – Pins that are inputs to this interconnect. Different data lines are separated by a
space.

• output – Pins that are outputs of this interconnect.
Describes a bus-based multiplexer.

Note: Buses are not yet supported so all muxes must use one bit wide data only!

Example:

<mux input="Top.A Top.B" output="Child.in"/>

100 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 3.17: Complete interconnect example.

3.1. Architecture Reference 101

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 3.18: Direct interconnect example.

Fig. 3.19: Mux interconnect example.

102 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

A <complete>, <direct>, or <mux> tag may take an additional, optional, tag called <pack_pattern> that is used
to describe molecules. A pack pattern is a power user feature directing that the CAD tool should group certain netlist
atoms (eg. LUTs, FFs, carry chains) together during the CAD flow. This allows the architect to help the CAD tool
recognize structures that have limited flexibility so that netlist atoms that fit those structures be kept together as though
they are one unit. This tag impacts the CAD tool only, there is no architectural impact from defining molecules.

<pack_pattern name="string" in_port="string" out_port="string"/>

Warning: This is a power user option. Unless you know why you need it, you probably shouldn’t specify it.

Required Attributes
• name – The name of the pattern.

• in_port – The input pins of the edges for this pattern.

• out_port – Which output pins of the edges for this pattern.

This tag gives a hint to the CAD tool that certain architectural structures should stay together during packing. The
tag labels interconnect edges with a pack pattern name. All primitives connected by the same pack pattern name
becomes a single pack pattern. Any group of atoms in the user netlist that matches a pack pattern are grouped
together by VPR to form a molecule. Molecules are kept together as one unit in VPR. This is useful because it
allows the architect to help the CAD tool assign atoms to complex logic blocks that have interconnect with very
limited flexibility. Examples of architectural structures where pack patterns are appropriate include: optionally
registered inputs/outputs, carry chains, multiply-add blocks, etc.

There is a priority order when VPR groups molecules. Pack patterns with more primitives take priority over
pack patterns with less primitives. In the event that the number of primitives is the same, the pack pattern with
less inputs takes priority over pack patterns with more inputs.

Special Case:
To specify carry chains, we use a special case of a pack pattern. If a pack pattern has exactly one connection to
a logic block input pin and exactly one connection to a logic block output pin, then that pack pattern takes on
special properties. The prepacker will assume that this pack pattern represents a structure that spans multiple
logic blocks using the logic block input/output pins as connection points. For example, lets assume that a logic
block has two, 1-bit adders with a carry chain that links adjacent logic blocks. The architect would specify those
two adders as a pack pattern with links to the logic block cin and cout pins. Lets assume the netlist has a group
of 1-bit adder atoms chained together to form a 5-bit adder. VPR will break that 5-bit adder into 3 molecules:
two 2-bit adders and one 1-bit adder connected in order by a the carry links.

Example:
Consider a classic basic logic element (BLE) that consists of a LUT with an optionally registered flip-flop. If a
LUT is followed by a flip-flop in the netlist, the architect would want the flip-flop to be packed with the LUT in
the same BLE in VPR. To give VPR a hint that these blocks should be connected together, the architect would
label the interconnect connecting the LUT and flip-flop pair as a pack_pattern:

<pack_pattern name="ble" in_port="lut.out" out_port="ff.D"/>

3.1. Architecture Reference 103

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 3.20: Pack Pattern Example.

Classes

Using these structures, we believe that one can describe any digital complex logic block. However, we believe that
certain kinds of logic structures are common enough in FPGAs that special shortcuts should be available to make their
specification easier. These logic structures are: flip-flops, LUTs, and memories. These structures are described using
a class=string attribute in the <pb_type> primitive. The classes we offer are:

class="lut"

Describes a K-input lookup table.

The unique characteristic of a lookup table is that all inputs to the lookup table are logically equivalent. When
this class is used, the input port must have a port_class="lut_in" attribute and the output port must have a
port_class="lut_out" attribute.

class="flipflop"

Describes a flipflop.

Input port must have a port_class="D" attribute added. Output port must have a port_class="Q" attribute
added. Clock port must have a port_class="clock" attribute added.

class="memory"

Describes a memory.

Memories are unique in that a single memory physical primitive can hold multiple, smaller, logical memories as
long as:

1. The address, clock, and control inputs are identical and
2. There exists sufficient physical data pins to satisfy the netlist memories when the different netlist memories

are merged together into one physical memory.
Different types of memories require different attributes.

Single Port Memories Require:
• An input port with port_class="address" attribute
• An input port with port_class="data_in" attribute
• An input port with port_class="write_en" attribute
• An output port with port_class="data_out" attribute
• A clock port with port_class="clock" attribute

104 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Dual Port Memories Require:
• An input port with port_class="address1" attribute
• An input port with port_class="data_in1" attribute
• An input port with port_class="write_en1" attribute
• An input port with port_class="address2" attribute
• An input port with port_class="data_in2" attribute
• An input port with port_class="write_en2" attribute
• An output port with port_class="data_out1" attribute
• An output port with port_class="data_out2" attribute
• A clock port with port_class="clock" attribute

Timing

See also:
For examples of primitive timing modeling specifications see the Primitive Block Timing Modeling Tutorial

Timing is specified through tags contained with in pb_type, complete, direct, or mux tags as follows:

<delay_constant max="float" min="float" in_port="string" out_port="string"/>

Optional Attributes
• max – The maximum delay value.

• min – The minimum delay value.

Required Attributes
• in_port – The input port name.

• out_port – The output port name.
Specifies a maximum and/or minimum delay from in_port to out_port.

• If in_port and out_port are non-sequential (i.e combinational) inputs specifies the combinational path
delay between them.

• If in_port and out_port are sequential (i.e. have T_setup and/or T_clock_to_Q tags) specifies the
combinational delay between the primitive’s input and/or output registers.

Note: At least one of the max or min attributes must be specified

Note: If only one of max or min are specified the unspecified value is implicitly set to the same value

<delay_matrix type="{max | min}" in_port="string" out_port="string"> matrix </delay>

Required Attributes
• type – Specifies the delay type.

• in_port – The input port name.

• out_port – The output port name.

• matrix – The delay matrix.
Describe a timing matrix for all edges going from in_port to out_port. Number of rows of matrix should
equal the number of inputs, number of columns should equal the number of outputs.

• If in_port and out_port are non-sequential (i.e combinational) inputs specifies the combinational path
delay between them.

• If in_port and out_port are sequential (i.e. have T_setup and/or T_clock_to_Q tags) specifies the
combinational delay between the primitive’s input and/or output registers.

3.1. Architecture Reference 105

Verilog-to-Routing Documentation, Release 8.1.0-dev

Example: The following defines a delay matrix for a 4-bit input port in, and 3-bit output port out:

<delay_matrix type="max" in_port="in" out_port="out">
1.2e-10 1.4e-10 3.2e-10
4.6e-10 1.9e-10 2.2e-10
4.5e-10 6.7e-10 3.5e-10
7.1e-10 2.9e-10 8.7e-10

</delay>

Note: To specify both max and min delays two <delay_matrix> should be used.

<T_setup value="float" port="string" clock="string"/>

Required Attributes
• value – The setup time value.

• port – The port name the setup constraint applies to.

• clock – The port name of the clock the setup constraint is specified relative to.
Specifies a port’s setup constraint.

• If port is an input specifies the external setup time of the primitive’s input register (i.e. for paths termi-
nating at the input register).

• If port is an output specifies the internal setup time of the primitive’s output register (i.e. for paths
terminating at the output register) .

Note: Applies only to primitive <pb_type> tags

<T_hold value="float" port="string" clock="string"/>

Required Attributes
• value – The hold time value.

• port – The port name the setup constraint applies to.

• clock – The port name of the clock the setup constraint is specified relative to.
Specifies a port’s hold constraint.

• If port is an input specifies the external hold time of the primitive’s input register (i.e. for paths terminating
at the input register).

• If port is an output specifies the internal hold time of the primitive’s output register (i.e. for paths termi-
nating at the output register) .

Note: Applies only to primitive <pb_type> tags

<T_clock_to_Q max="float" min="float" port="string" clock="string"/>

Optional Attributes
• max – The maximum clock-to-Q delay value.

• min – The minimum clock-to-Q delay value.

Required Attributes
• port – The port name the delay value applies to.

• clock – The port name of the clock the clock-to-Q delay is specified relative to.
Specifies a port’s clock-to-Q delay.

106 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

• If port is an input specifies the internal clock-to-Q delay of the primitive’s input register (i.e. for paths
starting at the input register).

• If port is an output specifies the external clock-to-Q delay of the primitive’s output register (i.e. for paths
starting at the output register) .

Note: At least one of the max or min attributes must be specified

Note: If only one of max or min are specified the unspecified value is implicitly set to the same value

Note: Applies only to primitive <pb_type> tags

Modeling Sequential Primitive Internal Timing Paths

See also:
For examples of primitive timing modeling specifications see the Primitive Block Timing Modeling Tutorial

By default, if only <T_setup> and <T_clock_to_Q> are specified on a primitive pb_type no internal timing paths
are modeled. However, such paths can be modeled by using <delay_constant> and/or <delay_matrix> can be
used in conjunction with <T_setup> and <T_clock_to_Q>. This is useful for modeling the speed-limiting path of an
FPGA hard block like a RAM or DSP.

As an example, consider a sequential black-box primitive named seq_foo which has an input port in, output port out,
and clock clk:

<pb_type name="seq_foo" blif_model=".subckt seq_foo" num_pb="1">
<input name="in" num_pins="4"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>

<!-- external -->
<T_setup value="80e-12" port="seq_foo.in" clock="clk"/>
<T_clock_to_Q max="20e-12" port="seq_foo.out" clock="clk"/>

<!-- internal -->
<T_clock_to_Q max="10e-12" port="seq_foo.in" clock="clk"/>
<delay_constant max="0.9e-9" in_port="seq_foo.in" out_port="seq_foo.out"/>
<T_setup value="90e-12" port="seq_foo.out" clock="clk"/>

</pb_type>

To model an internal critical path delay, we specify the internal clock-to-Q delay of the input register (10ps), the internal
combinational delay (0.9ns) and the output register’s setup time (90ps). The sum of these delays corresponds to a 1ns
critical path delay.

Note: Primitive timing paths with only one stage of registers can be modeled by specifying <T_setup> and
<T_clock_to_Q> on only one of the ports.

3.1. Architecture Reference 107

Verilog-to-Routing Documentation, Release 8.1.0-dev

Power

See also:
Power Estimation, for the complete list of options, their descriptions, and required sub-fields.

<power method="string">contents</power>

Optional Attributes
• method – Indicates the method of power estimation used for the given pb_type.

Must be one of:

– specify-size

– auto-size

– pin-toggle

– C-internal

– absolute

– ignore

– sum-of-children

Default: auto-size.

See also:
Power Architecture Modelling for a detailed description of the various power estimation
methods.

The contents of the tag can consist of the following tags:
• <dynamic_power>
• <static_power>
• <pin>

<dynamic_power power_per_instance="float" C_internal="float"/>

Optional Attributes
• power_per_instance – Absolute power in Watts.

• C_internal – Block capacitance in Farads.

<static_power power_per_instance="float"/>

Optional Attributes
• power_per_instance – Absolute power in Watts.

<port name="string" energy_per_toggle="float" scaled_by_static_prob="string" scaled_by_static_prob_n="string"/
>

Required Attributes
• name – Name of the port.

• energy_per_toggle – Energy consumed by a toggle on the port specified in name.

Optional Attributes
• scaled_by_static_prob – Port name by which to scale energy_per_toggle based

on its logic high probability.

• scaled_by_static_prob_n – Port name by which to scale energy_per_toggle
based on its logic low probability.

108 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

3.1.10 NoC Description

The <noc> tag is an optional tag and its contents allows designers to describe a NoC on an FPGA device. The <noc>
tag is the top level tag for the NoC description and its attributes define the overall properties of the NoC; refer below
for its contents.

<noc link_bandwidth="float" link_latency="float" router_latency="float" noc_router_tile_name="string">

Required Attributes
• link_bandwidth – Specifies the maximum bandwidth in bits-per-second (bps) that a

link in the NoC can support

• link_latency – Specifies the delay in seconds seen by a flit as it travels from one
physical NoC router to another using a NoC link.

• router_latency – Specifies the un-loaded delays in seconds as it travels through a
physical router.

• noc_router_tile_name – Specifies a string which represents the name used to identify
a NoC router tile (physical hard block) in the corresponding FPGA architecture. This
information is needed to create a model of the NoC.

The <noc> tag contains a single <topology> tag which describes the topology of the NoC.

NoC topology

As mentioned above the <topology> tag can be used to specify the topology or how the routers in the NoC are
connected to each other. The <topology> tag consists of a group ``<router>``tags.

Below is an example of how the <topology> tag is used.

<topology>
<!--A number of <router> tags go here-->

</topology>

The <router> tag and its contents are described below.

<router id="int" positionx="float" positiony="float" connections="int int int int ...">

This tag represents a single physical NoC router on the FPGA device and specifies how it is connected within
the NoC.

Required Attributes
• id – Specifies a user identification (ID) number which is associate to the physical router

that this tag is identifying. This ID is used to report errors and warnings to the user.

• positionx – Specifies the horizontal position of the physical router block that this tag
is identifying. This position does not have to be exact, it can be an approximate value.

• positiony – Specifies the vertical position of the physical router block that this tag is
identifying. This position does not have to be exact, it can be an approximate value.

• connections – Specifies a list of numbers seperated by spaces which are the user IDs
supplied to other <router> tags. This describes how the current physical Noc router
that this tag is identifying is connected to the other physical NoC routers on the device.

Below is an example of the <router> tag which identifies a physical router located near (0,0) with ID 0. This
router is also connected to two other routers identified by IDs 1 and 2.

<router id="0" positionx="0" positiony="0" connections="1 2"/>

3.1. Architecture Reference 109

Verilog-to-Routing Documentation, Release 8.1.0-dev

NoC Description Example

Below is an example which describes a NoC architecture which has 4 physical routers that are connected to each other
to form a 2x2 mesh topology.

<!-- Description of a 2x2 mesh NoC-->
<noc link_bandwidth="1.2e9" router_latency="1e-9" link_latency="1e-9" noc_router_tile_
→˓name="noc_router_adapter">
<topology>

<router id="0" positionx="0" positiony="0" connections="1 2"/>
<router id="1" positionx="5" positiony="0" connections="0 3"/>
<router id="2" positionx="0" positiony="5" connections="0 3"/>
<router id="3" positionx="5" positiony="5" connections="1 2"/>

</topology>
</noc>

3.1.11 Wire Segments

The content within the <segmentlist> tag consists of a group of <segment> tags. The <segment> tag and its
contents are described below.

<segment axis="{x|y}" name="unique_name" length="int" type="{bidir|unidir}" freq="float" Rmetal="float" Cmetal="float">content</
segment>

Optional Attributes
• axis – Specifies if the given segment applies to either x or y channels only. If this tag

is not given, it is assumed that the given segment description applies to both x-directed
and y-directed channels.

Note: It is required that both x and y segment axis details are given or that at least
one segment within segmentlist is specified without the axis tag (i.e. at least one
segment applies to both x-directed and y-directed chanels).

Required Attributes
• name – A unique alphanumeric name to identify this segment type.

• length – Either the number of logic blocks spanned by each segment, or the keyword
longline. Longline means segments of this type span the entire FPGA array.

Note: longline is only supported on with bidir routing

• freq – The supply of routing tracks composed of this type of segment. VPR automati-
cally determines the percentage of tracks for each segment type by taking the frequency
for the type specified and dividing with the sum of all frequencies. It is recommended
that the sum of all segment frequencies be in the range 1 to 100.

• Rmetal – Resistance per unit length (in terms of logic blocks) of this wiring track, in
Ohms. For example, a segment of length 5 with Rmetal = 10 Ohms / logic block would
have an end-to-end resistance of 50 Ohms.

• Cmetal – Capacitance per unit length (in terms of logic blocks) of this wiring track, in
Farads. For example, a segment of length 5 with Cmetal = 2e-14 F / logic block would
have a total metal capacitance of 10e-13F.

110 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

• directionality – This is either unidirectional or bidirectional and indicates whether
a segment has multiple drive points (bidirectional), or a single driver at one end of the
wire segment (unidirectional). All segments must have the same directionality value.
See [LLTY04] for a description of unidirectional single-driver wire segments.

• content – The switch names and the depopulation pattern as described below.

Fig. 3.21: Switch block and connection block pattern example with four tracks per channel

<sb type="pattern">int list</sb>

This tag describes the switch block depopulation (as illustrated in Fig. 3.21) for this particular wire segment. For
example, the first length 6 wire in the figure below has an sb pattern of 1 0 1 0 1 0 1. The second wire has
a pattern of 0 1 0 1 0 1 0. A 1 indicates the existence of a switch block and a 0 indicates that there is no
switch box at that point. Note that there a 7 entries in the integer list for a length 6 wire. For a length L wire
there must be L+1 entries separated by spaces.

Note: Can not be specified for longline segments (which assume full switch block population)

<cb type="pattern">int list</cb>

This tag describes the connection block depopulation (as illustrated by the circles in Fig. 3.21) for this particular
wire segment. For example, the first length 6 wire in the figure below has an sb pattern of 1 1 1 1 1 1. The
third wire has a pattern of 1 0 0 1 1 0. A 1 indicates the existence of a connection block and a 0 indicates
that there is no connection box at that point. Note that there a 6 entries in the integer list for a length 6 wire. For
a length L wire there must be L entries separated by spaces.

Note: Can not be specified for longline segments (which assume full connection block population)

<mux name="string"/>

Required Attributes
• name – Name of the mux switch type used to drive this type of segment.

Note: For UNIDIRECTIONAL only.

Tag must be included and name must be the same as the name you give in <switch type="mux" name="...

<wire_switch name="string"/>

Required Attributes
• name – Name of the switch type used by other wires to drive this type of segment.

Note: For BIDIRECTIONAL only.

Tag must be included and the name must be the same as the name you give in <switch
type="tristate|pass_gate" name="... for the switch which represents the wire switch in your ar-
chitecture.

3.1. Architecture Reference 111

Verilog-to-Routing Documentation, Release 8.1.0-dev

<opin_switch name="string"/>

Note: For BIDIRECTIONAL only.

Required Attributes
• name – Name of the switch type used by block pins to drive this type of segment.

Tag must be included and name must be the same as the name you give in <switch
type="tristate|pass_gate" name="... for the switch which represents the output pin switch in
your architecture.

Note: In unidirectional segment mode, there is only a single buffer on the segment. Its type is specified by
assigning the same switch index to both wire_switch and opin_switch. VPR will error out if these two are not
the same.

Note: The switch used in unidirectional segment mode must be buffered.

3.1.12 Clocks

There are two options for describing clocks. One method allows you to specify clocking purely for power estimation,
see Specifing Clocking Purely for Power Estimation. The other method allows you to specify a clock architecture that is
used as part of the routing resources, see Specifing a Clock Architecture. Both methods should not be used in tandem.

Specifing Clocking Purely for Power Estimation

The clocking configuration is specified with <clock> tags within the <clocks> section.

Note: Currently the information in the <clocks> section is only used for power estimation.

See also:
Power Estimation for more details.

<clock C_wire="float" C_wire_per_m="float" buffer_size={"float"|"auto"}/>

Optional Attributes
• C_wire – The absolute capacitance, in Farads, of the wire between each clock buffer.

• C_wire_per_m – The wire capacitance, in Farads per Meter.

• buffer_size – The size of each clock buffer.

112 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Specifing a Clock Architecture

The element <clocknetworks> contains three sub-elements that collectively describe the clock architecture:
the wiring parameters <metal_layers>, the clock distribution <clock_network>, and the clock connectivity
<clock_routing>.

Clock Architecture Example

The following example shows how a rib-spine (row/column) style clock architecture can be defined.

<clocknetworks>
<metal_layers >

<metal_layer name="global_spine" Rmetal="50.42" Cmetal="20.7e-15"/>
<metal_layer name="global_rib" Rmetal="50.42" Cmetal="20.7e-15"/>

</metal_layers >

<!-- Full Device: Center Spine -->
<clock_network name="spine1" num_inst="2">

<spine metal_layer="global_spine" x="W/2" starty="0" endy="H">
<switch_point type="drive" name="drive_point" yoffset="H/2" buffer="drive_

→˓buff"/>
<switch_point type="tap" name="taps" yoffset="0" yincr="1"/>

</spine>
</clock_network>

<!-- Full Device: Each Grid Row -->
<clock_network name="rib1" num_inst="2">

<rib metal_layer="global_rib" y="0" startx="0" endx="W" repeatx="W" repeaty="1">
<switch_point type="drive" name="drive_point" xoffset="W/2" buffer="drive_

→˓buff"/>
<switch_point type="tap" name="taps" xoffset="0" xincr="1"/>

</rib>
</clock_network>

<clock_routing>
<!-- connections from inter-block routing to central spine -->
<tap from="ROUTING" to="spine1.drive_point" locationx="W/2" locationy="H/2"␣

→˓switch="general_routing_switch" fc_val="1.0"/>

<!-- connections from spine to rib -->
<tap from="spine1.taps" to="rib1.drive_point" switch="general_routing_switch" fc_

→˓val="0.5"/>

<!-- connections from rib to clock pins -->
<tap from="rib1.taps" to="CLOCK" switch="ipin_cblock" fc_val="1.0"/>

</clock_routing >
</clocknetworks >

3.1. Architecture Reference 113

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 3.22: <spine> “spine1” vertical clock wire example. The two spines (num_inst="2") are located horizontally
at W/2 (in the middle of the device), and spans the entire height of the device (0..H). The drive points are located at
H/2, with tap points located at unit increments along their length. Buffers of drive_buff type (would be defined in
<switches>) are used to drive the two halves of the spines.

114 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 3.23: <rib> “rib1” horizontal clock wire example. Each rib spans the full width of the device (0..W), with the
drive points located at the mid-point (W/2), and tap points in unit increments along each rib. There are two ribs at each
vertical location (num_inst="2"), and pairs of ribs are stamped out at each row of the device (repeaty="1").

3.1. Architecture Reference 115

Verilog-to-Routing Documentation, Release 8.1.0-dev

Clock Architecture Tags

The <metal_layers> element describes the per unit length electrical parameters, resistance (Rmetal) and capacitance
(Cmetel), used to implement the clock distribution wires. Wires are modeled soley based on Rmetal and Cmetal
parameters which are derived from the physical implementation of the metal layer width and spacing. There can be
one or more wiring implementation options (metal layer, width and spacing) that are used by the later clock network
specification and each is described in a separate <metal_layer> sub-element. The syntax of the wiring electrical
information is:

<metal_layer name="string" Rmetal="float" Cmetal="float"/>

Required Attributes
• name – A unique string for reference.

• Rmetal – The resistance in Ohms of the wire per unit block in the FPGA architecture;
a unit block usually corresponds to a logic cluster.

Req_pram Cmetal
The capacitance in Farads of the wire per unit block.

The <clock_network> element contains sub-elements that describe the clock distribution wires for the clock archi-
tecture. There could be more than one <clock_network> element to describe separate types of distribution wires.
The high-level start tag for a clock network is as follows:

<clock_network name="string" num_inst="integer">

Required Attributes
• name – A unique string for reference.

• num_inst – which describes the number of parallel instances of the clock distribution
types described in the <clock_network> sub-elements.

Note: Many paramters used in the following clock architecture tags take an espression (expr) as an argument
simular to Grid Location Expressions. However, only a subset of special variables are suported: W (device width)
and H (device height).

The supported clock distribution types are <spine> and <rib>. Spines are used to describe vertical clock
distribution wires. Whereas, Ribs is used to describe a horizontal clock distribution wire. See Clock Architecture
Example and accompanying figures Fig. 3.22 and Fig. 3.23 for example use of <spine> and <rib> parameters.

<spine metal_layer="string" x="expr" starty="expr" endy="expr" repeatx="expr" repeaty="expr"/
>

Required Attributes
• metal_layer – A referenced metal layer that sets the unit resistance and capaci-

tance of the distribution wire over the length of the wire.

• starty – The start y grid location, of the wire which runs parallel to the y-axis
from starty and ends at endy, inclusive. Value can be relative to the device size.

• endy – The end of y grid location of the wire. Value can be relative to the device
size.

• x – The location of the spine with respect to the x-axis. Value can be relative to the
device size.

Optional Attributes

116 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

• repeatx – The horizontal repeat factor of the spine along the device. Value can be
relative to the device size.

• repeaty – The vertical repeat factor of the spine along the device. Value can be
relative to the device size.

The provided example clock network (Clock Architecture Example) defines two spines, and neither repeats as
each spans the entire height of the device and is locally at the horizontal midpoint of the device.

<rib metal_layer="string" y="expr" startx="expr" endx="expr" repeatx="expr" repeaty="expr"/
>

Required Attributes
• metal_layer – A referenced metal layer that sets the unit resistance and capaci-

tance of the distribution wire over the length of the wire.

• startx – The start x grid location, of the wire which runs parallel to the x-axis
from startx and ends at endx, inclusive. Value can be relative to the device size.

• endx – The end of x grid location of the wire. Value can be relative to the device
size.

• y – The location of the rib with respect to the y-axis. Value can be relative to the
device size.

Optional Attributes
• repeatx – The horizontal repeat factor of the rib along the device. Value can be

relative to the device size.

• repeaty – The vertical repeat factor of the rib along the device. Value can be
relative to the device size.

Along each spine and rib is a group of switch points. Switch points are used to describe drive or tap locations
along the clock distribution wire, and are enclosed in the relevant <rib> or <spine> tags:

<switch_point type="{drive | tap}" name="string" yoffset="expr" xoffset="expr" xinc="expr" yinc="expr" buffer="string">

Required Attributes
• type –

– drive – Drive points are where the clock distribution wire can be driven by a
routing switch or buffer.

– tap – Tap points are where it can drive a routing switch or buffer to send a
signal to a different clock_network or logicblock.

• buffer – (Required only for drive points) A reference to a pre-defined routing
switch; specfied by <switch> tag, see Section Switches. This switch will be used
at the drive point. The clock architecture generator uses two of these buffers to drive
the two portions of this clock_network wire when it is split at the drive point, see
Figures Fig. 3.23 and Fig. 3.22.

Optional Attributes
• xoffset – (Only for rib network) Offset from the startx of a rib network.

• yoffset – (Only for spine network) Offset from the starty of a spine network.

• xinc – (Only for rib tap points) Descibes the repeat factor of a series of evenly
spaced tap points.

3.1. Architecture Reference 117

Verilog-to-Routing Documentation, Release 8.1.0-dev

• yinc – (Only for spine tap points) Descibes the repeat factor of a series of evenly
spaced tap points.

Note: A single <switch_point> specification may define a set of tap points (type="tap", with either
xincr or yincr), or a single drive point (type="drive")

Lastly the <clock_routing> element consists of a group of tap statements which separately describe the connectivity
between clock-related routing resources (pin or wire). The tap element and its attribute sare as follows:

<tap from="string" to="string" locationx="expr" locationy="expr" switch="string" fc_val="float">

Required Attributes
• from – The set of routing resources to make connections from. This can be either:

– clock_name.tap_points_name: A set of clock network tap-type switchpoints.
The format is clock network name, followed by the tap points name and delineated
by a period (e.g. spine1.taps), or

– ROUTING: a special literal which references a connection from general inter-block
routing (at a location specified by locationx and locationy parameters).

Examples can be see in Clock Architecture Example.

• to – The set of routing resources to make connections to. Can be a unique name or
special literal:

– clock_name.drive_point_name: A clock network drive-type switchpoint.
The format is clock network name, followed by the drive point name and delineated
by a period (e.g. rib1.drive_point).

– CLOCK: a special literal which describes connections from clock network tap points
that supply the clock to clock pins on blocks at the tap locations; these are clock
inputs are already specified on blocks (top-level <pb_type>/<tile>) in the VTR
architecture file.

Examples can be see in Clock Architecture Example.

• switch – The routing switch (defined in <switches>) used for this connection.

• fc_val – A decimal value between 0 and 1 representing the connection block flexibility
between the connecting routing resources; a value of 0.5 for example means that only
50% of the switches necessary to connect all the matching tap and drive points would
be implemented.

Optional Attributes
• locationx – (Required when using the special literal "ROUTING") The x grid location

of inter-block routing.

• locationy – (Required when using the special literal "ROUTING") The y grid location
of inter-block routing.

Note: A single <tap> statement may create multiple connections if either the of the from or to correspond to
multiple routing resources. In such cases the fc_val can control how many connections are created.

Note: locationx and locationy describe an (x,y) grid loction where all the wires passing this location source
the source the clock network connection depending on the fc_val

118 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

For more information you may wish to consult [Abb19] which introduces the clock modeling language.

3.1.13 Power

Additional power options are specified within the <architecture> level <power> section.

See also:
See Power Estimation for full documentation on how to perform power estimation.

<local_interconnect C_wire="float" factor="float"/>

Required Attributes
• C_wire – The local interconnect capacitance in Farads/Meter.

Optional Attributes
• factor – The local interconnect scaling factor. Default: 0.5.

<buffers logical_effort_factor="float"/>

Required Attributes
• logical_effort_factor – Default: 4.

3.1.14 Direct Inter-block Connections

The content within the <directlist> tag consists of a group of <direct> tags. The <direct> tag and its contents
are described below.

<direct name="string" from_pin="string" to_pin="string" x_offset="int" y_offset="int" z_offset="int" switch_name="string"/
>

Required Attributes
• name – is a unique alphanumeric string to name the connection.

• from_pin – pin of complex block that drives the connection.

• to_pin – pin of complex block that receives the connection.

• x_offset – The x location of the receiving CLB relative to the driving CLB.

• y_offset – The y location of the receiving CLB relative to the driving CLB.

• z_offset – The z location of the receiving CLB relative to the driving CLB.

Optional Attributes
• switch_name – [Optional, defaults to delay-less switch if not specified] The name of

the <switch> from <switchlist> to be used for this direct connection.

• from_side – The associated from_pin’s block size (must be one of left, right, top,
bottom or left unspecified)

• to_side – The associated to_pin’s block size (must be one of left, right, top,
bottom or left unspecified)

Describes a dedicated connection between two complex block pins that skips general interconnect. This is useful
for describing structures such as carry chains as well as adjacent neighbour connections.

The from_side and to_side options can usually be left unspecified. However they can be used to explicitly
control how directs to physically equivalent pins (which may appear on multiple sides) are handled.

3.1. Architecture Reference 119

Verilog-to-Routing Documentation, Release 8.1.0-dev

Example: Consider a carry chain where the cout of each CLB drives the cin of the CLB immediately below
it, using the delay-less switch one would enter the following:

<direct name="adder_carry" from_pin="clb.cout" to_pin="clb.cin" x_offset="0" y_
→˓offset="-1" z_offset="0"/>

3.1.15 Custom Switch Blocks

The content under the <switchblocklist> tag consists of one or more <switchblock> tags that are used to specify
connections between different segment types. An example is shown below:

<switchblocklist>
<switchblock name="my_switchblock" type="unidir">
<switchblock_location type="EVERYWHERE"/>
<switchfuncs>
<func type="lr" formula="t"/>
<func type="lt" formula="W-t"/>
<func type="lb" formula="W+t-1"/>
<func type="rt" formula="W+t-1"/>
<func type="br" formula="W-t-2"/>
<func type="bt" formula="t"/>
<func type="rl" formula="t"/>
<func type="tl" formula="W-t"/>
<func type="bl" formula="W+t-1"/>
<func type="tr" formula="W+t-1"/>
<func type="rb" formula="W-t-2"/>
<func type="tb" formula="t"/>

</switchfuncs>
<wireconn from_type="l4" to_type="l4" from_switchpoint="0,1,2,3" to_

→˓switchpoint="0"/>
<wireconn from_type="l8_global" to_type="l8_global" from_switchpoint="0,4"

to_switchpoint="0"/>
<wireconn from_type="l8_global" to_type="l4" from_switchpoint="0,4"

to_switchpoint="0"/>
</switchblock>

<switchblock name="another_switch_block" type="unidir">
... another switch block description ...

</switchblock>
</switchblocklist>

This switch block format allows a user to specify mathematical permutation functions that describe how different types
of segments (defined in the architecture file under the <segmentlist> tag) will connect to each other at different
switch points. The concept of a switch point is illustrated below for a length-4 unidirectional wire heading in the “left”
direction. The switch point at the start of the wire is given an index of 0 and is incremented by 1 at each subsequent
switch block until the last switch point. The last switch point has an index of 0 because it is shared between the end of
the current segment and the start of the next one (similarly to how switch point 3 is shared by the two wire subsegments
on each side).

A collection of wire types and switch points defines a set of wires which will be connected to another set of wires with
the specified permutation functions (the ‘sets’ of wires are defined using the <wireconn> tags). This format allows for
an abstract but very flexible way of specifying different switch block patterns. For additional discussion on interconnect
modeling see [Pet16]. The full format is documented below.

120 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 3.24: Switch point diagram.

Overall Notes:
1. The <sb type="pattern"> tag on a wire segment (described under <segmentlist>) is applied as a mask on

the patterns created by this switch block format; anywhere along a wire’s length where a switch block has not
been requested (set to 0 in this tag), no switches will be added.

2. You can specify multiple switchblock tags, and the switches described by the union of all those switch blocks
will be created.

<switchblock name="string" type="string">

Required Attributes
• name – A unique alphanumeric string

• type – unidir or bidir. A bidirectional switch block will implicitly mirror the spec-
ified permutation functions – e.g. if a permutation function of type lr (function used
to connect wires from the left to the right side of a switch block) has been specified, a
reverse permutation function of type rl (right-to-left) is automatically assumed. A uni-
directional switch block makes no such implicit assumptions. The type of switch block
must match the directionality of the segments defined under the <segmentlist> node.

<switchblock> is the top-level XML node used to describe connections between different segment types.

<switchblock_location type="string"/>

Required Attributes
• type – Can be one of the following strings:

– EVERYWHERE – at each switch block of the FPGA

– PERIMETER – at each perimeter switch block (x-directed and/or y-directed channel
segments may terminate here)

– CORNER – only at the corner switch blocks (both x and y-directed channels terminate
here)

– FRINGE – same as PERIMETER but excludes corners

– CORE – everywhere but the perimeter
Sets the location on the FPGA where the connections described by this switch block will be instantiated.

<switchfuncs>

The switchfuncs XML node contains one or more entries that specify the permutation functions with which
different switch block sides should be connected, as described below.

<func type="string" formula="string"/>

Required Attributes
• type – Specifies which switch block sides this function should connect. With the switch

block sides being left, top, right and bottom, the allowed entries are one of {lt, lr, lb,

3.1. Architecture Reference 121

Verilog-to-Routing Documentation, Release 8.1.0-dev

tr, tb, tl, rb, rl, rt, bl, bt, br} where lt means that the specified permutation
formula will be used to connect the left-top sides of the switch block.

Note: In a bidirectional architecture the reverse connection is implicit.

• formula – Specifies the mathematical permutation function that determines the pattern
with which the source/destination sets of wires (defined using the <wireconn> entries)
at the two switch block sides will be connected. For example, W-t specifies a connection
where the t’th wire in the source set will connect to the W-t wire in the destination set
where W is the number of wires in the destination set and the formula is implicitly treated
as modulo W.

Special characters that can be used in a formula are:

– t – the index of a wire in the source set

– W – the number of wires in the destination set (which is not necessarily the total
number of wires in the channel)

The operators that can be used in the formula are:

– Addition (+)

– Subtraction (-)

– Multiplication (*)

– Division (/)

– Brackets (and) are allowed and spaces are ignored.
Defined under the <switchfuncs> XML node, one or more <func...> entries is used to specify permutation
functions that connect different sides of a switch block.

<wireconn num_conns="expr" from_type="string, string, string, ..." to_type="string,
string, string, ..." from_switchpoint="int, int, int, ..." to_switchpoint="int, int, int,
...
" from_order="{fixed | shuffled}" to_order="{fixed | shuffled}" switch_override="string"/
>

Required Attributes
• num_conns – Specifies how many connections should be created between the

from_type/from_switchpoint set and the to_type/to_switchpoint set. The value of this
parameter is an expression which is evaluated when the switch block is constructed.

The expression can be a single number or formula using the variables:

– from – The number of switchblock edges equal to the ‘from’ set size.

This ensures that each element in the ‘from’ set is connected to an element
of the ‘to’ set. However it may leave some elements of the ‘to’ set either
multiply-connected or disconnected.

– to – The number of switchblock edges equal to the ‘to’ set size size.

This ensures that each element of the ‘to’ set is connected to precisely one
element of the ‘from’ set. However it may leave some elements of the
‘from’ set either multiply-connected or disconnected.

Examples:

– min(from,to) – Creates number of switchblock edges equal to the minimum of
the ‘from’ and ‘to’ set sizes.

122 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

3.1. Architecture Reference 123

Verilog-to-Routing Documentation, Release 8.1.0-dev

This ensures no element of the ‘from’ or ‘to’ sets is connected to multiple
elements in the opposing set. However it may leave some elements in the
larger set disconnected.

– max(from,to) – Creates number of switchblock edges equal to the maximum of
the ‘from’ and ‘to’ set sizes.

This ensures all elements of the ‘from’ or ‘to’ sets are connected to at least
one element in the opposing set. However some elements in the smaller set
may be multiply-connected.

– 3*to – Creates number of switchblock edges equal to three times the ‘to’ set sizes.

• from_type – A comma-separated list segment names that defines which segment types
will be a source of a connection. The segment names specified must match the names
of the segments defined under the <segmentlist> XML node. Required if no <from>

124 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

or <to> nodes are specified within the <wireconn>.

• to_type – A comma-separated list of segment names that defines which segment types
will be the destination of the connections specified. Each segment name must match
an entry in the <segmentlist> XML node. Required if no <from> or <to> nodes are
specified within the <wireconn>.

• from_switchpoint – A comma-separated list of integers that defines which switch-
points will be a source of a connection. Required if no <from> or <to> nodes are
specified within the <wireconn>.

• to_switchpoint – A comma-separated list of integers that defines which switchpoints
will be the destination of the connections specified. Required if no <from> or <to>
nodes are specified within the <wireconn>.

Note: In a unidirectional architecture wires can only be driven at their start point so
to_switchpoint="0" is the only legal specification in this case.

Optional Attributes
• from_order – Specifies the order in which ``from_switchpoint``s are selected when

creating edges.

– fixed – Switchpoints are selected in the order specified

This is useful to specify a preference for connecting to specific switch-
points. For example,

<wireconn num_conns="1*to" from_type="L16" from_
→˓switchpoint="0,12,8,4" from_order="fixed" to_type="L4
→˓" to_switchpoint="0"/>

specifies L4 wires should be connected first to L16 at switchpoint 0, then at
switchpoints 12, 8, and 4. This is primarily useful when we want to ensure
that some switchpoints are ‘used-up’ first.

– shuffled – Switchpoints are selected in a (randomly) shuffled order

This is useful to ensure a diverse set of switchpoints are used. For example,

<wireconn num_conns="1*to" from_type="L4" from_
→˓switchpoint="0,1,2,3" from_order="shuffled" to_type=
→˓"L4" to_switchpoint="0"/>

specifies L4 wires should be connected to other L4 wires at any of switch-
points 0, 1, 2, or 3. Shuffling the switchpoints is useful if one of the sets
(e.g. from L4’s) is much larger than the other (e.g. to L4’s), and we wish
to ensure a variety of switchpoints from the larger set are used.

Default: shuffled
• to_order – Specifies the order in which ``to_switchpoint``s are selected when creating

edges.

Note: See from_switchpoint_order for value descritpions.

3.1. Architecture Reference 125

Verilog-to-Routing Documentation, Release 8.1.0-dev

• switch_override – Specifies the name of a switch to be used to override the
wire_switch of the segments in the to set. Can be used to create switch patterns where
different switches are used for different types of connections. By using a zero-delay and
zero-resistance switch one can also create T and L shaped wire segments.

Default: If no override is specified, the usual wire_switch that drives the to wire will
be used.

<from type="string" switchpoint="int, int, int, ..."/>

Required Attributes
• type – The name of a segment specified in the <segmentlist>.

• switchpoint – A comma-separated list of integers that defines switchpoints.

Note: In a unidirectional architecture wires can only be driven at their start point
so to_switchpoint="0" is the only legal specification in this case.

Specifies a subset of source wire switchpoints.

This tag can be specified multiple times. The surrounding <wireconn>’s source set is the union of all
contained <from> tags.

<to type="string" switchpoint="int, int, int, ..."/>

Specifies a subset of destination wire switchpoints.

This tag can be specified multiple times. The surrounding <wireconn>’s destination set is the union of
all contained <to> tags.

See also:
<from> for attribute descriptions.

As an example, consider the following <wireconn> specification:

<wireconn num_conns_type="to"/>
<from type="L4" switchpoint="0,1,2,3"/>
<from type="L16" switchpoint="0,4,8,12"/>
<to type="L4" switchpoint="0/>

</wireconn>

This specifies that the ‘from’ set is the union of L4 switchpoints 0, 1, 2 and 3; and L16 switchpoints 0, 4, 8
and 12. The ‘to’ set is all L4 switchpoint 0’s. Note that since different switchpoints are selected from different
segment types it is not possible to specify this without using <from> sub-tags.

3.1.16 Architecture metadata

Architecture metadata enables tagging of architecture or routing graph information that exists outside of the normal
VPR flow (e.g. pack, place, route, etc). For example this could be used to enable bitstream generation by tagging
routing edges and pb_type features.

The metadata will not be used by the vpr executable, but can be leveraged by new tools using the libvpr library. These
new tools can access the metadata on the various VPR internal data structures.

To enable tagging of architecture structures with metadata, the <metadata> tag can be inserted under the following
XML tags:

• <pb_type>

126 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

• Any tag under <interconnect> (<direct>, <mux>, etc).

• <mode>

• Any grid location type (<perimeter>, <fill>, <corners>, <single>, <col>, <row>, <region>)

<metadata>

Specifies the root of a metadata block. Can have 0 or more <meta> Children.

<meta name="string" >

Required Attributes
• name – Key name of this metadata value.

Specifies a value within a metadata block. The name is a key for looking up the value contained within the <meta>
tag. Keys can be repeated, and will be stored in a vector in order of occurrence.

The value of the <meta> is the text in the block. Both the name and <meta> value will be stored as a string. XML
children are not supported in the <meta> tag.

Example of a metadata block with 2 keys:

<metadata>
<meta name="some_key">Some value</meta>
<meta name="other key!">Other value!</meta>

</metadata>

3.2 Example Architecture Specification

The listing below is for an FPGA with I/O pads, soft logic blocks (called CLB), configurable memory hard blocks, and
fracturable multiplier hard blocks.

Notice that for the CLB, all the inputs are logically equivalent (line 157), and all the outputs are logically equivalent
(line 158). This is usually true for cluster-based logic blocks, as the local routing within the block usually provides full
(or near full) connectivity.

However, for other logic blocks, the inputs and all the outputs are not logically equivalent. For example, consider the
memory block (lines 311-316). Swapping inputs going into the data input port changes the logic of the block because
the data output order no longer matches the data input.

1 <!-- VPR Architecture Specification File -->
2 <!-- Quick XML Primer:
3 * Data is hierarchical and composed of tags (similar to HTML)
4 * All tags must be of the form <foo>content</foo> OR <foo /> with the latter form␣

→˓indicating no content. Don't forget the slash at the end.
5 * Inside a start tag you may specify attributes in the form key="value". Refer to␣

→˓manual for the valid attributes for each element.
6 * Comments may be included anywhere in the document except inside a tag where it's␣

→˓attribute list is defined.
7 * Comments may contain any characters except two dashes.
8 -->
9 <!-- Architecture based off Stratix IV

10 Use closest ifar architecture: K06 N10 45nm fc 0.15 area-delay optimized, scale to␣
→˓40 nm using linear scaling

11 n10k06l04.fc15.area1delay1.cmos45nm.bptm.cmos45nm.xml
(continues on next page)

3.2. Example Architecture Specification 127

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

12 * because documentation sparser for soft logic (delays not in QUIP), harder to track␣
→˓down, not worth our time considering the level of accuracy is approximate

13 * delays multiplied by 40/45 to normalize for process difference between stratix 4␣
→˓and 45 nm technology (called full scaling)

14

15 Use delay numbers off Altera device handbook:
16

17 http://www.altera.com/literature/hb/stratix-iv/stx4_5v1.pdf
18 http://www.altera.com/literature/hb/stratix-iv/stx4_siv51004.pdf
19 http://www.altera.com/literature/hb/stratix-iv/stx4_siv51003.pdf
20 multipliers at 600 MHz, no detail on 9x9 vs 36x36
21 * datasheets unclear
22 * claims 4 18x18 independant multipliers, following test indicates that this is␣

→˓not the case:
23 created 4 18x18 mulitpliers, logiclocked them to a single DSP block, compile
24 result - 2 18x18 multipliers got packed together, the other 2 got ejected out␣

→˓of the logiclock region without error
25 conclusion - just take the 600 MHz as is, and Quartus II logiclock hasn't fixed␣

→˓the bug that I've seen it do to registers when I worked at Altera (ie. eject without␣
→˓warning)

26 -->
27 <architecture>
28 <!-- ODIN II specific config -->
29 <models>
30 <model name="multiply">
31 <input_ports>
32 <port name="a" combinational_sink_ports="out"/>
33 <port name="b" combinational_sink_ports="out"/>
34 </input_ports>
35 <output_ports>
36 <port name="out"/>
37 </output_ports>
38 </model>
39 <model name="single_port_ram">
40 <input_ports>
41 <port name="we" clock="clk"/>
42 <!-- control -->
43 <port name="addr" clock="clk"/>
44 <!-- address lines -->
45 <port name="data" clock="clk"/>
46 <!-- data lines can be broken down into smaller bit widths minimum size 1 -->
47 <port name="clk" is_clock="1"/>
48 <!-- memories are often clocked -->
49 </input_ports>
50 <output_ports>
51 <port name="out" clock="clk"/>
52 <!-- output can be broken down into smaller bit widths minimum size 1 -->
53 </output_ports>
54 </model>
55 <model name="dual_port_ram">
56 <input_ports>
57 <port name="we1" clock="clk"/>

(continues on next page)

128 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

58 <!-- write enable -->
59 <port name="we2" clock="clk"/>
60 <!-- write enable -->
61 <port name="addr1" clock="clk"/>
62 <!-- address lines -->
63 <port name="addr2" clock="clk"/>
64 <!-- address lines -->
65 <port name="data1" clock="clk"/>
66 <!-- data lines can be broken down into smaller bit widths minimum size 1 -->
67 <port name="data2" clock="clk"/>
68 <!-- data lines can be broken down into smaller bit widths minimum size 1 -->
69 <port name="clk" is_clock="1"/>
70 <!-- memories are often clocked -->
71 </input_ports>
72 <output_ports>
73 <port name="out1" clock="clk"/>
74 <!-- output can be broken down into smaller bit widths minimum size 1 -->
75 <port name="out2" clock="clk"/>
76 <!-- output can be broken down into smaller bit widths minimum size 1 -->
77 </output_ports>
78 </model>
79 </models>
80 <tiles>
81 <tile name="io" capacity="8">
82 <equivalent_sites>
83 <site pb_type="io" pin_mapping="direct"/>
84 </equivalent_sites>
85 <input name="outpad" num_pins="1"/>
86 <output name="inpad" num_pins="1"/>
87 <clock name="clock" num_pins="1"/>
88 <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
89 <pinlocations pattern="custom">
90 <loc side="left">io.outpad io.inpad io.clock</loc>
91 <loc side="top">io.outpad io.inpad io.clock</loc>
92 <loc side="right">io.outpad io.inpad io.clock</loc>
93 <loc side="bottom">io.outpad io.inpad io.clock</loc>
94 </pinlocations>
95 </tile>
96 <tile name="clb">
97 <equivalent_sites>
98 <site pb_type="clb" pin_mapping="direct"/>
99 </equivalent_sites>

100 <input name="I" num_pins="33" equivalent="full"/>
101 <output name="O" num_pins="10" equivalent="instance"/>
102 <clock name="clk" num_pins="1"/>
103 <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
104 <pinlocations pattern="spread"/>
105 </tile>
106 <tile name="mult_36" height="4">
107 <equivalent_sites>
108 <site pb_type="mult_36" pin_mapping="direct"/>
109 </equivalent_sites>

(continues on next page)

3.2. Example Architecture Specification 129

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

110 <input name="a" num_pins="36"/>
111 <input name="b" num_pins="36"/>
112 <output name="out" num_pins="72"/>
113 <pinlocations pattern="spread"/>
114 </tile>
115 <tile name="memory" height="6">
116 <equivalent_sites>
117 <site pb_type="memory" pin_mapping="direct"/>
118 </equivalent_sites>
119 <input name="addr1" num_pins="17"/>
120 <input name="addr2" num_pins="17"/>
121 <input name="data" num_pins="72"/>
122 <input name="we1" num_pins="1"/>
123 <input name="we2" num_pins="1"/>
124 <output name="out" num_pins="72"/>
125 <clock name="clk" num_pins="1"/>
126 <fc in_type="frac" in_val="0.15" out_type="frac" out_val="0.10"/>
127 <pinlocations pattern="spread"/>
128 </tile>
129 </tiles>
130 <!-- ODIN II specific config ends -->
131 <!-- Physical descriptions begin (area optimized for N8-K6-L4 -->
132 <layout>
133 <auto_layout aspect_ratio="1.0">
134 <!--Perimeter of 'io' blocks with 'EMPTY' blocks at corners-->
135 <perimeter type="io" priority="100"/>
136 <corners type="EMPTY" priority="101"/>
137 <!--Fill with 'clb'-->
138 <fill type="clb" priority="10"/>
139 <!--Column of 'mult_36' with 'EMPTY' blocks wherever a 'mult_36' does not fit.␣

→˓Vertical offset by 1 for perimeter.-->
140 <col type="mult_36" startx="4" starty="1" repeatx="8" priority="20"/>
141 <col type="EMPTY" startx="4" repeatx="8" starty="1" priority="19"/>
142 <!--Column of 'memory' with 'EMPTY' blocks wherever a 'memory' does not fit. Vertical␣

→˓offset by 1 for perimeter.-->
143 <col type="memory" startx="2" starty="1" repeatx="8" priority="20"/>
144 <col type="EMPTY" startx="2" repeatx="8" starty="1" priority="19"/>
145 </auto_layout>
146 </layout>
147 <device>
148 <sizing R_minW_nmos="6065.520020" R_minW_pmos="18138.500000"/>
149 <area grid_logic_tile_area="14813.392"/>
150 <!--area is for soft logic only-->
151 <chan_width_distr>
152 <x distr="uniform" peak="1.000000"/>
153 <y distr="uniform" peak="1.000000"/>
154 </chan_width_distr>
155 <switch_block type="wilton" fs="3"/>
156 <connection_block input_switch_name="ipin_cblock"/>
157 </device>
158 <switchlist>
159 <switch type="mux" name="0" R="0.000000" Cin="0.000000e+00" Cout="0.000000e+00" Tdel=

(continues on next page)

130 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓"6.837e-11" mux_trans_size="2.630740" buf_size="27.645901"/>
160 <!--switch ipin_cblock resistance set to yeild for 4x minimum drive strength buffer--

→˓>
161 <switch type="mux" name="ipin_cblock" R="1516.380005" Cout="0." Cin="0.000000e+00"␣

→˓Tdel="7.247000e-11" mux_trans_size="1.222260" buf_size="auto"/>
162 </switchlist>
163 <segmentlist>
164 <segment freq="1.000000" length="4" type="unidir" Rmetal="0.000000" Cmetal="0.

→˓000000e+00">
165 <mux name="0"/>
166 <sb type="pattern">1 1 1 1 1</sb>
167 <cb type="pattern">1 1 1 1</cb>
168 </segment>
169 </segmentlist>
170 <complexblocklist>
171 <!-- Capacity is a unique property of I/Os, it is the maximum number of I/Os that␣

→˓can be placed at the same (X,Y) location on the FPGA -->
172 <pb_type name="io">
173 <input name="outpad" num_pins="1"/>
174 <output name="inpad" num_pins="1"/>
175 <clock name="clock" num_pins="1"/>
176 <!-- IOs can operate as either inputs or outputs -->
177 <mode name="inpad">
178 <pb_type name="inpad" blif_model=".input" num_pb="1">
179 <output name="inpad" num_pins="1"/>
180 </pb_type>
181 <interconnect>
182 <direct name="inpad" input="inpad.inpad" output="io.inpad">
183 <delay_constant max="4.243e-11" in_port="inpad.inpad" out_port="io.inpad"/>
184 </direct>
185 </interconnect>
186 </mode>
187 <mode name="outpad">
188 <pb_type name="outpad" blif_model=".output" num_pb="1">
189 <input name="outpad" num_pins="1"/>
190 </pb_type>
191 <interconnect>
192 <direct name="outpad" input="io.outpad" output="outpad.outpad">
193 <delay_constant max="1.394e-11" in_port="io.outpad" out_port="outpad.outpad"/

→˓>
194 </direct>
195 </interconnect>
196 </mode>
197 <!-- IOs go on the periphery of the FPGA, for consistency,
198 make it physically equivalent on all sides so that only one definition of I/

→˓Os is needed.
199 If I do not make a physically equivalent definition, then I need to define 4␣

→˓different I/Os, one for each side of the FPGA
200 -->
201 </pb_type>
202 <pb_type name="clb">
203 <input name="I" num_pins="33" equivalent="full"/><!-- NOTE: Logically Equivalent --

(continues on next page)

3.2. Example Architecture Specification 131

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓>
204 <output name="O" num_pins="10" equivalent="instance"/><!-- NOTE: Logically␣

→˓Equivalent -->
205 <clock name="clk" num_pins="1"/>
206 <!-- Describe basic logic element -->
207 <pb_type name="ble" num_pb="10">
208 <input name="in" num_pins="6"/>
209 <output name="out" num_pins="1"/>
210 <clock name="clk" num_pins="1"/>
211 <pb_type name="soft_logic" num_pb="1">
212 <input name="in" num_pins="6"/>
213 <output name="out" num_pins="1"/>
214 <mode name="n1_lut6">
215 <pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
216 <input name="in" num_pins="6" port_class="lut_in"/>
217 <output name="out" num_pins="1" port_class="lut_out"/>
218 <!-- LUT timing using delay matrix -->
219 <delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
220 2.690e-10
221 2.690e-10
222 2.690e-10
223 2.690e-10
224 2.690e-10
225 2.690e-10
226 </delay_matrix>
227 </pb_type>
228 <interconnect>
229 <direct name="direct1" input="soft_logic.in[5:0]" output="lut6[0:0].in[5:0]

→˓"/>
230 <direct name="direct2" input="lut6[0:0].out" output="soft_logic.out[0:0]"/>
231 </interconnect>
232 </mode>
233 </pb_type>
234 <pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
235 <input name="D" num_pins="1" port_class="D"/>
236 <output name="Q" num_pins="1" port_class="Q"/>
237 <clock name="clk" num_pins="1" port_class="clock"/>
238 <T_setup value="2.448e-10" port="ff.D" clock="clk"/>
239 <T_clock_to_Q max="7.732e-11" port="ff.Q" clock="clk"/>
240 </pb_type>
241 <interconnect>
242 <!-- Two ff, make ff available to only corresponding luts -->
243 <direct name="direct1" input="ble.in" output="soft_logic.in"/>
244 <direct name="direct2" input="soft_logic.out" output="ff.D"/>
245 <direct name="direct4" input="ble.clk" output="ff.clk"/>
246 <mux name="mux1" input="ff.Q soft_logic.out" output="ble.out"/>
247 </interconnect>
248 </pb_type>
249 <interconnect>
250 <complete name="crossbar" input="clb.I ble[9:0].out" output="ble[9:0].in">
251 <delay_constant max="8.044000e-11" in_port="clb.I" out_port="ble[9:0].in"/>
252 <delay_constant max="7.354000e-11" in_port="ble[9:0].out" out_port="ble[9:0].in

(continues on next page)

132 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓"/>
253 </complete>
254 <complete name="clks" input="clb.clk" output="ble[9:0].clk"/>
255 <direct name="clbouts" input="ble[9:0].out" output="clb.O"/>
256 </interconnect>
257 </pb_type>
258 <!-- This is the 36*36 uniform mult -->
259 <pb_type name="mult_36">
260 <input name="a" num_pins="36"/>
261 <input name="b" num_pins="36"/>
262 <output name="out" num_pins="72"/>
263 <mode name="two_divisible_mult_18x18">
264 <pb_type name="divisible_mult_18x18" num_pb="2">
265 <input name="a" num_pins="18"/>
266 <input name="b" num_pins="18"/>
267 <output name="out" num_pins="36"/>
268 <mode name="two_mult_9x9">
269 <pb_type name="mult_9x9_slice" num_pb="2">
270 <input name="A_cfg" num_pins="9"/>
271 <input name="B_cfg" num_pins="9"/>
272 <output name="OUT_cfg" num_pins="18"/>
273 <pb_type name="mult_9x9" blif_model=".subckt multiply" num_pb="1">
274 <input name="a" num_pins="9"/>
275 <input name="b" num_pins="9"/>
276 <output name="out" num_pins="18"/>
277 <delay_constant max="1.667e-9" in_port="mult_9x9.a" out_port="mult_9x9.

→˓out"/>
278 <delay_constant max="1.667e-9" in_port="mult_9x9.b" out_port="mult_9x9.

→˓out"/>
279 </pb_type>
280 <interconnect>
281 <direct name="a2a" input="mult_9x9_slice.A_cfg" output="mult_9x9.a"/>
282 <direct name="b2b" input="mult_9x9_slice.B_cfg" output="mult_9x9.b"/>
283 <direct name="out2out" input="mult_9x9.out" output="mult_9x9_slice.OUT_

→˓cfg"/>
284 </interconnect>
285 </pb_type>
286 <interconnect>
287 <direct name="a2a" input="divisible_mult_18x18.a" output="mult_9x9_

→˓slice[1:0].A_cfg"/>
288 <direct name="b2b" input="divisible_mult_18x18.b" output="mult_9x9_

→˓slice[1:0].B_cfg"/>
289 <direct name="out2out" input="mult_9x9_slice[1:0].OUT_cfg" output=

→˓"divisible_mult_18x18.out"/>
290 </interconnect>
291 </mode>
292 <mode name="mult_18x18">
293 <pb_type name="mult_18x18_slice" num_pb="1">
294 <input name="A_cfg" num_pins="18"/>
295 <input name="B_cfg" num_pins="18"/>
296 <output name="OUT_cfg" num_pins="36"/>
297 <pb_type name="mult_18x18" blif_model=".subckt multiply" num_pb="1">

(continues on next page)

3.2. Example Architecture Specification 133

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

298 <input name="a" num_pins="18"/>
299 <input name="b" num_pins="18"/>
300 <output name="out" num_pins="36"/>
301 <delay_constant max="1.667e-9" in_port="mult_18x18.a" out_port="mult_

→˓18x18.out"/>
302 <delay_constant max="1.667e-9" in_port="mult_18x18.b" out_port="mult_

→˓18x18.out"/>
303 </pb_type>
304 <interconnect>
305 <direct name="a2a" input="mult_18x18_slice.A_cfg" output="mult_18x18.a"/>
306 <direct name="b2b" input="mult_18x18_slice.B_cfg" output="mult_18x18.b"/>
307 <direct name="out2out" input="mult_18x18.out" output="mult_18x18_slice.

→˓OUT_cfg"/>
308 </interconnect>
309 </pb_type>
310 <interconnect>
311 <direct name="a2a" input="divisible_mult_18x18.a" output="mult_18x18_slice.

→˓A_cfg"/>
312 <direct name="b2b" input="divisible_mult_18x18.b" output="mult_18x18_slice.

→˓B_cfg"/>
313 <direct name="out2out" input="mult_18x18_slice.OUT_cfg" output="divisible_

→˓mult_18x18.out"/>
314 </interconnect>
315 </mode>
316 </pb_type>
317 <interconnect>
318 <direct name="a2a" input="mult_36.a" output="divisible_mult_18x18[1:0].a"/>
319 <direct name="b2b" input="mult_36.b" output="divisible_mult_18x18[1:0].b"/>
320 <direct name="out2out" input="divisible_mult_18x18[1:0].out" output="mult_36.

→˓out"/>
321 </interconnect>
322 </mode>
323 <mode name="mult_36x36">
324 <pb_type name="mult_36x36_slice" num_pb="1">
325 <input name="A_cfg" num_pins="36"/>
326 <input name="B_cfg" num_pins="36"/>
327 <output name="OUT_cfg" num_pins="72"/>
328 <pb_type name="mult_36x36" blif_model=".subckt multiply" num_pb="1">
329 <input name="a" num_pins="36"/>
330 <input name="b" num_pins="36"/>
331 <output name="out" num_pins="72"/>
332 <delay_constant max="1.667e-9" in_port="mult_36x36.a" out_port="mult_36x36.

→˓out"/>
333 <delay_constant max="1.667e-9" in_port="mult_36x36.b" out_port="mult_36x36.

→˓out"/>
334 </pb_type>
335 <interconnect>
336 <direct name="a2a" input="mult_36x36_slice.A_cfg" output="mult_36x36.a"/>
337 <direct name="b2b" input="mult_36x36_slice.B_cfg" output="mult_36x36.b"/>
338 <direct name="out2out" input="mult_36x36.out" output="mult_36x36_slice.OUT_

→˓cfg"/>
339 </interconnect>

(continues on next page)

134 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

340 </pb_type>
341 <interconnect>
342 <direct name="a2a" input="mult_36.a" output="mult_36x36_slice.A_cfg"/>
343 <direct name="b2b" input="mult_36.b" output="mult_36x36_slice.B_cfg"/>
344 <direct name="out2out" input="mult_36x36_slice.OUT_cfg" output="mult_36.out"/>
345 </interconnect>
346 </mode>
347 <fc_in type="frac">0.15</fc_in>
348 <fc_out type="frac">0.10</fc_out>
349 </pb_type>
350 <!-- Memory based off Stratix IV 144K memory. Setup time set to match flip-flop␣

→˓setup time at 45 nm. Clock to q based off 144K max MHz -->
351 <pb_type name="memory">
352 <input name="addr1" num_pins="17"/>
353 <input name="addr2" num_pins="17"/>
354 <input name="data" num_pins="72"/>
355 <input name="we1" num_pins="1"/>
356 <input name="we2" num_pins="1"/>
357 <output name="out" num_pins="72"/>
358 <clock name="clk" num_pins="1"/>
359 <mode name="mem_2048x72_sp">
360 <pb_type name="mem_2048x72_sp" blif_model=".subckt single_port_ram" class="memory

→˓" num_pb="1">
361 <input name="addr" num_pins="11" port_class="address"/>
362 <input name="data" num_pins="72" port_class="data_in"/>
363 <input name="we" num_pins="1" port_class="write_en"/>
364 <output name="out" num_pins="72" port_class="data_out"/>
365 <clock name="clk" num_pins="1" port_class="clock"/>
366 <T_setup value="2.448e-10" port="mem_2048x72_sp.addr" clock="clk"/>
367 <T_setup value="2.448e-10" port="mem_2048x72_sp.data" clock="clk"/>
368 <T_setup value="2.448e-10" port="mem_2048x72_sp.we" clock="clk"/>
369 <T_clock_to_Q max="1.852e-9" port="mem_2048x72_sp.out" clock="clk"/>
370 </pb_type>
371 <interconnect>
372 <direct name="address1" input="memory.addr1[10:0]" output="mem_2048x72_sp.addr

→˓"/>
373 <direct name="data1" input="memory.data[71:0]" output="mem_2048x72_sp.data"/>
374 <direct name="writeen1" input="memory.we1" output="mem_2048x72_sp.we"/>
375 <direct name="dataout1" input="mem_2048x72_sp.out" output="memory.out[71:0]"/>
376 <direct name="clk" input="memory.clk" output="mem_2048x72_sp.clk"/>
377 </interconnect>
378 </mode>
379 <mode name="mem_4096x36_dp">
380 <pb_type name="mem_4096x36_dp" blif_model=".subckt dual_port_ram" class="memory"␣

→˓num_pb="1">
381 <input name="addr1" num_pins="12" port_class="address1"/>
382 <input name="addr2" num_pins="12" port_class="address2"/>
383 <input name="data1" num_pins="36" port_class="data_in1"/>
384 <input name="data2" num_pins="36" port_class="data_in2"/>
385 <input name="we1" num_pins="1" port_class="write_en1"/>
386 <input name="we2" num_pins="1" port_class="write_en2"/>
387 <output name="out1" num_pins="36" port_class="data_out1"/>

(continues on next page)

3.2. Example Architecture Specification 135

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

388 <output name="out2" num_pins="36" port_class="data_out2"/>
389 <clock name="clk" num_pins="1" port_class="clock"/>
390 <T_setup value="2.448e-10" port="mem_4096x36_dp.addr1" clock="clk"/>
391 <T_setup value="2.448e-10" port="mem_4096x36_dp.data1" clock="clk"/>
392 <T_setup value="2.448e-10" port="mem_4096x36_dp.we1" clock="clk"/>
393 <T_setup value="2.448e-10" port="mem_4096x36_dp.addr2" clock="clk"/>
394 <T_setup value="2.448e-10" port="mem_4096x36_dp.data2" clock="clk"/>
395 <T_setup value="2.448e-10" port="mem_4096x36_dp.we2" clock="clk"/>
396 <T_clock_to_Q max="1.852e-9" port="mem_4096x36_dp.out1" clock="clk"/>
397 <T_clock_to_Q max="1.852e-9" port="mem_4096x36_dp.out2" clock="clk"/>
398 </pb_type>
399 <interconnect>
400 <direct name="address1" input="memory.addr1[11:0]" output="mem_4096x36_dp.addr1

→˓"/>
401 <direct name="address2" input="memory.addr2[11:0]" output="mem_4096x36_dp.addr2

→˓"/>
402 <direct name="data1" input="memory.data[35:0]" output="mem_4096x36_dp.data1"/>
403 <direct name="data2" input="memory.data[71:36]" output="mem_4096x36_dp.data2"/>
404 <direct name="writeen1" input="memory.we1" output="mem_4096x36_dp.we1"/>
405 <direct name="writeen2" input="memory.we2" output="mem_4096x36_dp.we2"/>
406 <direct name="dataout1" input="mem_4096x36_dp.out1" output="memory.out[35:0]"/>
407 <direct name="dataout2" input="mem_4096x36_dp.out2" output="memory.out[71:36]"/

→˓>
408 <direct name="clk" input="memory.clk" output="mem_4096x36_dp.clk"/>
409 </interconnect>
410 </mode>
411 <mode name="mem_4096x36_sp">
412 <pb_type name="mem_4096x36_sp" blif_model=".subckt single_port_ram" class="memory

→˓" num_pb="1">
413 <input name="addr" num_pins="12" port_class="address"/>
414 <input name="data" num_pins="36" port_class="data_in"/>
415 <input name="we" num_pins="1" port_class="write_en"/>
416 <output name="out" num_pins="36" port_class="data_out"/>
417 <clock name="clk" num_pins="1" port_class="clock"/>
418 <T_setup value="2.448e-10" port="mem_4096x36_sp.addr" clock="clk"/>
419 <T_setup value="2.448e-10" port="mem_4096x36_sp.data" clock="clk"/>
420 <T_setup value="2.448e-10" port="mem_4096x36_sp.we" clock="clk"/>
421 <T_clock_to_Q max="1.852e-9" port="mem_4096x36_sp.out" clock="clk"/>
422 </pb_type>
423 <interconnect>
424 <direct name="address1" input="memory.addr1[11:0]" output="mem_4096x36_sp.addr

→˓"/>
425 <direct name="data1" input="memory.data[35:0]" output="mem_4096x36_sp.data"/>
426 <direct name="writeen1" input="memory.we1" output="mem_4096x36_sp.we"/>
427 <direct name="dataout1" input="mem_4096x36_sp.out" output="memory.out[35:0]"/>
428 <direct name="clk" input="memory.clk" output="mem_4096x36_sp.clk"/>
429 </interconnect>
430 </mode>
431 <mode name="mem_9182x18_dp">
432 <pb_type name="mem_9182x18_dp" blif_model=".subckt dual_port_ram" class="memory"␣

→˓num_pb="1">
433 <input name="addr1" num_pins="13" port_class="address1"/>

(continues on next page)

136 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

434 <input name="addr2" num_pins="13" port_class="address2"/>
435 <input name="data1" num_pins="18" port_class="data_in1"/>
436 <input name="data2" num_pins="18" port_class="data_in2"/>
437 <input name="we1" num_pins="1" port_class="write_en1"/>
438 <input name="we2" num_pins="1" port_class="write_en2"/>
439 <output name="out1" num_pins="18" port_class="data_out1"/>
440 <output name="out2" num_pins="18" port_class="data_out2"/>
441 <clock name="clk" num_pins="1" port_class="clock"/>
442 <T_setup value="2.448e-10" port="mem_9182x18_dp.addr1" clock="clk"/>
443 <T_setup value="2.448e-10" port="mem_9182x18_dp.data1" clock="clk"/>
444 <T_setup value="2.448e-10" port="mem_9182x18_dp.we1" clock="clk"/>
445 <T_setup value="2.448e-10" port="mem_9182x18_dp.addr2" clock="clk"/>
446 <T_setup value="2.448e-10" port="mem_9182x18_dp.data2" clock="clk"/>
447 <T_setup value="2.448e-10" port="mem_9182x18_dp.we2" clock="clk"/>
448 <T_clock_to_Q max="1.852e-9" port="mem_9182x18_dp.out1" clock="clk"/>
449 <T_clock_to_Q max="1.852e-9" port="mem_9182x18_dp.out2" clock="clk"/>
450 </pb_type>
451 <interconnect>
452 <direct name="address1" input="memory.addr1[12:0]" output="mem_9182x18_dp.addr1

→˓"/>
453 <direct name="address2" input="memory.addr2[12:0]" output="mem_9182x18_dp.addr2

→˓"/>
454 <direct name="data1" input="memory.data[17:0]" output="mem_9182x18_dp.data1"/>
455 <direct name="data2" input="memory.data[35:18]" output="mem_9182x18_dp.data2"/>
456 <direct name="writeen1" input="memory.we1" output="mem_9182x18_dp.we1"/>
457 <direct name="writeen2" input="memory.we2" output="mem_9182x18_dp.we2"/>
458 <direct name="dataout1" input="mem_9182x18_dp.out1" output="memory.out[17:0]"/>
459 <direct name="dataout2" input="mem_9182x18_dp.out2" output="memory.out[35:18]"/

→˓>
460 <direct name="clk" input="memory.clk" output="mem_9182x18_dp.clk"/>
461 </interconnect>
462 </mode>
463 <mode name="mem_9182x18_sp">
464 <pb_type name="mem_9182x18_sp" blif_model=".subckt single_port_ram" class="memory

→˓" num_pb="1">
465 <input name="addr" num_pins="13" port_class="address"/>
466 <input name="data" num_pins="18" port_class="data_in"/>
467 <input name="we" num_pins="1" port_class="write_en"/>
468 <output name="out" num_pins="18" port_class="data_out"/>
469 <clock name="clk" num_pins="1" port_class="clock"/>
470 <T_setup value="2.448e-10" port="mem_9182x18_sp.addr" clock="clk"/>
471 <T_setup value="2.448e-10" port="mem_9182x18_sp.data" clock="clk"/>
472 <T_setup value="2.448e-10" port="mem_9182x18_sp.we" clock="clk"/>
473 <T_clock_to_Q max="1.852e-9" port="mem_9182x18_sp.out" clock="clk"/>
474 </pb_type>
475 <interconnect>
476 <direct name="address1" input="memory.addr1[12:0]" output="mem_9182x18_sp.addr

→˓"/>
477 <direct name="data1" input="memory.data[17:0]" output="mem_9182x18_sp.data"/>
478 <direct name="writeen1" input="memory.we1" output="mem_9182x18_sp.we"/>
479 <direct name="dataout1" input="mem_9182x18_sp.out" output="memory.out[17:0]"/>
480 <direct name="clk" input="memory.clk" output="mem_9182x18_sp.clk"/>

(continues on next page)

3.2. Example Architecture Specification 137

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

481 </interconnect>
482 </mode>
483 <mode name="mem_18194x9_dp">
484 <pb_type name="mem_18194x9_dp" blif_model=".subckt dual_port_ram" class="memory"␣

→˓num_pb="1">
485 <input name="addr1" num_pins="14" port_class="address1"/>
486 <input name="addr2" num_pins="14" port_class="address2"/>
487 <input name="data1" num_pins="9" port_class="data_in1"/>
488 <input name="data2" num_pins="9" port_class="data_in2"/>
489 <input name="we1" num_pins="1" port_class="write_en1"/>
490 <input name="we2" num_pins="1" port_class="write_en2"/>
491 <output name="out1" num_pins="9" port_class="data_out1"/>
492 <output name="out2" num_pins="9" port_class="data_out2"/>
493 <clock name="clk" num_pins="1" port_class="clock"/>
494 <T_setup value="2.448e-10" port="mem_18194x9_dp.addr1" clock="clk"/>
495 <T_setup value="2.448e-10" port="mem_18194x9_dp.data1" clock="clk"/>
496 <T_setup value="2.448e-10" port="mem_18194x9_dp.we1" clock="clk"/>
497 <T_setup value="2.448e-10" port="mem_18194x9_dp.addr2" clock="clk"/>
498 <T_setup value="2.448e-10" port="mem_18194x9_dp.data2" clock="clk"/>
499 <T_setup value="2.448e-10" port="mem_18194x9_dp.we2" clock="clk"/>
500 <T_clock_to_Q max="1.852e-9" port="mem_18194x9_dp.out1" clock="clk"/>
501 <T_clock_to_Q max="1.852e-9" port="mem_18194x9_dp.out2" clock="clk"/>
502 </pb_type>
503 <interconnect>
504 <direct name="address1" input="memory.addr1[13:0]" output="mem_18194x9_dp.addr1

→˓"/>
505 <direct name="address2" input="memory.addr2[13:0]" output="mem_18194x9_dp.addr2

→˓"/>
506 <direct name="data1" input="memory.data[8:0]" output="mem_18194x9_dp.data1"/>
507 <direct name="data2" input="memory.data[17:9]" output="mem_18194x9_dp.data2"/>
508 <direct name="writeen1" input="memory.we1" output="mem_18194x9_dp.we1"/>
509 <direct name="writeen2" input="memory.we2" output="mem_18194x9_dp.we2"/>
510 <direct name="dataout1" input="mem_18194x9_dp.out1" output="memory.out[8:0]"/>
511 <direct name="dataout2" input="mem_18194x9_dp.out2" output="memory.out[17:9]"/>
512 <direct name="clk" input="memory.clk" output="mem_18194x9_dp.clk"/>
513 </interconnect>
514 </mode>
515 <mode name="mem_18194x9_sp">
516 <pb_type name="mem_18194x9_sp" blif_model=".subckt single_port_ram" class="memory

→˓" num_pb="1">
517 <input name="addr" num_pins="14" port_class="address"/>
518 <input name="data" num_pins="9" port_class="data_in"/>
519 <input name="we" num_pins="1" port_class="write_en"/>
520 <output name="out" num_pins="9" port_class="data_out"/>
521 <clock name="clk" num_pins="1" port_class="clock"/>
522 <T_setup value="2.448e-10" port="mem_18194x9_sp.addr" clock="clk"/>
523 <T_setup value="2.448e-10" port="mem_18194x9_sp.data" clock="clk"/>
524 <T_setup value="2.448e-10" port="mem_18194x9_sp.we" clock="clk"/>
525 <T_clock_to_Q max="1.852e-9" port="mem_18194x9_sp.out" clock="clk"/>
526 </pb_type>
527 <interconnect>
528 <direct name="address1" input="memory.addr1[13:0]" output="mem_18194x9_sp.addr

(continues on next page)

138 Chapter 3. FPGA Architecture Description

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓"/>
529 <direct name="data1" input="memory.data[8:0]" output="mem_18194x9_sp.data"/>
530 <direct name="writeen1" input="memory.we1" output="mem_18194x9_sp.we"/>
531 <direct name="dataout1" input="mem_18194x9_sp.out" output="memory.out[8:0]"/>
532 <direct name="clk" input="memory.clk" output="mem_18194x9_sp.clk"/>
533 </interconnect>
534 </mode>
535 </pb_type>
536 </complexblocklist>
537 </architecture>

3.2. Example Architecture Specification 139

Verilog-to-Routing Documentation, Release 8.1.0-dev

140 Chapter 3. FPGA Architecture Description

CHAPTER

FOUR

VPR

VPR (Versatile Place and Route) is an open source academic CAD tool designed for the exploration of new FPGA
architectures and CAD algorithms, at the packing, placement and routing phases of the CAD flow [BR97b, LKJ+09].
Since its public introduction, VPR has been used extensively in many academic projects partly because it is robust,
well documented, easy-to-use, and can flexibly target a range of architectures.

VPR takes, as input, a description of an FPGA architecture along with a technology-mapped user circuit. It then
performs packing, placement, and routing to map the circuit onto the FPGA. The output of VPR includes the FPGA
configuration needed to implement the circuit and statistics about the final mapped design (eg. critical path delay, area,
etc).

Placement (carry chains highlighted) Critical Path

Logical Connections Routing Utilization

Motivation
The study of FPGA CAD and architecture can be a challenging process partly because of the difficulty in conducting
high quality experiments. A quality CAD/architecture experiment requires realistic benchmarks, accurate architectural
models, and robust CAD tools that can appropriately map the benchmark to the particular architecture in question. This
is a lot of work. Fortunately, this work can be made easier if open source tools are available as a starting point.

The purpose of VPR is to make the packing, placement, and routing stages of the FPGA CAD flow robust and flexible
so that it is easier for researchers to investigate future FPGAs.

4.1 Basic flow

The Place and Route process in VPR consists of several steps:

• Packing (combinines primitives into complex blocks)

• Placement (places complex blocks within the FPGA grid)

• Routing (determines interconnections between blocks)

• Analysis (analyzes the implementation)

Each of these steps provides additional configuration options that can be used to customize the whole process.

141

Verilog-to-Routing Documentation, Release 8.1.0-dev

4.1.1 Packing

The packing algorithm tries to combine primitive netlist blocks (e.g. LUTs, FFs) into groups, called Complex Blocks
(as specified in the FPGA architecture file). The results from the packing process are written into a .net file. It contains
a description of complex blocks with their inputs, outputs, used clocks and relations to other signals. It can be useful
in analyzing how VPR packs primitives together.

A detailed description of the .net file format can be found in the Packed Netlist Format (.net) section.

4.1.2 Placement

This step assigns a location to the Complex Blocks (produced by packing) with the FPGA grid, while optimizing for
wirelength and timing. The output from this step is written to the .place file, which contains the physical location of
the blocks from the .net file.

The file has the following format:

block_name x y subblock_number

where x and y are positions in the VPR grid and block_name comes from the .net file.

Example of a placing file:

Netlist_File: top.net Netlist_ID:␣
→˓SHA256:ce5217d251e04301759ee5a8f55f67c642de435b6c573148b67c19c5e054c1f9
Array size: 149 x 158 logic blocks

#block name x y subblk block number
#---------- -- -- ------ ------------
$auto$alumacc.cc:474:replace_alu$24.slice[1].carry4_full 53 32 0 #0
$auto$alumacc.cc:474:replace_alu$24.slice[2].carry4_full 53 31 0 #1
$auto$alumacc.cc:474:replace_alu$24.slice[3].carry4_full 53 30 0 #2
$auto$alumacc.cc:474:replace_alu$24.slice[4].carry4_full 53 29 0 #3
$auto$alumacc.cc:474:replace_alu$24.slice[5].carry4_full 53 28 0 #4
$auto$alumacc.cc:474:replace_alu$24.slice[6].carry4_part 53 27 0 #5
$auto$alumacc.cc:474:replace_alu$24.slice[0].carry4_1st_full 53 33 0 ␣
→˓ #6
out:LD7 9 5 0 #7
clk 42 26 0 #8
$false 35 26 0 #9

A detailed description of the .place file format can be found in the Placement File Format (.place) section.

4.1.3 Routing

This step determines how to connect the placed Complex Blocks together, according to the netlist connectivity and
the routing resources of the FPGA chip. The router uses a Routing Resource (RR) Graph [BRM99] to represent the
FPGA’s available routing resources. The RR graph can be created in two ways:

1. Automatically generated by VPR from the FPGA architecture description [BR00], or

2. Loaded from an external RR graph file.

The output of routing is written into a .route file. The file describes each connection from input to its output through
different routing resources of the FPGA. Each net starts with a SOURCE node and ends in a SINK node, potentially pass-
ing through complex block input/output pins (IPIN/OPIN nodes) and horizontal/vertical routing wires (CHANX/CHANY

142 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

nodes). The pair of numbers in round brackets provides information on the (x, y) resource location on the VPR grid.
The additional field provides information about the specific node.

An example routing file could look as follows:

Placement_File: top.place Placement_ID:␣
→˓SHA256:88d45f0bf7999e3f9331cdfd3497d0028be58ffa324a019254c2ae7b4f5bfa7a
Array size: 149 x 158 logic blocks.

Routing:

Net 0 (counter[4])

Node: 203972 SOURCE (53,32) Class: 40 Switch: 0
Node: 204095 OPIN (53,32) Pin: 40 BLK-TL-SLICEL.CQ[0] Switch: 189
Node: 1027363 CHANY (52,32) Track: 165 Switch: 7
Node: 601704 CHANY (52,32) Track: 240 Switch: 161
Node: 955959 CHANY (52,32) to (52,33) Track: 90 Switch: 130
Node: 955968 CHANY (52,32) Track: 238 Switch: 128
Node: 955976 CHANY (52,32) Track: 230 Switch: 131
Node: 601648 CHANY (52,32) Track: 268 Switch: 7
Node: 1027319 CHANY (52,32) Track: 191 Switch: 183
Node: 203982 IPIN (53,32) Pin: 1 BLK-TL-SLICEL.A2[0] Switch: 0
Node: 203933 SINK (53,32) Class: 1 Switch: -1

Net 1 ($auto$alumacc.cc:474:replace_alu$24.O[6])
...

A detailed description of the .route file format can be found in the Routing File Format (.route) section.

4.1.4 Analysis

This step analyzes the resulting implementation, producing information about:
• Resource usage (e.g. block types, wiring)

• Timing (e.g. critical path delays and timing paths)

• Power (e.g. total power used, power broken down by blocks)

Note that VPR’s analysis can be used independently of VPR’s optimization stages, so long as the appropriate .net/.
place/.route files are available.

4.2 Command-line Options

Placement Critical Path Logical Connections Routing Utilization

4.2. Command-line Options 143

Verilog-to-Routing Documentation, Release 8.1.0-dev

4.2.1 Basic Usage

At a minimum VPR requires two command-line arguments:

vpr architecture circuit

where:

architecture

is an FPGA architecture description file

circuit

is the technology mapped netlist in BLIF format to be implemented

VPR will then pack, place, and route the circuit onto the specified architecture.

By default VPR will perform a binary search routing to find the minimum channel width required to route the circuit.

4.2.2 Detailed Command-line Options

VPR has a lot of options. Running vpr --help will display all the available options and their usage information.

-h, --help

Display help message then exit.

The options most people will be interested in are:

• --route_chan_width (route at a fixed channel width), and

• --disp (turn on/off graphics).

In general for the other options the defaults are fine, and only people looking at how different CAD algorithms perform
will try many of them. To understand what the more esoteric placer and router options actually do, see [BRM99] or
download [BR96a, BR96b, BR97b, MBR00] from the author’s web page.

In the following text, values in angle brackets e.g. <int> <float> <string> <file>, should be replaced by the
appropriate number, string, or file path. Values in curly braces separated by vertical bars, e.g. {on | off}, indicate
all the permissible choices for an option.

Stage Options

VPR runs all stages of (pack, place, route, and analysis) if none of --pack , --place, --route or --analysis are
specified.

--pack

Run packing stage

Default: off
--place

Run placement stage

Default: off
--route

Run routing stage This also implies –analysis if routing was successful.

Default: off

144 Chapter 4. VPR

http://www.eecg.toronto.edu/~vaughn

Verilog-to-Routing Documentation, Release 8.1.0-dev

--analysis

Run final analysis stage (e.g. timing, power).

Default: off

Graphics Options

--disp {on | off}

Controls whether VPR’s interactive graphics are enabled. Graphics are very useful for inspecting and debugging
the FPGA architecture and/or circuit implementation.

Default: off
--auto <int>

Can be 0, 1, or 2. This sets how often you must click Proceed to continue execution after viewing the graphics.
The higher the number, the more infrequently the program will pause.

Default: 1
--save_graphics {on | off}

If set to on, this option will save an image of the final placement and the final routing created by vpr to pdf files
on disk, with no need for any user interaction. The files are named vpr_placement.pdf and vpr_routing.pdf.

Default: off
--graphics_commands <string>

A set of semi-colon seperated graphics commands. Graphics commands must be surrounded by quotation marks
(e.g. –graphics_commands “save_graphics place.png;”)

• save_graphics <file>
Saves graphics to the specified file (.png/.pdf/ .svg). If <file> contains {i}, it will be replaced with
an integer which increments each time graphics is invoked.

• set_macros <int>
Sets the placement macro drawing state

• set_nets <int>
Sets the net drawing state

• set_cpd <int>
Sets the criticla path delay drawing state

• set_routing_util <int>
Sets the routing utilization drawing state

• set_clip_routing_util <int>
Sets whether routing utilization values are clipped to [0., 1.]. Useful when a consistent scale is
needed across images

• set_draw_block_outlines <int>
Sets whether blocks have an outline drawn around them

• set_draw_block_text <int>
Sets whether blocks have label text drawn on them

• set_draw_block_internals <int>
Sets the level to which block internals are drawn

• set_draw_net_max_fanout <int>
Sets the maximum fanout for nets to be drawn (if fanout is beyond this value the net will not be
drawn)

• set_congestion <int>
Sets the routing congestion drawing state

• exit <int>
Exits VPR with specified exit code

Example:

4.2. Command-line Options 145

Verilog-to-Routing Documentation, Release 8.1.0-dev

"save_graphics place.png; \
set_nets 1; save_graphics nets1.png;\
set_nets 2; save_graphics nets2.png; set_nets 0;\
set_cpd 1; save_graphics cpd1.png; \
set_cpd 3; save_graphics cpd3.png; set_cpd 0; \
set_routing_util 5; save_graphics routing_util5.png; \
set_routing_util 0; \
set_congestion 1; save_graphics congestion1.png;"

The above toggles various graphics settings (e.g. drawing nets, drawing critical path) and then saves the results
to .png files.

Note that drawing state is reset to its previous state after these commands are invoked.

Like the interactive graphics :option`<–disp>` option, the --auto option controls how often the commands
specified with this option are invoked.

General Options

--version

Display version information then exit.

--device <string>

Specifies which device layout/floorplan to use from the architecture file.

auto uses the smallest device satisfying the circuit’s resource requirements. Other values are assumed to be the
names of device layouts defined in the FPGA Grid Layout section of the architecture file.

Note: If the architecture contains both <auto_layout> and <fixed_layout> specifications, specifying an
auto device will use the <auto_layout>.

Default: auto
-j, --num_workers <int>

Controls how many parallel workers VPR may use:
• 1 implies VPR will execute serially,
• >1 implies VPR may execute in parallel with up to the specified concurency
• 0 implies VPR may execute with up to the maximum concurrency supported by the host machine

If this option is not specified it may be set from the VPR_NUM_WORKERS environment variable; otherwise the
default is used.

Note: To compile VPR to allow the usage of parallel workers, libtbb-dev must be installed in the system.

Default: 1
--timing_analysis {on | off}

Turn VPR timing analysis off. If it is off, you don’t have to specify the various timing analysis parameters in the
architecture file.

Default: on

146 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

--echo_file {on | off}

Generates echo files of key internal data structures. These files are generally used for debugging vpr, and typically
end in .echo

Default: off
--verify_file_digests {on | off}

Checks that any intermediate files loaded (e.g. previous packing/placement/routing) are consistent with the cur-
rent netlist/architecture.

If set to on will error if any files in the upstream dependancy have been modified. If set to off will warn if any
files in the upstream dependancy have been modified.

Default: on
--target_utilization <float>

Sets the target device utilization. This corresponds to the maximum target fraction of device grid-tiles to be used.
A value of 1.0 means the smallest device (which fits the circuit) will be used.

Default: 1.0
--constant_net_method {global | route}

Specifies how constant nets (i.e. those driven to a constant value) are handled:
• global: Treat constant nets as globals (not routed)

• route: Treat constant nets as normal nets (routed)

Default: global
--clock_modeling {ideal | route | dedicated_network}

Specifies how clock nets are handled:
• ideal: Treat clock pins as ideal (i.e. no routing delays on clocks)

• route: Treat clock nets as normal nets (i.e. routed using inter-block routing)

• dedicated_network: Use the architectures dedicated clock network (experimental)

Default: ideal
--two_stage_clock_routing {on | off}

Routes clock nets in two stages using a dedicated clock network.
• First stage: From the net source (e.g. an I/O pin) to a dedicated clock network root (e.g. center of chip)
• Second stage: From the clock network root to net sinks.

Note this option only works when specifying a clock architecture, see Clock Architecture Format; it does not
work when reading a routing resource graph (i.e. --read_rr_graph).

Default: off
--exit_before_pack {on | off}

Causes VPR to exit before packing starts (useful for statistics collection).

Default: off
--strict_checks {on, off}

Controls whether VPR enforces some consistency checks strictly (as errors) or treats them as warnings.

Usually these checks indicate an issue with either the targetted architecture, or consistency issues with VPR’s
internal data structures/algorithms (possibly harming optimization quality). In specific circumstances on specific
architectures these checks may be too restrictive and can be turned off.

4.2. Command-line Options 147

Verilog-to-Routing Documentation, Release 8.1.0-dev

Warning: Exercise extreme caution when turning this option off – be sure you completely understand why
the issue is being flagged, and why it is OK to treat as a warning instead of an error.

Default: on
--terminate_if_timing_fails {on, off}

Controls whether VPR should terminate if timing is not met after routing.

Default: off

Filename Options

VPR by default appends .blif, .net, .place, and .route to the circuit name provided by the user, and looks for an SDC
file in the working directory with the same name as the circuit. Use the options below to override this default naming
behaviour.

--circuit_file <file>

Path to technology mapped user circuit in BLIF format.

Note: If specified the circuit positional argument is treated as the circuit name.

See also:
--circuit_format

--circuit_format {auto | blif | eblif}

File format of the input technology mapped user circuit.
• auto: File format inferred from file extension (e.g. .blif or .eblif)
• blif: Strict structural BLIF
• eblif: Structural BLIF with extensions

Default: auto
--net_file <file>

Path to packed user circuit in net format.

Default: circuit.net

--place_file <file>

Path to final placement file.

Default: circuit.place

--route_file <file>

Path to final routing file.

Default: circuit.route

--sdc_file <file>

Path to SDC timing constraints file.

If no SDC file is found default timing constraints will be used.

Default: circuit.sdc

148 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

--write_rr_graph <file>

Writes out the routing resource graph generated at the last stage of VPR in the RR Graph file format. The output
can be read into VPR using --read_rr_graph .

<file> describes the filename for the generated routing resource graph. Accepted extensions are .xml and .bin
to write the graph in XML or binary (Cap’n Proto) format.

--read_rr_graph <file>

Reads in the routing resource graph named <file> loads it for use during the placement and routing stages. Expects
a file extension of either .xml or .bin.

The routing resource graph overthrows all the architecture definitions regarding switches, nodes, and edges. Other
information such as grid information, block types, and segment information are matched with the architecture
file to ensure accuracy.

The file can be obtained through --write_rr_graph .

See also:
Routing Resource XML File.

--read_vpr_constraints <file>

Reads the floorplanning constraints that packing and placement must respect from the specified XML file.

--write_vpr_constraints <file>

Writes out new floorplanning constraints based on current placement to the specified XML file.

--read_router_lookahead <file>

Reads the lookahead data from the specified file instead of computing it. Expects a file extension of either .capnp
or .bin.

--write_router_lookahead <file>

Writes the lookahead data to the specified file. Accepted file extensions are .capnp, .bin, and .csv.

--read_placement_delay_lookup <file>

Reads the placement delay lookup from the specified file instead of computing it. Expects a file extension of
either .capnp or .bin.

--write_placement_delay_lookup <file>

Writes the placement delay lookup to the specified file. Expects a file extension of either .capnp or .bin.

--write_initial_place_file <file>

Writes out the the placement chosen by the initial placement algorithm to the specified file.

--outfile_prefix <string>

Prefix for output files

Netlist Options

By default VPR will remove buffer LUTs, and iteratively sweep the netlist to remove unused primary inputs/outputs,
nets and blocks, until nothing else can be removed.

--absorb_buffer_luts {on | off}

Controls whether LUTs programmed as wires (i.e. implementing logical identity) should be absorbed into the
downstream logic.

Usually buffer LUTS are introduced in BLIF circuits by upstream tools in order to rename signals (like assign
statements in Verilog). Absorbing these buffers reduces the number of LUTs required to implement the circuit.

4.2. Command-line Options 149

Verilog-to-Routing Documentation, Release 8.1.0-dev

Ocassionally buffer LUTs are inserted for other purposes, and this option can be used to preserve them. Disabling
buffer absorption can also improve the matching between the input and post-synthesis netlist/SDF.

Default: on
--const_gen_inference {none | comb | comb_seq}

Controls how constant generators are inferred/detected in the input circuit. Constant generators and the signals
they drive are not considered during timing analysis.

• none: No constant generator inference will occur. Any signals which are actually constants will be treated
as non-constants.

• comb: VPR will infer constant generators from combinational blocks with no non-constant inputs (always
safe).

• comb_seq: VPR will infer constant generators from combinational and sequential blocks with only con-
stant inputs (usually safe).

Note: In rare circumstances comb_seq could incorrectly identify certain blocks as constant generators. This
would only occur if a sequential netlist primitive has an internal state which evolves completely independently of
any data input (e.g. a hardened LFSR block, embedded thermal sensor).

Default: comb_seq
--sweep_dangling_primary_ios {on | off}

Controls whether the circuits dangling primary inputs and outputs (i.e. those who do not drive, or are not driven
by anything) are swept and removed from the netlist.

Disabling sweeping of primary inputs/outputs can improve the matching between the input and post-synthesis
netlists. This is often useful when performing formal verification.

See also:
--sweep_constant_primary_outputs

Default: on
--sweep_dangling_nets {on | off}

Controls whether dangling nets (i.e. those who do not drive, or are not driven by anything) are swept and removed
from the netlist.

Default: on
--sweep_dangling_blocks {on | off}

Controls whether dangling blocks (i.e. those who do not drive anything) are swept and removed from the netlist.

Default: on
--sweep_constant_primary_outputs {on | off}

Controls whether primary outputs driven by constant values are swept and removed from the netlist.

See also:
--sweep_dangling_primary_ios

Default: off
--netlist_verbosity <int>

Controls the verbosity of netlist processing (constant generator detection, swept netlist components). High values
produce more detailed output.

Default: 1

150 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Packing Options

AAPack is the packing algorithm built into VPR. AAPack takes as input a technology-mapped blif netlist consisting
of LUTs, flip-flops, memories, mulitpliers, etc and outputs a .net formatted netlist composed of more complex logic
blocks. The logic blocks available on the FPGA are specified through the FPGA architecture file. For people not
working on CAD, you can probably leave all the options to their default values.

--connection_driven_clustering {on | off}

Controls whether or not AAPack prioritizes the absorption of nets with fewer connections into a complex logic
block over nets with more connections.

Default: on
--allow_unrelated_clustering {on | off | auto}

Controls whether primitives with no attraction to a cluster may be packed into it.

Unrelated clustering can increase packing density (decreasing the number of blocks required to implement the
circuit), but can significantly impact routability.

When set to auto VPR automatically decides whether to enable unrelated clustring based on the targetted device
and achieved packing density.

Default: auto
--alpha_clustering <float>

A parameter that weights the optimization of timing vs area.

A value of 0 focuses solely on area, a value of 1 focuses entirely on timing.

Default: 0.75
--beta_clustering <float>

A tradeoff parameter that controls the optimization of smaller net absorption vs. the optimization of signal
sharing.

A value of 0 focuses solely on signal sharing, while a value of 1 focuses solely on absorbing smaller nets into a
cluster. This option is meaningful only when connection_driven_clustering is on.

Default: 0.9
--timing_driven_clustering {on|off}

Controls whether or not to do timing driven clustering

Default: on
--cluster_seed_type {blend | timing | max_inputs}

Controls how the packer chooses the first primitive to place in a new cluster.

timing means that the unclustered primitive with the most timing-critical connection is used as the seed.

max_inputs means the unclustered primitive that has the most connected inputs is used as the seed.

blend uses a weighted sum of timing criticality, the number of tightly coupled blocks connected to the primitive,
and the number of its external inputs.

max_pins selects primitives with the most number of pins (which may be used, or unused).

max_input_pins selects primitives with the most number of input pins (which may be used, or unused).

blend2 An alternative blend formulation taking into account both used and unused pin counts, number of tightly
coupled blocks and criticality.

Default: blend2 if timing_driven_clustering is on; max_inputs otherwise.

4.2. Command-line Options 151

Verilog-to-Routing Documentation, Release 8.1.0-dev

--clustering_pin_feasibility_filter {on | off}

Controls whether the pin counting feasibility filter is used during clustering. When enabled the clustering engine
counts the number of available pins in groups/classes of mutually connected pins within a cluster. These counts
are used to quickly filter out candidate primitives/atoms/molecules for which the cluster has insufficient pins to
route (without performing a full routing). This reduces packing run-time.

Default: on
--balance_block_type_utilization {on, off, auto}

Controls how the packer selects the block type to which a primitive will be mapped if it can potentially map to
multiple block types.

• on : Try to balance block type utilization by picking the block type with the (currenty) lowest utilization.
• off : Do not try to balance block type utilization
• auto: Dynamically enabled/disabled (based on density)

Default: auto
--target_ext_pin_util { auto | <float> | <float>,
<float> | <string>:<float> | <string>:<float>,<float> }

Sets the external pin utilization target (fraction between 0.0 and 1.0) during clustering. This determines how
many pin the clustering engine will aim to use in a given cluster before closing it and opening a new cluster.

Setting this to 1.0 guides the packer to pack as densely as possible (i.e. it will keep adding molecules to the
cluster until no more can fit). Setting this to a lower value will guide the packer to pack less densely, and instead
creating more clusters. In the limit setting this to 0.0 will cause the packer to create a new cluster for each
molecule.

Typically packing less densely improves routability, at the cost of using more clusters.

This option can take several different types of values:
• auto VPR will automatically determine appropriate target utilizations.
• <float> specifies the target input pin utilization for all block types.

For example:

– 0.7 specifies that all blocks should aim for 70% input pin utilization.
• <float>,<float> specifies the target input and output pin utilizations respectively for all block types.

For example:

– 0.7,0.9 specifies that all blocks should aim for 70% input pin utilization, and 90%
output pin utilization.

• <string>:<float> and <string>:<float>,<float> specify the target pin utilizations for a specific
block type (as above).

For example:

– clb:0.7 specifies that only clb type blocks should aim for 70% input pin utilization.

– clb:0.7,0.9 specifies that only clb type blocks should aim for 70% input pin utiliza-
tion, and 90% output pin utilization.

Note: If a pin utilization target is unspecified it defaults to 1.0 (i.e. 100% utilization).

For example:
• 0.7 leaves the output pin utilization unspecified, which is equivalent to 0.7,1.0.
• clb:0.7,0.9 leaves the pin utilizations for all other block types unspecified, so they will assume a default

utilization of 1.0,1.0.

This option can also take multiple space-separated values. For example:

152 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

--target_ext_pin_util clb:0.5 dsp:0.9,0.7 0.8

would specify that clb blocks use a target input pin utilization of 50%, dsp blocks use a targets of 90% and 70%
for inputs and outputs respectively, and all other blocks use an input pin utilization target of 80%.

Note: This option is only a guideline. If a molecule (e.g. a carry-chain with many inputs) would not otherwise
fit into a cluster type at the specified target utilization the packer will fallback to using all pins (i.e. a target
utilization of 1.0).

Note: This option requires --clustering_pin_feasibility_filter to be enabled.

Default: auto
--pack_prioritize_transitive_connectivity {on | off}

Controls whether transitive connectivity is prioritized over high-fanout connectivity during packing.

Default: on
--pack_high_fanout_threshold {auto | <int> | <string>:<int>}

Defines the threshold for high fanout nets within the packer.

This option can take several different types of values:
• auto VPR will automatically determine appropriate thresholds.
• <int> specifies the fanout threshold for all block types.

For example:

– 64 specifies that a threshold of 64 should be used for all blocks.
• <string>:<float> specifies the the threshold for a specific block type.

For example:

– clb:16 specifies that clb type blocks should use a threshold of 16.
This option can also take multiple space-separated values. For example:

--pack_high_fanout_threshold 128 clb:16

would specify that clb blocks use a threshold of 16, while all other blocks (e.g. DSPs/RAMs) would use a
threshold of 128.

Default: auto
--pack_transitive_fanout_threshold <int>

Packer transitive fanout threshold.

Default: 4
--pack_feasible_block_array_size <int>

This value is used to determine the max size of the priority queue for candidates that pass the early filter legality
test but not the more detailed routing filter.

Default: 30
--pack_verbosity <int>

Controls the verbosity of clustering output. Larger values produce more detailed output, which may be useful
for debugging architecture packing problems.

Default: 2

4.2. Command-line Options 153

Verilog-to-Routing Documentation, Release 8.1.0-dev

--write_block_usage <file>

Writes out to the file under path <file> cluster-level block usage summary in machine readable (JSON or XML)
or human readable (TXT) format. Format is selected based on the extension of <file>.

Placer Options

The placement engine in VPR places logic blocks using simulated annealing. By default, the automatic annealing
schedule is used [BR97b, BRM99]. This schedule gathers statistics as the placement progresses, and uses them to
determine how to update the temperature, when to exit, etc. This schedule is generally superior to any user-specified
schedule. If any of init_t, exit_t or alpha_t is specified, the user schedule, with a fixed initial temperature, final temper-
ature and temperature update factor is used.

See also:
Timing-Driven Placer Options

--seed <int>

Sets the initial random seed used by the placer.

Default: 1
--enable_timing_computations {on | off}

Controls whether or not the placement algorithm prints estimates of the circuit speed of the placement it generates.
This setting affects statistics output only, not optimization behaviour.

Default: on if timing-driven placement is specified, off otherwise.

--inner_num <float>

The number of moves attempted at each temperature in placement can be calculated from inner_num scaled with
circuit size or device-circuit size as specified in place_effort_scaling.

Changing inner_num is the best way to change the speed/quality tradeoff of the placer, as it leaves the highly-
efficient automatic annealing schedule on and simply changes the number of moves per temperature.

Specifying -inner_num 10 will slow the placer by a factor of 10 while typically improving placement quality
only by 10% or less (depends on the architecture). Hence users more concerned with quality than CPU time may
find this a more appropriate value of inner_num.

Default: 0.5
--place_effort_scaling {circuit | device_circuit}

Controls how the number of placer moves level scales with circuit and device size:
• circuit: The number of moves attempted at each temperature is inner_num * num_blocks^(4/3) in the

circuit.
• device_circuit: The number of moves attempted at each temperature is inner_num * grid_size^(2/3)

* num_blocks^(4/3) in the circuit.
The number of blocks in a circuit is the number of pads plus the number of clbs.

Default: circuit
--init_t <float>

The starting temperature of the anneal for the manual annealing schedule.

Default: 100.0
--exit_t <float>

The manual anneal will terminate when the temperature drops below the exit temperature.

Default: 0.01

154 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

--alpha_t <float>

The temperature is updated by multiplying the old temperature by alpha_t when the manual annealing schedule
is enabled.

Default: 0.8
--fix_pins {free | random}

Controls how the placer handles I/O pads during placement.
• free: The placer can move I/O locations to optimize the placement.
• random: Fixes I/O pads to arbitrary locations and does not allow the placer to move them during the anneal

(models the effect of poor board-level I/O constraints).
Note: the fix_pins option also used to accept a third argument - a place file that specified where I/O pins should
be placed. This argument is no longer accepted by fix_pins. Instead, the fix_clusters option can now be used to
lock down I/O pins.

Default: free.

--fix_clusters {<file.place>}

Controls how the placer handles blocks (of any type) during placement.
• <file.place>: A path to a file listing the desired location of blocks in the netlist.

This place location file is in the same format as a normal placement file, but does not require the first two lines
which are normally at the top of a placement file that specify the netlist file, netlist ID, and array size.

Default: ````.
--place_algorithm {bounding_box | criticality_timing | slack_timing}

Controls the algorithm used by the placer.

bounding_box Focuses purely on minimizing the bounding box wirelength of the circuit. Turns off timing
analysis if specified.

criticality_timing Focuses on minimizing both the wirelength and the connection timing costs (criticality
* delay).

slack_timing Focuses on improving the circuit slack values to reduce critical path delay.

Default: criticality_timing
--place_quench_algorithm {bounding_box | criticality_timing | slack_timing}

Controls the algorithm used by the placer during placement quench. The algorithm options have identi-
cal functionality as the ones used by the option --place_algorithm. If specified, it overrides the option
--place_algorithm during placement quench.

Default: criticality_timing
--place_bounding_box_mode {auto_bb | cube_bb | per_layer_bb}

Specifies the type of the wirelength estimator used during placement. For single layer architectures, cube_bb (a
3D bounding box) is always used (and is the same as per_layer_bb). For 3D architectures, cube_bb is appropriate
if you can cross between layers at switch blocks, while if you can only cross between layers at output pins
per_layer_bb (one bouding box per layer) is more accurate and appropriate.

auto_bb: The bounding box type is determined automatically based on the cross-layer connections.

cube_bb: cube_bb bounding box is used to estimate the wirelength.

per_layer_bb: per_layer_bb bounding box is used to estimate the wirelength

Default: auto_bb

4.2. Command-line Options 155

Verilog-to-Routing Documentation, Release 8.1.0-dev

--place_chan_width <int>

Tells VPR how many tracks a channel of relative width 1 is expected to need to complete routing of this circuit.
VPR will then place the circuit only once, and repeatedly try routing the circuit as usual.

Default: 100
--place_rlim_escape <float>

The fraction of moves which are allowed to ignore the region limit. For example, a value of 0.1 means 10% of
moves are allowed to ignore the region limit.

Default: 0.0
Setting any of the following 5 options selects Dusty’s annealing schedule .

--alpha_min <float>

The minimum (starting) update factor (alpha) used. Ranges between 0 and alpha_max.

Default: 0.2
--alpha_max <float>

The maximum (stopping) update factor (alpha) used after which simulated annealing will complete. Ranges
between alpha_min and 1.

Default: 0.9
--alpha_decay <float>

The rate at which alpha will approach 1: alpha(n) = 1 - (1 - alpha(n-1)) * alpha_decay Ranges between 0 and 1.

Default: 0.7
--anneal_success_min <float>

The minimum success ratio after which the temperature will reset to maintain the target success ratio. Ranges
between 0 and anneal_success_target.

Default: 0.1
--anneal_success_target <float>

The temperature after each reset is selected to keep this target success ratio. Ranges between an-
neal_success_target and 1.

Default: 0.25
--place_cost_exp <float>

Wiring cost is divided by the average channel width over a net’s bounding box taken to this exponent. Only
impacts devices with different channel widths in different directions or regions.

Default: 1
--RL_agent_placement {on | off}

Uses a Reinforcement Learning (RL) agent in choosing the appropiate move type in placement. It activates the
RL agent placement instead of using a fixed probability for each move type.

Default: on
--place_agent_multistate {on | off}

Enable a multistate agent in the placement. A second state will be activated late in the annealing and in the
Quench that includes all the timing driven directed moves.

Default: on
--place_agent_algorithm {e_greedy | softmax}

Controls which placement RL agent is used.

Default: softmax

156 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

--place_agent_epsilon <float>

Placement RL agent’s epsilon for the epsilon-greedy agent. Epsilon represents the percentage of exploration
actions taken vs the exploitation ones.

Default: 0.3
--place_agent_gamma <float>

Controls how quickly the agent’s memory decays. Values between [0., 1.] specify the fraction of weight in the
exponentially weighted reward average applied to moves which occured greater than moves_per_temp moves
ago. Values < 0 cause the unweighted reward sample average to be used (all samples are weighted equally)

Default: 0.05
--place_reward_fun {basic | nonPenalizing_basic | runtime_aware | WLbiased_runtime_aware}

The reward function used by the placement RL agent to learn the best action at each anneal stage.

Note: The latter two are only available for timing-driven placement.

Default: WLbiased_runtime_aware
--place_agent_space {move_type | move_block_type}

The RL Agent exploration space can be either based on only move types or also consider different block types
moved.

Default: move_block_type
--placer_debug_block <int>

Note: This option is likely only of interest to developers debugging the placement algorithm

Controls which block the placer produces detailed debug information for.

If the block being moved has the same ID as the number assigned to this parameter, the placer will print debugging
information about it.

• For values >= 0, the value is the block ID for which detailed placer debug information should be produced.
• For value == -1, detailed placer debug information is produced for all blocks.
• For values < -1, no placer debug output is produced.

Warning: VPR must have been compiled with VTR_ENABLE_DEBUG_LOGGING on to get any debug
output from this option.

Default: -2
--placer_debug_net <int>

Note: This option is likely only of interest to developers debugging the placement algorithm

Controls which net the placer produces detailed debug information for.

If a net with the same ID assigned to this parameter is connected to the block that is being moved, the placer will
print debugging information about it.

• For values >= 0, the value is the net ID for which detailed placer debug information should be produced.
• For value == -1, detailed placer debug information is produced for all nets.
• For values < -1, no placer debug output is produced.

4.2. Command-line Options 157

Verilog-to-Routing Documentation, Release 8.1.0-dev

Warning: VPR must have been compiled with VTR_ENABLE_DEBUG_LOGGING on to get any debug
output from this option.

Default: -2

Timing-Driven Placer Options

The following options are only valid when the placement engine is in timing-driven mode (timing-driven placement is
used by default).

--timing_tradeoff <float>

Controls the trade-off between bounding box minimization and delay minimization in the placer.

A value of 0 makes the placer focus completely on bounding box (wirelength) minimization, while a value of 1
makes the placer focus completely on timing optimization.

Default: 0.5
--recompute_crit_iter <int>

Controls how many temperature updates occur before the placer performs a timing analysis to update its estimate
of the criticality of each connection.

Default: 1
--inner_loop_recompute_divider <int>

Controls how many times the placer performs a timing analysis to update its criticality estimates while at a single
temperature.

Default: 0
--quench_recompute_divider <int>

Controls how many times the placer performs a timing analysis to update its criticality estimates during a quench.
If unspecified, uses the value from –inner_loop_recompute_divider.

Default: 0
--td_place_exp_first <float>

Controls how critical a connection is considered as a function of its slack, at the start of the anneal.

If this value is 0, all connections are considered equally critical. If this value is large, connections with small
slacks are considered much more critical than connections with small slacks. As the anneal progresses, the
exponent used in the criticality computation gradually changes from its starting value of td_place_exp_first to its
final value of --td_place_exp_last.

Default: 1.0
--td_place_exp_last <float>

Controls how critical a connection is considered as a function of its slack, at the end of the anneal.

See also:
--td_place_exp_first

Default: 8.0
--place_delay_model {delta, delta_override}

Controls how the timing-driven placer estimates delays.
• delta The router is used to profile delay from various locations in the grid for various differences in

position

158 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

• delta_override Like delta but also includes special overrides to ensure effects of direct connects be-
tween blocks are accounted for. This is potentially more accurate but is more complex and depending on
the architecture (e.g. number of direct connects) may increase place run-time.

Default: delta
--place_delay_model_reducer {min, max, median, arithmean, geomean}

When calculating delta delays for the placment delay model how are multiple values combined?

Default: min
--place_delay_offset <float>

A constant offset (in seconds) applied to the placer’s delay model.

Default: 0.0
--place_delay_ramp_delta_threshold <float>

The delta distance beyond which –place_delay_ramp is applied. Negative values disable the placer delay ramp.

Default: -1
--place_delay_ramp_slope <float>

The slope of the ramp (in seconds per grid tile) which is applied to the placer delay model for delta distance
beyond --place_delay_ramp_delta_threshold .

Default: 0.0e-9
--place_tsu_rel_margin <float>

Specifies the scaling factor for cell setup times used by the placer. This effectively controls whether the placer
should try to achieve extra margin on setup paths. For example a value of 1.1 corresponds to requesting 10%%
setup margin.

Default: 1.0
--place_tsu_abs_margin <float>

Specifies an absolute offest added to cell setup times used by the placer. This effectively controls whether the
placer should try to achieve extra margin on setup paths. For example a value of 500e-12 corresponds to request-
ing an extra 500ps of setup margin.

Default: 0.0
--post_place_timing_report <file>

Name of the post-placement timing report file to generate (not generated if unspecfied).

NoC Options

The following options are only used when FPGA device and netlist contain a NoC router.

--noc {on | off}

Enables a NoC-driven placer that optimizes the placement of routers on the NoC. Also, it enables an option in
the graphical display that can be used to display the NoC on the FPGA.

Default: off
--noc_flows_file <file>

XML file containing the list of traffic flows within the NoC (communication between routers).

Note: noc_flows_file are required to specify if NoC optimization is turned on (–noc on).

4.2. Command-line Options 159

Verilog-to-Routing Documentation, Release 8.1.0-dev

--noc_routing_algorithm {xy_routing | bfs_routing}

Controls the algorithm used by the NoC to route packets.
• xy_routing Uses the direction oriented routing algorithm. This is recommended to be used with mesh

NoC topologies.
• bfs_routing Uses the breadth first search algorithm. The objective is to find a route that uses a minimum

number of links. This can be used with any NoC topology.
Default: bfs_routing

--noc_placement_weighting <float>

Controls the importance of the NoC placement parameters relative to timing and wirelength of the design.
• noc_placement_weighting = 0 means the placement is based solely on timing and wirelength.
• noc_placement_weighting = 1 means noc placement is considered equal to timing and wirelength.
• noc_placement_weighting > 1 means the placement is increasingly dominated by NoC parameters.

Default: 0.6
--noc_latency_constraints_weighting <float>

Controls the importance of meeting all the NoC traffic flow latency constraints.
• latency_constraints = 0 means the latency constraints have no relevance to placement.
• 0 < latency_constraints < 1 means the latency constraints are weighted equally to the sum of other

placement cost components.
• latency_constraints > 1 means the placement is increasingly dominated by reducing the latency

constraints of the traffic flows.
Default: 1

--noc_latency_weighting <float>

Controls the importance of reducing the latencies of the NoC traffic flows. This value can be >=0,
• latency = 0 means the latencies have no relevance to placement.
• 0 < latency < 1 means the latencies are weighted equally to the sum of other placement cost compo-

nents.
• latency > 1means the placement is increasingly dominated by reducing the latencies of the traffic flows.

Default: 0.05
--noc_swap_percentage <float>

Sets the minimum fraction of swaps attempted by the placer that are NoC blocks. This value is an integer ranging
from [0-100].

• 0 means NoC blocks will be moved at the same rate as other blocks.
• 100 means all swaps attempted by the placer are NoC router blocks.

Default: 40
--noc_placement_file_name <file>

Name of the output file that contains the NoC placement information.

Default: vpr_noc_placement_output.txt

Router Options

VPR uses a negotiated congestion algorithm (based on Pathfinder) to perform routing.

Note: By default the router performs a binary search to find the minimum routable channel width. To route at a fixed
channel width use --route_chan_width .

See also:
Timing-Driven Router Options

160 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

--flat_routing {on | off}

If this option is enabled, the run-flat router is used instead of the two-stage router. This means that during
the routing stage, all nets, both intra- and inter-cluster, are routed directly from one primitive pin to another
primitive pin. This increases routing time but can improve routing quality by re-arranging LUT inputs and
exposing additional optimization opportunities in architectures with local intra-cluster routing that is not a full
crossbar.

Default: ``OFF`

--max_router_iterations <int>

The number of iterations of a Pathfinder-based router that will be executed before a circuit is declared unrouteable
(if it hasn’t routed successfully yet) at a given channel width.

Speed-quality trade-off: reducing this number can speed up the binary search for minimum channel width, but
at the cost of some increase in final track count. This is most effective if -initial_pres_fac is simultaneously
increased. Increase this number to make the router try harder to route heavily congested designs.

Default: 50
--first_iter_pres_fac <float>

Similar to --initial_pres_fac. This sets the present overuse penalty factor for the very first routing iteration.
--initial_pres_fac sets it for the second iteration.

Note: A value of 0.0 causes congestion to be ignored on the first routing iteration.

Default: 0.0
--initial_pres_fac <float>

Sets the starting value of the present overuse penalty factor.

Speed-quality trade-off: increasing this number speeds up the router, at the cost of some increase in final track
count. Values of 1000 or so are perfectly reasonable.

Default: 0.5
--pres_fac_mult <float>

Sets the growth factor by which the present overuse penalty factor is multiplied after each router iteration.

Default: 1.3
--acc_fac <float>

Specifies the accumulated overuse factor (historical congestion cost factor).

Default: 1
--bb_factor <int>

Sets the distance (in channels) outside of the bounding box of its pins a route can go. Larger numbers slow the
router somewhat, but allow for a more exhaustive search of possible routes.

Default: 3
--base_cost_type {demand_only | delay_normalized | delay_normalized_length | delay_normalized_frequency | delay_normalized_length_frequency}

Sets the basic cost of using a routing node (resource).
• demand_only sets the basic cost of a node according to how much demand is expected for that type of

node.
• delay_normalized is similar to demand_only, but normalizes all these basic costs to be of the same

magnitude as the typical delay through a routing resource.
• delay_normalized_length like delay_normalized, but scaled by routing resource length.

4.2. Command-line Options 161

Verilog-to-Routing Documentation, Release 8.1.0-dev

• delay_normalized_frequency like delay_normalized, but scaled inversely by routing resource fre-
quency.

• delay_normalized_length_frequency like delay_normalized, but scaled by routing resource
length and scaled inversely by routing resource frequency.

Default: delay_normalized_length
--bend_cost <float>

The cost of a bend. Larger numbers will lead to routes with fewer bends, at the cost of some increase in track
count. If only global routing is being performed, routes with fewer bends will be easier for a detailed router to
subsequently route onto a segmented routing architecture.

Default: 1 if global routing is being performed, 0 if combined global/detailed routing is being performed.

--route_type {global | detailed}

Specifies whether global routing or combined global and detailed routing should be performed.

Default: detailed (i.e. combined global and detailed routing)

--route_chan_width <int>

Tells VPR to route the circuit at the specified channel width.

Note: If the channel width is >= 0, no binary search on channel capacity will be performed to find the minimum
number of tracks required for routing. VPR simply reports whether or not the circuit will route at this channel
width.

Default: -1 (perform binary search for minimum routable channel width)

--min_route_chan_width_hint <int>

Hint to the router what the minimum routable channel width is.

The value provided is used to initialize the binary search for minimum channel width. A good hint may speed-up
the binary search by avoiding time spent at congested channel widths which are not routable.

The algorithm is robust to incorrect hints (i.e. it continues to binary search), so the hint does not need to be
precise.

This option may ocassionally produce a different minimum channel width due to the different initialization.

See also:
--verify_binary_search

--verify_binary_search {on | off}

Force the router to check that the channel width determined by binary search is the minimum.

The binary search ocassionally may not find the minimum channel width (e.g. due to router sub-optimality, or
routing pattern issues at a particular channel width).

This option attempts to verify the minimum by routing at successively lower channel widths until two consecutive
routing failures are observed.

--router_algorithm {parallel | timing_driven}

Selects which router algorithm to use.

Warning: The parallel router is experimental. (TODO: more explanation)

Default: timing_driven

162 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

--min_incremental_reroute_fanout <int>

Incrementally re-route nets with fanout above the specified threshold.

This attempts to re-use the legal (i.e. non-congested) parts of the routing tree for high fanout nets, with the aim
of reducing router execution time.

To disable, set value to a value higher than the largest fanout of any net.

Default: 16
--max_logged_overused_rr_nodes <int>

Prints the information on overused RR nodes to the VPR log file after the each failed routing attempt.

If the number of overused nodes is above the given threshold N, then only the first N entries are printed to the
logfile.

Default: 20
--generate_rr_node_overuse_report {on | off}

Generates a detailed report on the overused RR nodes’ information: report_overused_nodes.rpt.
This report is generated only when the final routing attempt fails (i.e. the whole routing process has failed).

In addition to the information that can be seen via --max_logged_overused_rr_nodes, this report prints out
all the net ids that are associated with each overused RR node. Also, this report does not place a threshold upon
the number of RR nodes printed.

Default: off
--write_timing_summary <file>

Writes out to the file under path <file> final timing summary in machine readable (JSON or XML) or human
readable (TXT) format. Format is selected based on the extension of <file>. The summary consists of parameters:

• cpd - Final critical path delay (least slack) [ns]
• fmax - Maximal frequency of the implemented circuit [MHz]
• swns - setup Worst Negative Slack (sWNS) [ns]
• stns - Setup Total Negative Slack (sTNS) [ns]

Timing-Driven Router Options

The following options are only valid when the router is in timing-driven mode (the default).

--astar_fac <float>

Sets how aggressive the directed search used by the timing-driven router is.

Values between 1 and 2 are reasonable, with higher values trading some quality for reduced CPU time.

Default: 1.2
--router_profiler_astar_fac <float>

Controls the directedness of the timing-driven router’s exploration when doing router delay profiling of an ar-
chitecture. The router delay profiling step is currently used to calculate the place delay matrix lookup. Values
between 1 and 2 are resonable; higher values trade some quality for reduced run-time.

Default: 1.2
--max_criticality <float>

Sets the maximum fraction of routing cost that can come from delay (vs. coming from routability) for any net.

A value of 0 means no attention is paid to delay; a value of 1 means nets on the critical path pay no attention to
congestion.

4.2. Command-line Options 163

Verilog-to-Routing Documentation, Release 8.1.0-dev

Default: 0.99
--criticality_exp <float>

Controls the delay - routability tradeoff for nets as a function of their slack.

If this value is 0, all nets are treated the same, regardless of their slack. If it is very large, only nets on the critical
path will be routed with attention paid to delay. Other values produce more moderate tradeoffs.

Default: 1.0
--router_init_wirelength_abort_threshold <float>

The first routing iteration wirelength abort threshold. If the first routing iteration uses more than this fraction of
available wirelength routing is aborted.

Default: 0.85
--incremental_reroute_delay_ripup {on | off | auto}

Controls whether incremental net routing will rip-up (and re-route) a critical connection for delay, even if the
routing is legal. auto enables delay-based rip-up unless routability becomes a concern.

Default: auto
--routing_failure_predictor {safe | aggressive | off}

Controls how aggressive the router is at predicting when it will not be able to route successfully, and giving up
early. Using this option can significantly reduce the runtime of a binary search for the minimum channel width.

safe only declares failure when it is extremely unlikely a routing will succeed, given the amount of congestion
existing in the design.

aggressive can further reduce the CPU time for a binary search for the minimum channel width but can increase
the minimum channel width by giving up on some routings that would succeed.

off disables this feature, which can be useful if you suspect the predictor is declaring routing failure too quickly
on your architecture.

See also:
--verify_binary_search

Default: safe
--routing_budgets_algorithm { disable | minimax | scale_delay }

Warning: Experimental

Controls how the routing budgets are created. Routing budgets are used to guid VPR’s routing algorithm to
consider both short path and long path timing constraints [FBC08].

disable is used to disable the budget feature. This uses the default VPR and ignores hold time constraints.

minimax sets the minimum and maximum budgets by distributing the long path and short path slacks depend-
ing on the the current delay values. This uses the routing cost valleys and Minimax-PERT algorithm [FBC08,
YLS92].

scale_delay has the minimum budgets set to 0 and the maximum budgets is set to the delay of a net scaled by
the pin criticality (net delay/pin criticality).

Default: disable

164 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

--save_routing_per_iteration {on | off}

Controls whether VPR saves the current routing to a file after each routing iteration. May be helpful for debug-
ging.

Default: off
--congested_routing_iteration_threshold CONGESTED_ROUTING_ITERATION_THRESHOLD

Controls when the router enters a high effort mode to resolve lingering routing congestion. Value is the fraction
of max_router_iterations beyond which the routing is deemed congested.

Default: 1.0 (never)

--route_bb_update {static, dynamic}

Controls how the router’s net bounding boxes are updated:
• static : bounding boxes are never updated

• dynamic: bounding boxes are updated dynamically as routing progresses (may improve
routability of congested designs)

Default: dynamic
--router_high_fanout_threshold ROUTER_HIGH_FANOUT_THRESHOLD

Specifies the net fanout beyond which a net is considered high fanout. Values less than zero disable special
behaviour for high fanout nets.

Default: 64
--router_lookahead {classic, map}

Controls what lookahead the router uses to calculate cost of completing a connection.
• classic: The classic VPR lookahead

• map: A more advanced lookahead which accounts for diverse wire types and their connectivity

Default: map
--router_max_convergence_count <float>

Controls how many times the router is allowed to converge to a legal routing before halting. If multiple legal
solutions are found the best quality implementation is used.

Default: 1
--router_reconvergence_cpd_threshold <float>

Specifies the minimum potential CPD improvement for which the router will continue to attempt re-convergent
routing.

For example, a value of 0.99 means the router will not give up on reconvergent routing if it thinks a > 1% CPD
reduction is possible.

Default: 0.99
--router_initial_timing {all_critical | lookahead}

Controls how criticality is determined at the start of the first routing iteration.
• all_critical: All connections are considered timing critical.

• lookahead: Connection criticalities are determined from timing analysis assuming (best-
case) connection delays as estimated by the router’s lookahead.

Default: all_critical for the classic --router_lookahead , otherwise lookahead

--router_update_lower_bound_delays {on | off}

Controls whether the router updates lower bound connection delays after the 1st routing iteration.

Default: on

4.2. Command-line Options 165

Verilog-to-Routing Documentation, Release 8.1.0-dev

--router_first_iter_timing_report <file>

Name of the timing report file to generate after the first routing iteration completes (not generated if unspecfied).

--router_debug_net <int>

Note: This option is likely only of interest to developers debugging the routing algorithm

Controls which net the router produces detailed debug information for.
• For values >= 0, the value is the net ID for which detailed router debug information should be produced.
• For value == -1, detailed router debug information is produced for all nets.
• For values < -1, no router debug output is produced.

Warning: VPR must have been compiled with VTR_ENABLE_DEBUG_LOGGING on to get any debug
output from this option.

Default: -2
--router_debug_sink_rr ROUTER_DEBUG_SINK_RR

Note: This option is likely only of interest to developers debugging the routing algorithm

Controls when router debugging is enabled for the specified sink RR.
• For values >= 0, the value is taken as the sink RR Node ID for which to enable router debug output.
• For values < 0, sink-based router debug output is disabled.

Warning: VPR must have been compiled with VTR_ENABLE_DEBUG_LOGGING on to get any debug
output from this option.

Default: -2

Analysis Options

--full_stats

Print out some extra statistics about the circuit and its routing useful for wireability analysis.

Default: off

--gen_post_synthesis_netlist { on | off }

Generates the Verilog and SDF files for the post-synthesized circuit. The Verilog file can be used to perform
functional simulation and the SDF file enables timing simulation of the post-synthesized circuit.

The Verilog file contains instantiated modules of the primitives in the circuit. Currently VPR can generate Verilog
files for circuits that only contain LUTs, Flip Flops, IOs, Multipliers, and BRAMs. The Verilog description
of these primitives are in the primitives.v file. To simulate the post-synthesized circuit, one must include the
generated Verilog file and also the primitives.v Verilog file, in the simulation directory.

See also:
Post-Implementation Timing Simulation

If one wants to generate the post-synthesized Verilog file of a circuit that contains a primitive other than those
mentioned above, he/she should contact the VTR team to have the source code updated. Furthermore to perform

166 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

simulation on that circuit the Verilog description of that new primitive must be appended to the primitives.v file
as a separate module.

Default: off
--gen_post_implementation_merged_netlist { on | off }

This option is based on --gen_post_synthesis_netlist. The difference is that
--gen_post_implementation_merged_netlist generates a single verilog file with
merged top module multi-bit ports of the implemented circuit. The name of the file is
<basename>_merged_post_implementation.v

Default: off
--post_synth_netlist_unconn_inputs { unconnected | nets | gnd | vcc }

Controls how unconnected input cell ports are handled in the post-synthesis netlist
• unconnected: leave unconnected
• nets: connect each unconnected input pin to its own separate undriven net named: __vpr__unconn<ID>,

where <ID> is index assigned to this occurrence of unconnected port in design
• gnd: tie all to ground (1'b0)
• vcc: tie all to VCC (1'b1)

Default: unconnected
--post_synth_netlist_unconn_outputs { unconnected | nets }

Controls how unconnected output cell ports are handled in the post-synthesis netlist
• unconnected: leave unconnected
• nets: connect each unconnected output pin to its own separate undriven net named: __vpr__unconn<ID>,

where <ID> is index assigned to this occurrence of unconnected port in design
Default: unconnected

--timing_report_npaths <int>

Controls how many timing paths are reported.

Note: The number of paths reported may be less than the specified value, if the circuit has fewer paths.

Default: 100
--timing_report_detail { netlist | aggregated | detailed }

Controls the level of detail included in generated timing reports.

We obtained the following results using the k6_frac_N10_frac_chain_mem32K_40nm.xml architecture and mul-
ticlock.blif circuit.

• netlist: Timing reports show only netlist primitive pins.

For example:

#Path 2
Startpoint: FFC.Q[0] (.latch clocked by clk)
Endpoint : out:out1.outpad[0] (.output clocked by virtual_io_clock)
Path Type : setup

Point ␣
→˓Incr Path
--
→˓----------
clock clk (rise edge) 0.
→˓000 0.000

(continues on next page)

4.2. Command-line Options 167

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

clock source latency 0.
→˓000 0.000
clk.inpad[0] (.input) 0.
→˓000 0.000
FFC.clk[0] (.latch) 0.
→˓042 0.042
FFC.Q[0] (.latch) [clock-to-output] 0.
→˓124 0.166
out:out1.outpad[0] (.output) 0.
→˓550 0.717
data arrival time ␣
→˓ 0.717

clock virtual_io_clock (rise edge) 0.
→˓000 0.000
clock source latency 0.
→˓000 0.000
clock uncertainty 0.
→˓000 0.000
output external delay 0.
→˓000 0.000
data required time ␣
→˓ 0.000
--
→˓----------
data required time ␣
→˓ 0.000
data arrival time ␣
→˓ -0.717
--
→˓----------
slack (VIOLATED) ␣
→˓ -0.717

• aggregated: Timing reports show netlist pins, and an aggregated summary of intra-block and inter-block
routing delays.

For example:

#Path 2
Startpoint: FFC.Q[0] (.latch at (3,3) clocked by clk)
Endpoint : out:out1.outpad[0] (.output at (3,4) clocked by virtual_
→˓io_clock)
Path Type : setup

Point ␣
→˓Incr Path
--
→˓----------
clock clk (rise edge) 0.
→˓000 0.000
clock source latency 0.
→˓000 0.000

(continues on next page)

168 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

clk.inpad[0] (.input at (4,2)) 0.
→˓000 0.000
| (intra 'io' routing) 0.
→˓042 0.042
| (inter-block routing) 0.
→˓000 0.042
| (intra 'clb' routing) 0.
→˓000 0.042
FFC.clk[0] (.latch at (3,3)) 0.
→˓000 0.042
| (primitive '.latch' Tcq_max) 0.
→˓124 0.166
FFC.Q[0] (.latch at (3,3)) [clock-to-output] 0.
→˓000 0.166
| (intra 'clb' routing) 0.
→˓045 0.211
| (inter-block routing) 0.
→˓491 0.703
| (intra 'io' routing) 0.
→˓014 0.717
out:out1.outpad[0] (.output at (3,4)) 0.
→˓000 0.717
data arrival time ␣
→˓ 0.717

clock virtual_io_clock (rise edge) 0.
→˓000 0.000
clock source latency 0.
→˓000 0.000
clock uncertainty 0.
→˓000 0.000
output external delay 0.
→˓000 0.000
data required time ␣
→˓ 0.000
--
→˓----------
data required time ␣
→˓ 0.000
data arrival time ␣
→˓ -0.717
--
→˓----------
slack (VIOLATED) ␣
→˓ -0.717

where each line prefixed with | (pipe character) represent a sub-delay of an edge within the
timing graph.

For instance:

FFC.Q[0] (.latch at (3,3)) [clock-to-output] 0.
→˓000 0.166

(continues on next page)

4.2. Command-line Options 169

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

| (intra 'clb' routing) 0.
→˓045 0.211
| (inter-block routing) 0.
→˓491 0.703
| (intra 'io' routing) 0.
→˓014 0.717
out:out1.outpad[0] (.output at (3,4)) 0.
→˓000 0.717

indicates that between the netlist pins FFC.Q[0] and out:out1.outpad[0] there are delays
of:

– 45 ps from the .latch output pin to an output pin of a clb block,

– 491 ps through the general inter-block routing fabric, and

– 14 ps from the input pin of a io block to .output.

Also note that a connection between two pins can be contained within the same clb block,
and does not use the general inter-block routing network. As an example from a completely
different circuit-architecture pair:

n1168.out[0] (.names) 0.
→˓000 0.902
| (intra 'clb' routing) 0.
→˓000 0.902
top^finish_FF_NODE.D[0] (.latch) 0.
→˓000 0.902

• detailed: Like aggregated, the timing reports show netlist pins, and an aggregated summary of intra-
block. In addition, it includes a detailed breakdown of the inter-block routing delays.

It is important to note that detailed timing report can only list the components of a non-global net, other-
wise, it reports inter-block routing as well as an incremental delay of 0, just as in the aggregated and netlist
reports.

For example:

#Path 2
Startpoint: FFC.Q[0] (.latch at (3,3) clocked by clk)
Endpoint : out:out1.outpad[0] (.output at (3,4) clocked by virtual_
→˓io_clock)
Path Type : setup

Point ␣
→˓Incr Path
--
→˓----------
clock clk (rise edge) 0.
→˓000 0.000
clock source latency 0.
→˓000 0.000
clk.inpad[0] (.input at (4,2)) 0.
→˓000 0.000
| (intra 'io' routing) 0.
→˓042 0.042

(continues on next page)

170 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

| (inter-block routing:global net) 0.
→˓000 0.042
| (intra 'clb' routing) 0.
→˓000 0.042
FFC.clk[0] (.latch at (3,3)) 0.
→˓000 0.042
| (primitive '.latch' Tcq_max) 0.
→˓124 0.166
FFC.Q[0] (.latch at (3,3)) [clock-to-output] 0.
→˓000 0.166
| (intra 'clb' routing) 0.
→˓045 0.211
| (OPIN:1479 side:TOP (3,3)) 0.
→˓000 0.211
| (CHANX:2073 unnamed_segment_0 length:1 (3,3)->(2,3)) 0.
→˓095 0.306
| (CHANY:2139 unnamed_segment_0 length:0 (1,3)->(1,3)) 0.
→˓075 0.382
| (CHANX:2040 unnamed_segment_0 length:1 (2,2)->(3,2)) 0.
→˓095 0.476
| (CHANY:2166 unnamed_segment_0 length:0 (2,3)->(2,3)) 0.
→˓076 0.552
| (CHANX:2076 unnamed_segment_0 length:0 (3,3)->(3,3)) 0.
→˓078 0.630
| (IPIN:1532 side:BOTTOM (3,4)) 0.
→˓072 0.703
| (intra 'io' routing) 0.
→˓014 0.717
out:out1.outpad[0] (.output at (3,4)) 0.
→˓000 0.717
data arrival time ␣
→˓ 0.717

clock virtual_io_clock (rise edge) 0.
→˓000 0.000
clock source latency 0.
→˓000 0.000
clock uncertainty 0.
→˓000 0.000
output external delay 0.
→˓000 0.000
data required time ␣
→˓ 0.000
--
→˓----------
data required time ␣
→˓ 0.000
data arrival time ␣
→˓ -0.717
--
→˓----------
slack (VIOLATED) ␣

(continues on next page)

4.2. Command-line Options 171

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓ -0.717

where each line prefixed with | (pipe character) represent a sub-delay of an edge within the
timing graph. In the detailed mode, the inter-block routing has now been replaced by the net
components.

For OPINS and IPINS, this is the format of the name: |
(ROUTING_RESOURCE_NODE_TYPE:ROUTING_RESOURCE_NODE_ID side:SIDE
(START_COORDINATES)->(END_COORDINATES))

For CHANX and CHANY, this is the format of the name: |
(ROUTING_RESOURCE_NODE_TYPE:ROUTING_RESOURCE_NODE_ID SEGMENT_NAME
length:LENGTH (START_COORDINATES)->(END_COORDINATES))

Here is an example of the breakdown:

FFC.Q[0] (.latch at (3,3)) [clock-to-output] 0.
→˓000 0.166
| (intra 'clb' routing) 0.
→˓045 0.211
| (OPIN:1479 side:TOP (3,3)) 0.
→˓000 0.211
| (CHANX:2073 unnamed_segment_0 length:1 (3,3)->(2,3)) 0.
→˓095 0.306
| (CHANY:2139 unnamed_segment_0 length:0 (1,3)->(1,3)) 0.
→˓075 0.382
| (CHANX:2040 unnamed_segment_0 length:1 (2,2)->(3,2)) 0.
→˓095 0.476
| (CHANY:2166 unnamed_segment_0 length:0 (2,3)->(2,3)) 0.
→˓076 0.552
| (CHANX:2076 unnamed_segment_0 length:0 (3,3)->(3,3)) 0.
→˓078 0.630
| (IPIN:1532 side:BOTTOM (3,4)) 0.
→˓072 0.703
| (intra 'io' routing) 0.
→˓014 0.717
out:out1.outpad[0] (.output at (3,4)) 0.
→˓000 0.717

indicates that between the netlist pins FFC.Q[0] and out:out1.outpad[0] there are delays
of:

– 45 ps from the .latch output pin to an output pin of a clb block,

– 0 ps from the clb output pin to the CHANX:2073 wire,

– 95 ps from the CHANX:2073 to the CHANY:2139 wire,

– 75 ps from the CHANY:2139 to the CHANX:2040 wore,

– 95 ps from the CHANX:2040 to the CHANY:2166 wire,

– 76 ps from the CHANY:2166 to the CHANX:2076 wire,

– 78 ps from the CHANX:2076 to the input pin of a io block,

– 14 ps input pin of a io block to .output.

172 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

In the initial description we referred to the existence of global nets, which also occur in this
net:

clk.inpad[0] (.input at (4,2)) 0.
→˓000 0.000
| (intra 'io' routing) 0.
→˓042 0.042
| (inter-block routing:global net) 0.
→˓000 0.042
| (intra 'clb' routing) 0.
→˓000 0.042
FFC.clk[0] (.latch at (3,3)) 0.
→˓000 0.042

Global nets are unrouted nets, and their route trees happen to be null.

Finally, is interesting to note that the consecutive channel components may not seem to con-
nect. There are two types of occurences:

1. The preceding channel’s ending coordinates extend past the following channel’s starting
coordinates (example from a different path):

| (chany:2113 unnamed_segment_0 length:2 (1, 3) -> (1, 1)) 0.
→˓116 0.405
| (chanx:2027 unnamed_segment_0 length:0 (1, 2) -> (1, 2)) 0.
→˓078 0.482

It is possible that by opening a switch between (1,2) to (1,1), CHANY:2113 actually only
extends from (1,3) to (1,2).

1. The preceding channel’s ending coordinates have no relation to the following channel’s
starting coordinates. There is no logical contradiction, but for clarification, it is best to
see an explanation of the VPR coordinate system. The path can also be visualized by
VPR graphics, as an illustration of this point:

Fig. 4.1 shows the routing resources used in Path #2 and their locations on the FPGA.

1. The signal emerges from near the top-right corner of the block to_FFC (OPIN:1479)
and joins the topmost horizontal segment of length 1 (CHANX:2073).

2. The signal proceeds to the left, then connects to the outermost, blue vertical segment of
length 0 (CHANY:2139).

3. The signal continues downward and attaches to the horizontal segment of length 1
(CHANX:2040).

4. Of the aforementioned horizontal segment, after travelling one linear unit to the right,
the signal jumps on a vertical segment of length 0 (CHANY:2166).

5. The signal travels upward and promptly connects to a horizontal segment of length 0
(CHANX:2076).

6. This segment connects to the green destination io (3,4).
• debug: Like detailed, but includes additional VPR internal debug information such as timing graph

node IDs (tnode) and routing SOURCE/SINK nodes.
Default: netlist

--echo_dot_timing_graph_node { string | int }

Controls what subset of the timing graph is echoed to a GraphViz DOT file when vpr --echo_file is enabled.

4.2. Command-line Options 173

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 4.1: Illustration of Path #2 with insight into the coordinate system.

174 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Value can be a string (corresponding to a VPR atom netlist pin name), or an integer representing a timing graph
node ID. Negative values mean the entire timing graph is dumped to the DOT file.

Default: -1
--timing_report_skew { on | off }

Controls whether clock skew timing reports are generated.

Default: off

Power Estimation Options

The following options are used to enable power estimation in VPR.

See also:
Power Estimation for more details.

--power

Enable power estimation

Default: off
--tech_properties <file>

XML File containing properties of the CMOS technology (transistor capacitances, leakage currents, etc). These
can be found at $VTR_ROOT/vtr_flow/tech/, or can be created for a user-provided SPICE technology (see
Power Estimation).

--activity_file <file>

File containing signal activites for all of the nets in the circuit. The file must be in the format:

<net name1> <signal probability> <transition density>
<net name2> <signal probability> <transition density>
...

Instructions on generating this file are provided in Power Estimation.

4.2.3 Command-line Auto Completion

To simplify using VPR on the command-line you can use the dev/vpr_bash_completion.sh script, which will
enable TAB completion for VPR commandline arguments (based on the output of vpr -h).

Simply add:

source $VTR_ROOT/dev/vpr_bash_completion.sh

to your .bashrc. $VTR_ROOT refers to the root of the VTR source tree on your system.

4.2. Command-line Options 175

Verilog-to-Routing Documentation, Release 8.1.0-dev

4.3 Graphics

VPR includes easy-to-use graphics for visualizing both the targetted FPGA architecture, and the circuit VPR has im-
plemented on the architecture.

4.3.1 Enabling Graphics

Compiling with Graphics Support

The build system will attempt to build VPR with graphics support by default.

If all the required libraries are found the build system will report:

-- EZGL: graphics enabled

If the required libraries are not found cmake will report:

-- EZGL: graphics disabled

and list the missing libraries:

-- EZGL: Failed to find required X11 library (on debian/ubuntu try 'sudo apt-get install␣
→˓libx11-dev' to install)
-- EZGL: Failed to find required Xft library (on debian/ubuntu try 'sudo apt-get install␣
→˓libxft-dev' to install)
-- EZGL: Failed to find required fontconfig library (on debian/ubuntu try 'sudo apt-get␣
→˓install fontconfig' to install)
-- EZGL: Failed to find required cairo library (on debian/ubuntu try 'sudo apt-get␣
→˓install libcairo2-dev' to install)

Enabling Graphics at Run-time

When running VPR provide vpr --disp on to enable graphics.

Saving Graphics at Run-time

When running VPR provide vpr --save_graphics on to save an image of the final placement and the final routing
created by vpr to pdf files on disk. The files are named vpr_placement.pdf and vpr_routing.pdf.

A graphical window will now pop up when you run VPR.

176 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

4.3.2 Navigation

• Click on the Zoom-Fit button to get an over-encompassing view of the FPGA architecture.

• Click and drag with the left mouse button to pan the view, or scroll the mouse wheel to zoom in and out.

• Click on the Window button, then on the diagonally opposite corners of a box, to zoom in on a particular area.

• Click on Save under the Misc. tab to save the image on screen to PDF, PNG, or SVG file.

• Done tells VPR to continue with the next step in placing and routing the circuit.

Note: Menu buttons will be greyed out when they are not selectable (e.g. VPR is working).

4.3.3 Visualizing Placement

By default VPR’s graphics displays the FPGA floorplan (block grid) and current placement.

Fig. 4.2: FPGA floorplan (block grid)

If the Placement Macros drop down is set, any placement macros (e.g. carry chains, which require specific relative
placements between some blocks) will be highlighted.

Fig. 4.3: Placement with macros (carry chains) highlighted

4.3. Graphics 177

Verilog-to-Routing Documentation, Release 8.1.0-dev

4.3.4 Visualizing Netlist Connectivity

The Toggle Nets drop-down list under the Net Settings tab toggles the nets in the circuit to be visible/invisible. Options
include Cluster Nets and Primitive Nets.

Fig. 4.4: Toggle Nets drop-down under Net Settings tab

When a placement is being displayed, routing information is not yet known so nets are simply drawn as a “star;” that is,
a straight line is drawn from the net source to each of its sinks. Click on any clb in the display, and it will be highlighted
in green, while its fanin and fanout are highlighted in blue and red, respectively. Once a circuit has been routed the true
path of each net will be shown.

Fig. 4.5: Logical net connectivity during placement

If the nets routing are shown, click on a clb or pad to highlight its fanins and fanouts, or click on a pin or channel wire
to highlight a whole net in magenta. Multiple nets can be highlighted by pressing ctrl + mouse click.

4.3.5 Visualizing the Critical Path

During placement and routing you can click on the Crit. Path drop-down menu under the Misc. tab to visualize the
critical path. Each stage between primitive pins is shown in a different colour.

Fig. 4.6: Crit. Path drop-down list under the Misc. tab

The Crit. Path drop-down will toggle through the various visualizations:

178 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

• During placement the critical path is shown only as flylines.

• During routing the critical path can be shown as both flylines and routed net connections.

Fig. 4.7: Critical Path flylines during placement and routing

4.3.6 Visualizing Routing Architecture

When a routing is on screen, the Routing Options tab provides various options to gain more visual information.

Fig. 4.8: Routing Options

Clicking on Toggle RR lets you to choose between various views of the routing resources available in the FPGA.

Fig. 4.9: Routing Architecture Views

The routing resource view can be very useful in ensuring that you have correctly described your FPGA in the architecture
description file – if you see switches where they shouldn’t be or pins on the wrong side of a clb, your architecture
description needs to be revised.

Wiring segments are drawn in black, input pins are drawn in sky blue, and output pins are drawn in pink. Sinks are
drawn in dark slate blue, and sources in plum. Direct connections between output and input pins are shown in medium
purple. Connections from wiring segments to input pins are shown in sky blue, connections from output pins to wiring
segments are shown in pink, and connections between wiring segments are shown in green. The points at which wiring
segments connect to clb pins (connection box switches) are marked with an x.

Switch box connections will have buffers (triangles) or pass transistors (circles) drawn on top of them, depending on
the type of switch each connection uses. Clicking on a clb or pad will overlay the routing of all nets connected to that
block on top of the drawing of the FPGA routing resources, and will label each of the pins on that block with its pin
number. Clicking on a routing resource will highlight it in magenta, and its fanouts will be highlighted in red and fanins
in blue. Multiple routing resources can be highlighted by pressing ctrl + mouse click.

4.3. Graphics 179

Verilog-to-Routing Documentation, Release 8.1.0-dev

4.3.7 Visualizing Routing Congestion

When a routing is shown on-screen, clicking on the Congestion drop-down menu under the Routing Options tab will
show a heat map of any overused routing resources (wires or pins). Lighter colours (e.g. yellow) correspond to highly
overused resources, while darker colours (e.g. blue) correspond to lower overuse. The overuse range shown at the
bottom of the window.

Fig. 4.10: Routing Congestion during placement and routing

4.3.8 Visualizing Routing Utilization

When a routing is shown on-screen, clicking on the Routing Util drop-down menu will show a heat map of routing
wire utilization (i.e. fraction of wires used in each channel). Lighter colours (e.g. yellow) correspond to highly utilized
channels, while darker colours (e.g. blue) correspond to lower utilization.

Fig. 4.11: Routing Utilization during placement and routing

4.3.9 Toggle Block Internal

During placement and routing you can adjust the level of block detail you visualize by using the Toggle Block Internal
option under the Block Settings tab.

Fig. 4.12: Block Settings

Each block can contain a number of flip flops (ff), look up tables (lut), and other primitives. The higher the number,
the deeper into the hierarchy within the cluster level block you see.

180 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 4.13: Visualizing Block Internals

4.3.10 View Menu

Fig. 4.14: Items under view menu

The view menu is displayed when vpr is targeting a stacked multi-die architecture (more than 1 layer). Layers are drawn
in ascending order for many drawing features (e.g. blocks); that is layer 0 is drawn first, and (if visible), layer 1 is drawn
on top of it etc. The visibility and transparency of a layer can be changed, which will affect blocks, nets, routing, and
critical path. Cross-layer connections refer to connections that are in different layers.

4.3. Graphics 181

Verilog-to-Routing Documentation, Release 8.1.0-dev

4.3.11 Button Description Table

Buttons Stages Functionalities Detailed Descriptions
Blk
Internal

Place-
ment/Routing

Controls depth of sub-blocks shown Click multiple times to show more details;
Click to reset when reached maximum level of
detail

Toggle
Block
Internal

Place-
ment/Routing

Adjusts the level of visualized block detail Click multiple times to go deeper into the hier-
archy within the cluster level block

Blk Pin
Util

Place-
ment/Routing

Visualizes block pin utilization Click multiple times to visualize all block pin
utilization, input block pin utilization, or output
block pin utilization

Cong.
Cost

Rout-
ing

Visualizes the congestion costs of routing
resouces

Conges-
tion

Rout-
ing

Visualizes a heat map of overused routing
resources

Crit.
Path

Place-
ment/Routing

Visualizes the critical path of the circuit

Draw
Parti-
tions

Place-
ment/Routing

Visualizes placement constraints

Place
Macros

Place-
ment/Routing

Visualizes placement macros

Route
BB

Rout-
ing

Visualizes net bounding boxes one by one Click multiple times to sequence through the
net being shown

Router
Cost

Rout-
ing

Visualizes the router costs of different
routing resources

Routing
Util

Rout-
ing

Visualizes routing channel utilization with
colors indicating the fraction of wires used
within a channel

Toggle
Nets

Place-
ment/Routing

Visualizes the nets in the circuit Click multiple times to set the nets to be visible
/ invisible

Toggle
RR

Place-
ment/Routing

Visualizes different views of the routing
resources

Click multiple times to switch between routing
resources available in the FPGA

4.3.12 Manual Moves

The manual moves feature allows the user to specify the next move in placement. If the move is legal, blocks are
swapped and the new move is shown on the architecture.

To enable the feature, activate the Manual Move toggle button under the Misc. tab and press Done. Alternatively, the
user can activate the Manual Move toggle button and click on the block to be moved.

On the manual move window, the user can specify the Block ID/Block name of the block to move and the To location,
with the x position, y position and subtile position. For the manual move to be valid:

• The To location requested by the user should be within the grid’s dimensions.

• The block to be moved is found, valid and not fixed.

• The blocks to be swapped are compatible.

• The location choosen by the user is different from the block’s current location.

182 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 4.15: Misc. Tab

4.3. Graphics 183

Verilog-to-Routing Documentation, Release 8.1.0-dev

If the manual move is legal, the cost summary window will display the delta cost, delta timing, delta bounding box cost
and the placer’s annealing decision that would result from this move.

The user can Accept or Reject the manual move based on the values provided. If accepted the block’s new location is
shown.

4.4 Timing Constraints

VPR supports setting timing constraints using Synopsys Design Constraints (SDC), an industry-standard format for
specifying timing constraints.

VPR’s default timing constraints are explained in Default Timing Constraints. The subset of SDC supported by VPR
is described in SDC Commands. Additional SDC examples are shown in SDC Examples.

See also:
The Primitive Timing Modelling Tutorial which covers how to describe the timing characteristics of architecture prim-
itives.

4.4.1 Default Timing Constraints

If no timing constriants are specified, VPR assumes default constraints based on the type of circuit being analyzed.

Combinational Circuits

Constrain all I/Os on a virtual clock virtual_io_clock, and optimize this clock to run as fast as possible.

Equivalent SDC File:

create_clock -period 0 -name virtual_io_clock
set_input_delay -clock virtual_io_clock -max 0 [get_ports {*}]
set_output_delay -clock virtual_io_clock -max 0 [get_ports {*}]

184 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Single-Clock Circuits

Constrain all I/Os on the netlist clock, and optimize this clock to run as fast as possible.

Equivalent SDC File:

create_clock -period 0 *
set_input_delay -clock * -max 0 [get_ports {*}]
set_output_delay -clock * -max 0 [get_ports {*}]

Multi-Clock Circuits

Constrain all I/Os a virtual clock virtual_io_clock. Does not analyse paths between netlist clock domains, but
analyses all paths from I/Os to any netlist domain. Optimizes all clocks, including I/O clocks, to run as fast as possible.

Warning: By default VPR does not analyze paths between netlist clock domains.

Equivalent SDC File:

create_clock -period 0 *
create_clock -period 0 -name virtual_io_clock
set_clock_groups -exclusive -group {clk} -group {clk2}
set_input_delay -clock virtual_io_clock -max 0 [get_ports {*}]
set_output_delay -clock virtual_io_clock -max 0 [get_ports {*}]

Where clk and clk2 are the netlist clocks in the design. This is similarily extended if there are more than two netlist
clocks.

4.5 VPR Placement Constraints

VPR supports running flows with placement constraints. Placement constraints are set on primitives to lock them down
to specified regions on the FPGA chip. For example, a user may use placement constraints to lock down pins to specific
locations on the chip. Also, groups of primitives may be locked down to regions on the chip in CAD flows that use
floorplanning or modular design, or to hand-place a timing critical piece.

The placement constraints should be specified by the user using an XML constraints file format, as described in the
section below. When VPR is run with placement constraints, both the packing and placement flows are performed
in such a way that the constraints are respected. The packing stage does not pack any primitives together that have
conflicting floorplan constraints. The placement stage considers the floorplan constraints when choosing a location for
each clustered block during initial placement, and does not move any block outside of its constraint boundaries during
place moves.

4.5. VPR Placement Constraints 185

Verilog-to-Routing Documentation, Release 8.1.0-dev

4.5.1 A Constraints File Example

Listing 4.1: An example of a placement constraints file in XML format.

1 <vpr_constraints tool_name="vpr">
2 <partition_list>
3 <partition name="Part0">
4 <add_atom name_pattern="li354"/>
5 <add_atom name_pattern="alu*"/> <!-- Regular expressions can be used to␣

→˓provide name patterns of the primitives to be added -->
6 <add_atom name_pattern="n877"/>
7 <add_region x_low="3" y_low="1" x_high="7" y_high="2"/> <!-- Two␣

→˓rectangular regions are specified, together describing an L-shaped region -->
8 <add_region x_low="7" y_low="3" x_high="7" y_high="6"/>
9 </partition>

10 <partition name="Part1">
11 <add_region x_low="3" y_low="3" x_high="7" y_high="7" subtile="0"/> <!--␣

→˓One specific location is specified -->
12 <add_atom name_pattern="n4917"/>
13 <add_atom name_pattern="n6010"/>
14 </partition>
15 </partition_list>
16 </vpr_constraints>

4.5.2 Constraints File Format

VPR has a specific XML format which must be used when creating a placement constraints file. The purpose of this
constraints file is to specify

1. Which primitives are to have placement constraints

2. The regions on the FPGA chip to which those primitives must be constrained

The file is passed as an input to VPR when running with placement constraints. When the file is read in, its information
is used during the packing and placement stages of VPR. The hierarchy of the file is set up as follows.

Note: Use the VPR option --read_vpr_constraints to specify the VPR placement constraints file that is to be
loaded.

The top level tag is the <vpr_constraints> tag. This tag contains one <partition_list> tag. The
<partition_list> tag can be made up of an unbounded number of <partition> tags. The <partition> tags
contains all of the detailed information of the placement constraints, and is described in detail below.

186 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

4.5.3 Partitions, Atoms, and Regions

Partition

A partition is made up of two components - a group of primitives (a.k.a. atoms) that must be constrained to the same area
on the chip, and a set of one or more regions specifying where those primitives must be constrained. The information
for each partition is contained within a <partition> tag, and the number of partition tags that the partition_list
tag can contain is unbounded.

req_param name
A name for the partition.

req_param add_atom
A tag used for adding an atom primitive to the partition.

req_param add_region
A tag used for specifying a region for the partition.

Atom

An <add_atom> tag is used to add an atom that must be constrained to the partition. Each partition can contain any
number of atoms from the circuit. The <add_atom> tag has the following attribute:

req_param name_pattern
The name of the atom.

The name_pattern can be the exact name of the atom from the input atom netlist that was passed to VPR. It can also
be a regular expression, in which case VPR will add all atoms from the netlist which have a portion of their name
matching the regular expression to the partition. For example, if a module contains primitives named in the pattern of
“alu[0]”, “alu[1]”, and “alu[2]”, the regular expression “alu*” would add all of the primitives from that module.

Region

An <add_region> tag is used to add a region to the partition. A region is a rectangular area on the chip. A partition
can contain any number of independent regions - the regions within one partition must not overlap with each other (in
order to ease processing when loading in the file). An <add_region> tag has the following attributes.

req_param x_low
The x value of the lower left point of the rectangle.

req_param y_low
The y value of the lower left point of the rectangle.

req_param x_high
The x value of the upper right point of the rectangle.

req_param y_high
The y value of the upper right point of the rectangle.

opt_param subtile
Each x, y location on the grid may contain multiple locations known as subtiles. This paramter is an
optional value specifying the subtile location that the atom(s) of the partition shall be constrained
to.

The optional subtile attribute is commonly used when constraining an atom to a specific location on the chip (e.g.
an exact I/O location). It is legal to use with larger regions, but uncommon.

4.5. VPR Placement Constraints 187

Verilog-to-Routing Documentation, Release 8.1.0-dev

If a user would like to specify an area on the chip with an unusual shape (e.g. L-shaped or T-shaped), they can simply
add multiple <add_region> tags to cover the area specified.

4.6 SDC Commands

The following subset of SDC syntax is supported by VPR.

4.6.1 create_clock

Creates a netlist or virtual clock.

Assigns a desired period (in nanoseconds) and waveform to one or more clocks in the netlist (if the –name option is
omitted) or to a single virtual clock (used to constrain input and outputs to a clock external to the design). Netlist clocks
can be referred to using regular expressions, while the virtual clock name is taken as-is.

Example Usage:

#Create a netlist clock
create_clock -period <float> <netlist clock list or regexes>

#Create a virtual clock
create_clock -period <float> -name <virtual clock name>

#Create a netlist clock with custom waveform/duty-cycle
create_clock -period <float> -waveform {rising_edge falling_edge} <netlist clock list or␣
→˓regexes>

Omitting the waveform creates a clock with a rising edge at 0 and a falling edge at the half period, and is equivalent
to using -waveform {0 <period/2>}. Non-50% duty cycles are supported but behave no differently than 50% duty
cycles, since falling edges are not used in analysis. If a virtual clock is assigned using a create_clock command, it must
be referenced elsewhere in a set_input_delay or set_output_delay constraint.

create_clock

-period <float>

Specifies the clock period.

Required: Yes

-waveform {<float> <float>}

Overrides the default clock waveform.

The first value indicates the time the clock rises, the second the time the clock falls.

Required: No

Default: 50% duty cycle (i.e. -waveform {0 <period/2>}).

-name <string>

Creates a virtual clock with the specified name.

Required: No

<netlist clock list or regexes>

Creates a netlist clock

Required: No

188 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Note: One of -name or <netlist clock list or regexes> must be specified.

Warning: If a netlist clock is not specified with a create_clock command, paths to and from that clock domain
will not be analysed.

4.6.2 set_clock_groups

Specifies the relationship between groups of clocks. May be used with netlist or virtual clocks in any combination.

Since VPR supports only the -exclusive option, a set_clock_groups constraint is equivalent to a
set_false_path constraint (see below) between each clock in one group and each clock in another.

For example, the following sets of commands are equivalent:

#Do not analyze any timing paths between clk and clk2, or between
#clk and clk3
set_clock_groups -exclusive -group {clk} -group {clk2 clk3}

and

set_false_path -from [get_clocks {clk}] -to [get_clocks {clk2 clk3}]
set_false_path -from [get_clocks {clk2 clk3}] -to [get_clocks {clk}]

set_clock_groups

-exclusive

Indicates that paths between clock groups should not be analyzed.

Required: Yes

Note: VPR currently only supports exclusive clock groups

-group {<clock list or regexes>}

Specifies a group of clocks.

Note: At least 2 groups must be specified.

Required: Yes

4.6.3 set_false_path

Cuts timing paths unidirectionally from each clock in -from to each clock in –to. Otherwise equivalent to
set_clock_groups.

Example Usage:

4.6. SDC Commands 189

Verilog-to-Routing Documentation, Release 8.1.0-dev

#Do not analyze paths launched from clk and captured by clk2 or clk3
set_false_path -from [get_clocks {clk}] -to [get_clocks {clk2 clk3}]

#Do not analyze paths launched from clk2 or clk3 and captured by clk
set_false_path -from [get_clocks {clk2 clk3}] -to [get_clocks {clk}]

Note: False paths are supported between entire clock domains, but not between individual registers.

set_false_path

-from [get_clocks <clock list or regexes>]

Specifies the source clock domain(s).

Required: No

Default: All clocks

-to [get_clocks <clock list or regexes>]

Specifies the sink clock domain(s).

Required: No

Default: All clocks

4.6.4 set_max_delay/set_min_delay

Overrides the default setup (max) or hold (min) timing constraint calculated using the information from create_clock
with a user-specified delay.

Example Usage:

#Specify a maximum delay of 17 from input_clk to output_clk
set_max_delay 17 -from [get_clocks {input_clk}] -to [get_clocks {output_clk}]

#Specify a minimum delay of 2 from input_clk to output_clk
set_min_delay 2 -from [get_clocks {input_clk}] -to [get_clocks {output_clk}]

Note: Max/Min delays are supported between entire clock domains, but not between individual netlist elements.

set_max_delay/set_min_delay

<delay>

The delay value to apply.

Required: Yes

-from [get_clocks <clock list or regexes>]

Specifies the source clock domain(s).

Required: No

Default: All clocks

190 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

-to [get_clocks <clock list or regexes>]

Specifies the sink clock domain(s).

Required: No

Default: All clocks

4.6.5 set_multicycle_path

Sets how many clock cycles elapse between the launch and capture edges for setup and hold checks.

The default the setup mutlicycle value is 1 (i.e. the capture setup check is performed against the edge one cycle after
the launch edge).

The default hold multicycle is one less than the setup multicycle path (e.g. the capture hold check occurs in the same
cycle as the launch edge for the default setup multicycle).

Example Usage:

#Create a 4 cycle setup check, and 0 cycle hold check from clkA to clkB
set_multicycle_path -from [get_clocks {clkA}] -to [get_clocks {clkB}] 4

#Create a 3 cycle setup check from clk to clk2
Note that this moves the default hold check to be 2 cycles
set_multicycle_path -setup -from [get_clocks {clk}] -to [get_clocks {clk2}] 3

#Create a 0 cycle hold check from clk to clk2
Note that this moves the default hold check back to it's original
position before the previous setup setup_multicycle_path was applied
set_multicycle_path -hold -from [get_clocks {clk}] -to [get_clocks {clk2}] 2

#Create a multicycle to a specific pin
set_multicycle_path -to [get_pins {my_inst.in\[0\]}] 2

Note: Multicycles are supported between entire clock domains, and ending at specific registers.

set_multicycle_path

-setup

Indicates that the multicycle-path applies to setup analysis.

Required: No

-hold

Indicates that the multicycle-path applies to hold analysis.

Required: No

-from [get_clocks <clock list or regexes>]

Specifies the source clock domain(s).

Required: No

Default: All clocks

4.6. SDC Commands 191

Verilog-to-Routing Documentation, Release 8.1.0-dev

-to [get_clocks <clock list or regexes>]

Specifies the sink clock domain(s).

Required: No

Default: All clocks

-to [get_pins <pin list or regexes>]

Specifies the sink/capture netlist pins to which the multicycle is applied.

See also:
VPR’s pin naming convention.

Required: No

<path_multiplier>

The number of cycles that apply to the specified path(s).

Required: Yes

Note: If neither -setup nor -hold the setup multicycle is set to path_multiplier and the hold multicycle offset
to 0.

Note: Only a single -to option can be specified (either clocks or pins, but not both).

4.6.6 set_input_delay/set_output_delay

Use set_input_delay if you want timing paths from input I/Os analyzed, and set_output_delay if you want timing
paths to output I/Os analyzed.

Note: If these commands are not specified in your SDC, paths from and to I/Os will not be timing analyzed.

These commands constrain each I/O pad specified after get_ports to be timing-equivalent to a register clocked on
the clock specified after -clock. This can be either a clock signal in your design or a virtual clock that does not exist
in the design but which is used only to specify the timing of I/Os.

The specified delays are added to I/O timing paths and can be used to model board level delays.

For single-clock circuits, -clock can be wildcarded using * to refer to the single netlist clock, although this is not
supported in standard SDC. This allows a single SDC command to constrain I/Os in all single-clock circuits.

Example Usage:

#Set a maximum input delay of 0.5 (relative to input_clk) on
#ports in1, in2 and in3
set_input_delay -clock input_clk -max 0.5 [get_ports {in1 in2 in3}]

#Set a minimum output delay of 1.0 (relative to output_clk) on
#all ports matching starting with 'out*'
set_output_delay -clock output_clk -min 1 [get_ports {out*}]

#Set both the maximum and minimum output delay to 0.3 for all I/Os
(continues on next page)

192 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

#in the design
set_output_delay -clock clk2 0.3 [get_ports {*}]

set_input_delay/set_output_delay

-clock <virtual or netlist clock>

Specifies the virtual or netlist clock the delay is relative to.

Required: Yes

-max

Specifies that the delay value should be treated as the maximum delay.

Required: No

-min

Specifies that the delay value should be treated as the minimum delay.

Required: No

<delay>

Specifies the delay value to be applied

Required: Yes

[get_ports {<I/O list or regexes>}]

Specifies the port names or port name regex.

Required: Yes

Note: If neither -min nor -max are specified the delay value is applied to both.

4.6.7 set_clock_uncertainty

Sets the clock uncertainty between clock domains. This is typically used to model uncertainty in the clock arrival times
due to clock jitter.

Example Usage:

#Sets the clock uncertainty between all clock domain pairs to 0.025
set_clock_uncertainty 0.025

#Sets the clock uncertainty from 'clk' to all other clock domains to 0.05
set_clock_uncertainty -from [get_clocks {clk}] 0.05

#Sets the clock uncertainty from 'clk' to 'clk2' to 0.75
set_clock_uncertainty -from [get_clocks {clk}] -to [get_clocks {clk2}] 0.75

set_clock_uncertainty

-from [get_clocks <clock list or regexes>]

Specifies the source clock domain(s).

Required: No

Default: All clocks

4.6. SDC Commands 193

Verilog-to-Routing Documentation, Release 8.1.0-dev

-to [get_clocks <clock list or regexes>]

Specifies the sink clock domain(s).

Required: No

Default: All clocks

-setup

Specifies the clock uncertainty for setup analysis.

Required: No

-hold

Specifies the clock uncertainty for hold analysis.

Required: No

<uncertainty>

The clock uncertainty value between the from and to clocks.

Required: Yes

Note: If neither -setup nor -hold are specified the uncertainty value is applied to both.

4.6.8 set_clock_latency

Sets the latency of a clock. VPR automatically calculates on-chip clock network delay, and so only source latency is
supported.

Source clock latency corresponds to the delay from the true clock source (e.g. off-chip clock generator) to the on-chip
clock definition point.

#Sets the source clock latency of 'clk' to 1.0
set_clock_latency -source 1.0 [get_clocks {clk}]

set_clock_latency

-source

Specifies that the latency is the source latency.

Required: Yes

-early

Specifies that the latency applies to early paths.

Required: No

-late

Specifies that the latency applies to late paths.

Required: No

<latency>

The clock’s latency.

Required: Yes

194 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

[get_clocks <clock list or regexes>]

Specifies the clock domain(s).

Required: Yes

Note: If neither -early nor -late are specified the latency value is applied to both.

4.6.9 set_disable_timing

Disables timing between a pair of connected pins in the netlist. This is typically used to manually break combinational
loops.

#Disables the timing edge between the pins 'FFA.Q[0]' and 'to_FFD.in[0]' on
set_disable_timing -from [get_pins {FFA.Q\\[0\\]}] -to [get_pins {to_FFD.in\\[0\\]}]

set_disable_timing

-from [get_pins <pin list or regexes>]

Specifies the source netlist pins.

See also:
VPR’s pin naming convention.

Required: Yes

-to [get_pins <pin list or regexes>]

Specifies the sink netlist pins.

See also:
VPR’s pin naming convention.

Required: Yes

Note: Make sure to escape the characters in the regexes.

4.6.10 Special Characters

(comment), \\ (line continued), * (wildcard), {} (string escape)

starts a comment – everything remaining on this line will be ignored.

\ at the end of a line indicates that a command wraps to the next line.

* is used in a get_clocks/get_ports command or at the end of create_clock to match all netlist clocks.
Partial wildcarding (e.g. clk* to match clk and clk2) is also supported. As mentioned above, * can be used
in set_input_delay and set_output delay to refer to the netlist clock for single-clock circuits only, although this is
not supported in standard SDC.

{} escapes strings, e.g. {top^clk} matches a clock called top^clk, while top^clk without braces gives an
error because of the special ^ character.

4.6. SDC Commands 195

Verilog-to-Routing Documentation, Release 8.1.0-dev

4.6.11 SDC Examples

The following are sample SDC files for common non-default cases (assuming netlist clock domains clk and clk2).

A

Cut I/Os and analyse only register-to-register paths, including paths between clock domains; optimize to run as fast as
possible.

create_clock -period 0 *

B

Same as A, but with paths between clock domains cut. Separate target frequencies are specified.

create_clock -period 2 clk
create_clock -period 3 clk2
set_clock_groups -exclusive -group {clk} -group {clk2}

C

Same as B, but with paths to and from I/Os now analyzed. This is the same as the multi-clock default, but with custom
period constraints.

create_clock -period 2 clk
create_clock -period 3 clk2
create_clock -period 3.5 -name virtual_io_clock
set_clock_groups -exclusive -group {clk} -group {clk2}
set_input_delay -clock virtual_io_clock -max 0 [get_ports {*}]
set_output_delay -clock virtual_io_clock -max 0 [get_ports {*}]

D

Changing the phase between clocks, and accounting for delay through I/Os with set_input/output delay constraints.

#Custom waveform rising edge at 1.25, falling at 2.75
create_clock -period 3 -waveform {1.25 2.75} clk
create_clock -period 2 clk2
create_clock -period 2.5 -name virtual_io_clock
set_input_delay -clock virtual_io_clock -max 1 [get_ports {*}]
set_output_delay -clock virtual_io_clock -max 0.5 [get_ports {*}]

196 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

E

Sample using many supported SDC commands. Inputs and outputs are constrained on separate virtual clocks.

create_clock -period 3 -waveform {1.25 2.75} clk
create_clock -period 2 clk2
create_clock -period 1 -name input_clk
create_clock -period 0 -name output_clk
set_clock_groups -exclusive -group input_clk -group clk2
set_false_path -from [get_clocks {clk}] -to [get_clocks {output_clk}]
set_max_delay 17 -from [get_clocks {input_clk}] -to [get_clocks {output_clk}]
set_multicycle_path -setup -from [get_clocks {clk}] -to [get_clocks {clk2}] 3
set_input_delay -clock input_clk -max 0.5 [get_ports {in1 in2 in3}]
set_output_delay -clock output_clk -max 1 [get_ports {out*}]

F

Sample using all remaining SDC commands.

create_clock -period 3 -waveform {1.25 2.75} clk
create_clock -period 2 clk2
create_clock -period 1 -name input_clk
create_clock -period 0 -name output_clk
set_clock_latency -source 1.0 [get_clocks{clk}]
#if neither early nor late is specified then the latency applies to early paths
set_clock_groups -exclusive -group input_clk -group clk2
set_false_path -from [get_clocks{clk}] -to [get_clocks{output_clk}]
set_input_delay -clock input_clk -max 0.5 [get_ports{in1 in2 in3}]
set_output_delay -clock output_clk -min 1 [get_ports{out*}]
set_max_delay 17 -from [get_clocks{input_clk}] -to [get_clocks{output_clk}]
set_min_delay 2 -from [get_clocks{input_clk}] -to [get_clocks{output_clk}]
set_multicycle_path -setup -from [get_clocks{clk}] -to [get_clocks{clk2}] 3
#For multicycle_path, if setup is specified then hold is also implicity specified
set_clock_uncertainty -from [get_clocks{clk}] -to [get_clocks{clk2}] 0.75
#For set_clock_uncertainty, if neither setup nor hold is unspecified then uncertainty is␣
→˓applied to both
set_disable_timing -from [get_pins {FFA.Q\\[0\\]}] -to [get_pins {to_FFD.in\\[0\\]}]

4.6. SDC Commands 197

Verilog-to-Routing Documentation, Release 8.1.0-dev

4.7 File Formats

VPR consumes and produces several files representing the packing, placement, and routing results.

4.7.1 FPGA Architecture (.xml)

The target FPGA architecture is specified as an architecture file. For details of this file format see FPGA Architecture
Description.

4.7.2 BLIF Netlist (.blif)

The technology mapped circuit to be implement on the target FPGA is specified as a Berkely Logic Interchange Format
(BLIF) netlist. The netlist must be flattened and consist of only primitives (e.g. .names, .latch, .subckt).

For a detailed description of the BLIF file format see the BLIF Format Description.

Note that VPR supports only the structural subset of BLIF, and does not support the following BLIF features:

• Subfile References (.search).

• Finite State Machine Descriptions (.start_kiss, .end_kiss etc.).

• Clock Constraints (.cycle, .clock_event).

• Delay Constraints (.delay etc.).

Clock and delay constraints can be specified with an SDC File.

Note: By default VPR assumes file with .blif are in structural BLIF format. The format can be controlled with vpr
--circuit_format.

Black Box Primitives

Black-box architectural primitives (RAMs, Multipliers etc.) should be instantiated in the netlist using BLIF’s .subckt
directive. The BLIF file should also contain a black-box .model definition which defines the input and outputs of each
.subckt type.

VPR will check that blackbox .models are consistent with the <models> section of the architecture file.

Unconnected Primitive Pins

Unconnected primitive pins can be specified through several methods.

1. The unconn net (input pins only).

VPR treats any input pin connected to a net named unconn as disconnected.

For example:

.names unconn out
0 1

198 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

specifies an inverter with no connected input.

Note: unconn should only be used for input pins. It may cause name conflicts and create multi-
driven nets if used with output pins.

2. Implicitly disconnected .subckt pins.

For .subckt instantiations VPR treats unlisted primitive pins as implicitly disconnected. This works
for both input and output pins.

For example the following .subckt instantiations are equivalent:

.subckt single_port_ram \
clk=top^clk \
data=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~546 \
addr[0]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~541 \
addr[1]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~542 \
addr[2]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~543 \
addr[3]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~544 \
addr[4]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~545 \
addr[5]=unconn \
addr[6]=unconn \
addr[7]=unconn \
addr[8]=unconn \
addr[9]=unconn \
addr[10]=unconn \
addr[11]=unconn \
addr[12]=unconn \
addr[13]=unconn \
addr[14]=unconn \
we=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~554 \
out=top.memory_controller+memtroll.single_port_ram+str^out~0

.subckt single_port_ram \
clk=top^clk \
data=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~546 \
addr[0]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~541 \
addr[1]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~542 \
addr[2]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~543 \
addr[3]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~544 \
addr[4]=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~545 \
we=top.memory_controller+memtroll^MULTI_PORT_MUX~8^MUX_2~554 \
out=top.memory_controller+memtroll.single_port_ram+str^out~0

3. Dummy nets with no sinks (output pins only)

By default VPR sweeps away nets with no sinks (see vpr --sweep_dangling_nets). As a result
output pins can be left ‘disconnected’ by connecting them to dummy nets.

For example:

.names in dummy_net1
0 1

specifies an inverter with no connected output (provided dummy_net1 is connected to no other pins).

4.7. File Formats 199

Verilog-to-Routing Documentation, Release 8.1.0-dev

Note: This method requires that every disconnected output pin should be connected to a uniquely
named dummy net.

BLIF File Format Example

The following is an example BLIF file. It implements a 4-bit ripple-carry adder and some simple logic.

The main .model is named top, and its input and output pins are listed using the .inputs and .outputs directives.

The 4-bit ripple-cary adder is built of 1-bit adder primitives which are instantiated using the .subckt directive. Note
that the adder primitive is defined as its own .model (which describes its pins), and is marked as .blackbox to indicate
it is an architectural primitive.

The signal all_sum_high_comb is computed using combinational logic (.names) which ANDs all the sum bits to-
gether.

The .latch directive instantiates a rising-edge (re) latch (i.e. an edge-triggered Flip-Flop) clocked by clk. It takes
in the combinational signal all_sum_high_comb and drives the primary output all_sum_high_reg.

Also note that the last .subckt adder has it’s cout output left implicitly disconnected.

.model top

.inputs clk a[0] a[1] a[2] a[3] b[0] b[1] b[2] b[3]

.outputs sum[0] sum[1] sum[2] sum[3] cout all_sum_high_reg

.names gnd
0

.subckt adder a=a[0] b=b[0] cin=gnd cout=cin[1] sumout=sum[0]

.subckt adder a=a[1] b=b[1] cin=cin[1] cout=cin[2] sumout=sum[1]

.subckt adder a=a[2] b=b[2] cin=cin[2] cout=cin[3] sumout=sum[2]

.subckt adder a=a[3] b=b[3] cin=cin[3] sumout=sum[3]

.names sum[0] sum[1] sum[2] sum[3] all_sum_high_comb
1111 1

.latch all_sum_high_comb all_sum_high_reg re clk 0

.end

.model adder

.inputs a b cin

.outputs cout sumout

.blackbox

.end

200 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

BLIF Naming Convention

VPR follows a naming convention to refer to primitives and pins in the BLIF netlist. These names appear in the VPR
GUI , in log and error messages, and in can be used elsewhere (e.g. in SDC constraints).

Net Names

The BLIF format uses explicit names to refer to nets. These names are used directly as is by VPR (although some nets
may be merged/removed by netlist cleaning).

For example, the following netlist:

.model top

.inputs a b

.outputs c

.names a b c
11 1

.end

contains nets named:

• a

• b

• c

Primitive Names

The standard BLIF format has no mechanism for specifying the names of primitives (e.g. .names/.latch/.subckt).
As a result, tools processing BLIF follow a naming convention which generates unique names for each netlist primitive.

The VPR primitive naming convention is as follows:

Primitive Drives at least one net? Primitive Name
• .input
• .names
• .latch
• .subckt

Yes Name of first driven net

No Arbitrarily generated (e.g.
unamed_instances_K)

• .output N/A .output name prefixed with out:

which ensures each netlist primitive is given a unique name.

For example, in the following:

.model top

.inputs a b x y z clk

.outputs c c_reg cout[0] sum[0]

.names a b c
(continues on next page)

4.7. File Formats 201

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

11 1

.latch c c_reg re clk 0

.subckt adder a=x b=y cin=z cout=cout[0] sumout=sum[0]

.end

.model adder

.inputs a b cin

.outputs cout sumout

.blackbox

.end

• The circuit primary inputs (.inputs) are named: a, b, x, y, z, clk,

• The 2-LUT (.names) is named c,

• The FF (.latch) is named c_reg,

• The adder (.subckt) is named cout[0] (the name of the first net it drives), and

• The circuit primary outputs (.outputs) are named: out:c, out:c_reg, out:cout[0], out:sum[0].

See also:
EBLIF’s .cname extension, which allows explicit primitive names to be specified.

Pin Names

It is useful to be able to refer to particular pins in the netlist. VPR uses the convention:
<primitive_instance_name>.<pin_name>. Where <primitive_instance_name> is replaced with the
netlist primitive name, and <pin_name> is the name of the relevant pin.

For example, the following adder:

.subckt adder a=x b=y cin=z cout=cout[0] sumout=sum[0]

which has pin names:

• cout[0].a[0] (driven by net x)

• cout[0].b[0] (driven by net y)

• cout[0].cin[0] (driven by net z)

• cout[0].cout[0] (drives net cout[0])

• cout[0].sumout[0] (drives net sum[0])

Since the primitive instance itself is named cout[0] by convention.

202 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Built-in Primitive Pin Names

The built-in primitives in BLIF (.names, .latch) do not explicitly list the names of their input/output pins. VPR uses
the following convention:

Primitive Port Name
.names input in

output out
.latch input D

output Q
control clk

Consider the following:

.names a b c d e f
11111 1

.latch g h re clk 0

The .names’ pin names are:

• f.in[0] (driven by net a)

• f.in[1] (driven by net b)

• f.in[2] (driven by net c)

• f.in[3] (driven by net d)

• f.in[4] (driven by net e)

• f.out[0] (drives net f)

and the .latch pin names are:

• h.D[0] (driven by net g)

• h.Q[0] (drives net h)

• h.clk[0] (driven by net clk)

since the .names and .latch primitives are named f and h by convention.

Note: To support pins within multi-bit ports unambiguously, the bit index of the pin within its associated port is
included in the pin name (for single-bit ports this will always be [0]).

4.7.3 Extended BLIF (.eblif)

VPR also supports several extentions to structural BLIF to address some of its limitations.

Note: By default VPR assumes file with .eblif are in extneded BLIF format. The format can be controlled with vpr
--circuit_format.

4.7. File Formats 203

Verilog-to-Routing Documentation, Release 8.1.0-dev

.conn

The .conn statement allows direct connections between two wires.

For example:

.model top

.input a

.output b

#Direct connection
.conn a b

.end

specifies that ‘a’ and ‘b’ are direct connected together. This is analogous to Verilog’s assign b = a;.

This avoids the insertion of a .names buffer which is required in standard BLIF, for example:

.model top

.input a

.output b

#Buffer LUT required in standard BLIF
.names a b
1 1

.end

.cname

The .cname statement allows names to be specified for BLIF primitives (e.g. .latch, .names, .subckt).

Note: .cname statements apply to the previous primitive instantiation.

For example:

.names a b c
11 1
.cname my_and_gate

Would name of the above .names instance my_and_gate.

204 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

.param

The .param statement allows parameters (e.g. primitive modes) to be tagged on BLIF primitives.

Note: .param statements apply to the previous primitive instantiation.

Parameters can have one of the three available types. Type is inferred from the format in which a parameter is provided.

• string
Whenever a parameter value is quoted it is considered to be a string. BLIF parser does not allow escaped
characters hence those are illegal and will cause syntax errors.

• binary word
Binary words are specified using strings of characters 0 and 1. No other characters are allowed. Number
of characters denotes the word length.

• real number
Real numbers are stored as decimals where the dot . character separates the integer and fractional part.
Presence of the dot character implies that the value is to be treated as a real number.

For example:

.subckt pll clk_in=gclk clk_out=pclk

.param feedback "internal"

.param multiplier 0.50

.param power 001101

Would set the parameters feedback, multiplier and power of the above pll .subckt to "internal", 0.50 and
001101 respectively.

Warning: Integers in notation other than binary (e.g. decimal, hexadecimal) are not supported. Occurrence
of params with digits other than 1 and 0 for binary words, not quoted (strings) or not separated with dot . (real
numbers) are considered to be illegal.

Interpretation of parameter values is out of scope of the BLIF format extension.

.param statements propagate to <parameter> elements in the packed netlist.

Paramerer values propagate also to the post-route Verilog netlist, if it is generated. Strings and real numbers are passed
directly while binary words are prepended with the <N>'b prefix where N denotes a binary word length.

.attr

The .attr statement allows attributes (e.g. source file/line) to be tagged on BLIF primitives.

Note: .attr statements apply to the previous primitive instantiation.

For example:

.latch a_and_b dff_q re clk 0

.attr src my_design.v:42

4.7. File Formats 205

Verilog-to-Routing Documentation, Release 8.1.0-dev

Would set the attribute src of the above .latch to my_design.v:42.

.attr statements propagate to <attribute> elements in the packed netlist.

Extended BLIF File Format Example

.model top

.inputs a b clk

.outputs o_dff

.names a b a_and_b
11 1
.cname lut_a_and_b
.param test_names_param "test_names_param_value"
.attr test_names_attrib "test_names_param_attrib"

.latch a_and_b dff_q re clk 0

.cname my_dff

.param test_latch_param "test_latch_param_value"

.attr test_latch_attrib "test_latch_param_attrib"

.conn dff_q o_dff

.end

4.7.4 Timing Constraints (.sdc)

Timing constraints are specified using SDC syntax. For a description of VPR’s SDC support see SDC Commands.

Note: Use vpr --sdc_file to specify the SDC file used by VPR.

Timing Constraints File Format Example

See SDC Examples.

4.7.5 Packed Netlist Format (.net)

The circuit .net file is an xml file that describes a post-packed user circuit. It represents the user netlist in terms of the
complex logic blocks of the target architecture. This file is generated from the packing stage and used as input to the
placement stage in VPR.

The .net file is constructed hierarchically using block tags. The top level block tag contains the I/Os and complex logic
blocks used in the user circuit. Each child block tag of this top level tag represents a single complex logic block inside
the FPGA. The block tags within a complex logic block tag describes, hierarchically, the clusters/modes/primitives
used internally within that logic block.

A block tag has the following attributes:

• name
A name to identify this component of the FPGA. This name can be completely arbitrary except in two

206 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

situations. First, if this is a primitive (leaf) block that implements an atom in the input technology-mapped
netlist (eg. LUT, FF, memory slice, etc), then the name of this block must match exactly with the name of
the atom in that netlist so that one can later identify that mapping. Second, if this block is not used, then
it should be named with the keyword open. In all other situations, the name is arbitrary.

• instance
The phyiscal block in the FPGA architecture that the current block represents. Should be of for-
mat: architecture_instance_name[instance #]. For example, the 5th index BLE in a CLB should have
instance="ble[5]"

• mode
The mode the block is operating in.

A block connects to other blocks via pins which are organized based on a hierarchy. All block tags contains the
children tags: inputs, outputs, clocks. Each of these tags in turn contain port tags. Each port tag has an attribute name
that matches with the name of a corresponding port in the FPGA architecture. Within each port tag is a list of named
connections where the first name corresponds to pin 0, the next to pin 1, and so forth. The names of these connections
use the following format:

1. Unused pins are identified with the keyword open.

2. The name of an input pin to a complex logic block is the same as the name of the net using that pin.

3. The name of an output pin of a primitve (leaf block) is the same as the name of the net using that pin.

4. The names of all other pins are specified by describing their immediate drivers. This format is
[name_of_immediate_driver_block].[port_name][pin#]->interconnect_name.

For primitives with equivalent inputs VPR may rotate the input pins. The resulting rotation is specified with the
<port_rotation_map> tag. For example, consider a netlist contains a 2-input LUT named c, which is implemented
in a 5-LUT:

Listing 4.2: Example of <port_rotation_map> tag.

1 ...
2 <block name="c" instance="lut[0]">
3 <inputs>
4 <port name="in">open open lut5.in[2]->direct:lut5 open lut5.in[4]->direct:lut5

→˓</port>
5 <port_rotation_map name="in">open open 1 open 0 </port_rotation_map>
6 </inputs>
7 <outputs>
8 <port name="out">c </port>
9 </outputs>

10 <clocks>
11 </clocks>
12 </block>
13 ...

In the original netlist the two LUT inputs were connected to pins at indicies 0 and 1 (the only input pins). However
during clustering the inputs were rotated, and those nets now connect to the pins at indicies 2 and 4 (line 4). The
<port_rotation_map> tag specified the port name it applies to (name attribute), and its contents lists the pin indicies
each pin in the port list is associated with in the original netlist (i.e. the pins lut5.in[2]->direct:lut5 and lut5.
in[4]->direct:lut5 respectively correspond to indicies 1 and 0 in the original netlist).

Note: Use vpr --net_file to override the default net file name.

4.7. File Formats 207

Verilog-to-Routing Documentation, Release 8.1.0-dev

Packing File Format Example

The following is an example of what a .net file would look like. In this circuit there are 3 inputs (pa, pb, pc) and 4
outputs (out:pd, out:pe, out:pf, out:pg). The io pad is set to inpad mode and is driven by the inpad:

Listing 4.3: Example packed netlist file (trimmed for brevity).

1 <block name="b1.net" instance="FPGA_packed_netlist[0]">
2 <inputs>
3 pa pb pc
4 </inputs>
5

6 <outputs>
7 out:pd out:pe out:pf out:pg
8 </outputs>
9

10 <clocks>
11 </clocks>
12

13 <block name="pa" instance="io[0]" mode="inpad">
14 <inputs>
15 <port name="outpad">open </port>
16 </inputs>
17

18 <outputs>
19 <port name="inpad">inpad[0].inpad[0]->inpad </port>
20 </outputs>
21

22 <clocks>
23 <port name="clock">open </port>
24 </clocks>
25

26 <block name="pa" instance="inpad[0]">
27 <inputs>
28 </inputs>
29

30 <outputs>
31 <port name="inpad">pa </port>
32 </outputs>
33

34 <clocks>
35 </clocks>
36

37 <attributes>
38 <attribute name="vccio">3.3</attribute>
39 </attributes>
40

41 <parameters>
42 <parameter name="iostandard">LVCMOS33</parameter>
43 </parameters>
44 </block>
45 </block>
46 ...

208 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Note: .net files may be outputted at two stages: - After packing is completed, the packing results will be outputted.
The .net file can be loaded as an input for placer, router and analyzer. Note that the file may not represent the final
packing results as the analyzer will apply synchronization between packing and routing results. - After analysis is
completed, updated packing results will be outputted. This is due to that VPR router may swap pin mapping in packing
results for optimizations. In such cases, packing results are synchronized with routing results. The outputted .net file
will have a postfix of .post_routing as compared to the original packing results. It could happen that VPR router
does not apply any pin swapping and the two .net files are the same. In both cases, the post-analysis .net file should
be considered to be the final packing results for downstream tools, e.g., bitstream generator. Users may load the
post-routing .net file in VPR’s analysis flow to sign-off the final results.

Warning: Currently, the packing result synchronization is only applicable to input pins which may be remapped to
different nets during routing optimization. If your architecture defines link_instance_pin_xml_syntax_ equivalence
for output pins, the packing results still mismatch the routing results!

4.7.6 Placement File Format (.place)

The first line of the placement file lists the netlist (.net) and architecture (.xml) files used to create this placement. This
information is used to ensure you are warned if you accidentally route this placement with a different architecture or
netlist file later. The second line of the file gives the size of the logic block array used by this placement. All the
following lines have the format:

block_name x y subtile_number

The block_name is the name of this block, as given in the input .net formatted netlist. x and y are the row and column
in which the block is placed, respectively.

Note: The blocks in a placement file can be listed in any order.

Since we can have more than one block in a row or column when the block capacity is set to be greater than 1 in the
architecture file, the subtile number specifies which of the several possible subtile locations in row x and column y
contains this block. Note that the subtile number used should be in the range 0 to (grid[i][j].capacity - 1). The subtile
numbers for a particular x,y location do not have to be used in order.

The placement files output by VPR also include (as a comment) a fifth field: the block number. This is the internal
index used by VPR to identify a block – it may be useful to know this index if you are modifying VPR and trying to
debug something.

Fig. 4.16 shows the coordinate system used by VPR for a small 2 x 2 CLB FPGA. The number of CLBs in the x and y
directions are denoted by nx and ny, respectively. CLBs all go in the area with x between 1 and nx and y between 1
and ny, inclusive. All pads either have x equal to 0 or nx + 1 or y equal to 0 or ny + 1.

Note: Use vpr --place_file to override the default place file name.

4.7. File Formats 209

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 4.16: FPGA co-ordinate system.

Placement File Format Example

An example placement file is:

Listing 4.4: Example placement file.

1 Netlist file: xor5.net Architecture file: sample.xml
2 Array size: 2 x 2 logic blocks
3

4 #block name x y subblk block number
5 #---------- -- -- ------- -----------
6 a 0 1 0 #0 -- NB: block number is a comment.
7 b 1 0 0 #1
8 c 0 2 1 #2
9 d 1 3 0 #3

10 e 1 3 1 #4
11 out:xor5 0 2 0 #5
12 xor5 1 2 0 #6
13 [1] 1 1 0 #7

4.7.7 Routing File Format (.route)

The first line of the routing file gives the array size, nx x ny. The remainder of the routing file lists the global or
the detailed routing for each net, one by one. Each routing begins with the word net, followed by the net index used
internally by VPR to identify the net and, in brackets, the name of the net given in the netlist file. The following lines
define the routing of the net. Each begins with a keyword that identifies a type of routing segment. The possible
keywords are SOURCE (the source of a certain output pin class), SINK (the sink of a certain input pin class), OPIN
(output pin), IPIN (input pin), CHANX (horizontal channel), and CHANY (vertical channel). Each routing begins on a
SOURCE and ends on a SINK. In brackets after the keyword is the (x, y) location of this routing resource. Finally, the
pad number (if the SOURCE, SINK, IPIN or OPIN was on an I/O pad), pin number (if the IPIN or OPIN was on a clb),
class number (if the SOURCE or SINK was on a clb) or track number (for CHANX or CHANY) is listed – whichever one is
appropriate. The meaning of these numbers should be fairly obvious in each case. If we are attaching to a pad, the pad
number given for a resource is the subblock number defining to which pad at location (x, y) we are attached. See Fig.
4.16 for a diagram of the coordinate system used by VPR. In a horizontal channel (CHANX) track 0 is the bottommost
track, while in a vertical channel (CHANY) track 0 is the leftmost track. Note that if only global routing was performed
the track number for each of the CHANX and CHANY resources listed in the routing will be 0, as global routing does not

210 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

assign tracks to the various nets.

For an N-pin net, we need N-1 distinct wiring “paths” to connect all the pins. The first wiring path will always go from
a SOURCE to a SINK. The routing segment listed immediately after the SINK is the part of the existing routing to which
the new path attaches.

Note: It is important to realize that the first pin after a SINK is the connection into the already specified routing tree;
when computing routing statistics be sure that you do not count the same segment several times by ignoring this fact.

Note: Use vpr --route_file to override the default route file name.

Routing File Format Examples

An example routing for one net is listed below:

Listing 4.5: Example routing for a non-global net.

1 Net 5 (xor5)
2

3 Node: 1 SOURCE (1,2) Class: 1 Switch: 1 # Source for pins of class 1.
4 Node: 2 OPIN (1,2) Pin: 4 clb.O[12] Switch:0 #Output pin the O port of clb␣

→˓block, pin number 12
5 Node: 4 CHANX (1,1) to (4,1) Track: 1 Switch: 1
6 Node: 6 CHANX (4,1) to (7,1) Track: 1 Switch: 1
7 Node: 8 IPIN (7,1) Pin: 0 clb.I[0] Switch: 2
8 Node: 9 SINK (7,1) Class: 0 Switch: -1 # Sink for pins of class 0 on a clb.
9 Node: 4 CHANX (7,1) to (10,1) Track: 1 Switch: 1 # Note: Connection to␣

→˓existing routing!
10 Node: 5 CHANY (10,1) to (10,4) Track: 1 Switch: 0
11 Node: 4 CHANX (10,4) to (13,4) Track: 1 Switch: 1
12 Node: 10 CHANX (13,4) to (16,4) Track: 1 Switch: 1
13 Node: 11 IPIN (16,4) Pad: 1 clb.I[1] Switch: 2
14 Node: 12 SINK (16,4) Pad: 1 Switch: -1 # This sink is an output pad at (16,4),␣

→˓subblock 1.

Nets which are specified to be global in the netlist file (generally clocks) are not routed. Instead, a list of the blocks
(name and internal index) which this net must connect is printed out. The location of each block and the class of the pin
to which the net must connect at each block is also printed. For clbs, the class is simply whatever class was specified
for that pin in the architecture input file. For pads the pinclass is always -1; since pads do not have logically-equivalent
pins, pin classes are not needed. An example listing for a global net is given below.

4.7. File Formats 211

Verilog-to-Routing Documentation, Release 8.1.0-dev

Listing 4.6: Example routing for a global net.

1 Net 146 (pclk): global net connecting:
2 Block pclk (#146) at (1,0), pinclass -1
3 Block pksi_17_ (#431) at (3,26), pinclass 2
4 Block pksi_185_ (#432) at (5,48), pinclass 2
5 Block n_n2879 (#433) at (49,23), pinclass 2

4.7.8 Routing Resource Graph File Format (.xml)

The routing resource graph (rr graph) file is an XML file that describes the routing resources within the FPGA. VPR
can generate a rr graph that matches your architecture specifications (from the architecture xml file), or it can read in an
externally generated rr graph. When this file is written by VPR, the rr graph written out is the rr graph generated before
routing with a final channel width (even if multiple routings at different channel widths are performed during a binary
search for the minimum channel width). When reading in rr graph from an external file, the rr graph is used during both
the placement and routing phases of VPR. The file is constructed using tags. The top level is the rr_graph tag. This
tag contains all the channel, switches, segments, block, grid, node, and edge information of the FPGA. It is important
to keep all the values as high precision as possible. Sensitive values include capacitance and Tdel. As default, these
values are printed out with a precision of 30 digits. Each of these sections are separated into separate tags as described
below.

Note: Use vpr --read_rr_graph to specify an RR graph file to be loaded.

Note: Use vpr --write_rr_graph to specify where the RR graph should be written.

Top Level Tags

The first tag in all rr graph files is the <rr_graph> tag that contains detailed subtags for each catagory in the rr graph.
Each tag has their subsequent subtags that describes one entity. For example, <segments> includes all the segments
in the graph where each <segment> tag outlines one type of segment.

The rr_graph tag contains the following tags:

• <channels>

– <channel>``content``</channel>

• <switches>

– <switch>``content``</switch>

• <segments>

– <segment>``content``</segment>

• <block_types>

– <block_type>``content``</block_type>

• <grid>

– <grid_loc>``content``</grid_loc>

• <rr_nodes>

212 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

– <node>``content``</node>

• <rr_edges>

– <edge>``content``</edge>

Note: The rr graph is based on the architecture, so more detailed description of each section of the rr graph can be
found at FPGA architecture description

Detailed Tag Information

Channel

The channel information is contained within the channels subtag. This describes the minimum and maximum channel
width within the architecture. Each channels tag has the following subtags:

<channel chan_width_max="int" x_min="int" y_min="int" x_max="int" y_max="int"/>

This is a required subtag that contains information about the general channel width information. This stores the
channel width between x or y directed channels.

Required Attributes
• chan_width_max – Stores the maximum channel width value of x or y channels.

• x_min y_min x_max y_max – Stores the minimum and maximum value of x and y
coordinate within the lists.

<x_list index="int" info="int"/> <y_list index="int" info="int"/>

These are a required subtags that lists the contents of an x_list and y_list array which stores the width
of each channel. The x_list array size as large as the size of the y dimension of the FPGA itself while
the y_list has the size of the x_dimension. This x_list tag is repeated for each index within the array.

Required Attributes
• index – Describes the index within the array.

• info – The width of each channel. The minimum is one track per channel. The input and
output channels are io_rat * maximum in interior tracks wide. The channel distributions
read from the architecture file are scaled by a constant factor.

Switches

A switches tag contains all the switches and its information within the FPGA. It should be noted that for values such
as capacitance, Tdel, and sizing info all have high precision. This ensures a more accurate calculation when reading in
the routing resource graph. Each switch tag has a switch subtag.

<switch id="int" name="unique_identifier" type="{mux|tristate|pass_gate|short|buffer}">

Required Attributes
• id – A unique identifier for that type of switch.

• name – An optional general identifier for the switch.

• type – See architecture switch description.

4.7. File Formats 213

Verilog-to-Routing Documentation, Release 8.1.0-dev

<timing R="float" cin="float" Cout="float" Tdel="float/>

This optional subtag contains information used for timing analysis. Without it, the program assums
all subtags to contain a value of 0.

Optional Attributes
• R, Cin, Cout – The resistance, input capacitance and output capacitance of the switch.

• Tdel – Switch’s intrinsic delay. It can be outlined that the delay through an unloaded
switch is Tdel + R * Cout.

<sizing mux_trans_size="int" buf_size="float"/>

The sizing information contains all the information needed for area calculation.

Required Attributes
• mux_trans_size – The area of each transistor in the segment’s driving mux. This is

measured in minimum width transistor units.

• buf_size – The area of the buffer. If this is set to zero, the area is calculated from the
resistance.

Segments

The segments tag contains all the segments and its information. Note again that the capacitance has a high decimal
precision. Each segment is then enclosed in its own segment tag.

<segment id="int" name="unique_identifier">

Required Attributes
• id – The index of this segment.

• name – The name of this segment.

<timing R_per_meter="float" C_per_meter="float">

This optional tag defines the timing information of this segment.

Optional Attributes
• R_per_meter, C_per_meter – The resistance and capacitance of a routing track, per

unit logic block length.

Blocks

The block_types tag outlines the information of a placeable complex logic block. This includes generation, pin
classes, and pins within each block. Information here is checked to make sure it corresponds with the architecture. It
contains the following subtags:

<block_type id="int" name="unique_identifier" width="int" height="int">

This describes generation information about the block using the following attributes:

Required Attributes
• id – The index of the type of the descriptor in the array. This is used for index referencing

• name – A unique identifier for this type of block. Note that an empty block type must
be denoted "EMPTY" without the brackets <> to prevent breaking the xml format. Input
and output blocks must be named “io”. Other blocks can have any name.

• width, height – The width and height of a large block in grid tiles.

214 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

<pin_class type="pin_type">

This optional subtag of block_type describes groups of pins in configurable logic blocks that share
common properties.

Required Attributes
• type – This describes whether the pin class is a driver or receiver. Valid inputs are OPEN,
OUTPUT, and INPUT.

<pin ptc="block_pin_index">name</pin>

This required subtag of pin_class describes its pins.

Required Attributes
• ptc – The index of the pin within the block_type.

• name – Human readable pin name.

Grid

The grid tag contains information about the grid of the FPGA. Information here is checked to make sure it corresponds
with the architecture. Each grid tag has one subtag as outlined below:

<grid_loc x="int" y="int" block_type_id="int" width_offset="int" height_offset="int">

Required Attributes
• x, y – The x and y coordinate location of this grid tile.

• block_type_id – The index of the type of logic block that resides here.

• width_offset, height_offset – The number of grid tiles reserved based on the
width and height of a block.

Nodes

The rr_nodes tag stores information about each node for the routing resource graph. These nodes describe each wire
and each logic block pin as represented by nodes.

<node id="int" type="unique_type" direction="unique_direction" capacity="int">

Required Attributes
• id – The index of the particular routing resource node

• type – Indicates whether the node is a wire or a logic block. Valid inputs for class types
are { CHANX | CHANY | SOURCE | SINK | OPIN | IPIN }. Where CHANX and CHANY describe
a horizontal and vertical channel. Sources and sinks describes where nets begin and end.
OPIN represents an output pin and IPIN representd an input pin

• capacity – The number of routes that can use this node.

Optional Attributes
• direction – If the node represents a track (CHANX or CHANY), this field represents its

direction as {INC_DIR | DEC_DIR | BI_DIR}. In other cases this attribute should not be
specified.

<loc xlow="int" ylow="int" xhigh="int" yhigh="int" side="{LEFT|RIGHT|TOP|BOTTOM}" ptc="int">

Contains location information for this node. For pins or segments of length one, xlow = xhigh and ylow = yhigh.
Required Attributes

4.7. File Formats 215

Verilog-to-Routing Documentation, Release 8.1.0-dev

• xlow, xhigh, ylow, yhigh – Integer coordinates of the ends of this routing source.

• ptc – This is the pin, track, or class number that depends on the rr_node type.

Optional Attributes
• side – For IPIN and OPIN nodes specifies the side of the grid tile on which the node is

located. Valid values are { LEFT | RIGHT | TOP | BOTTOM }. In other cases this attribute
should not be specified.

<timing R="float" C="float">

This optional subtag contains information used for timing analysis
Required Attributes

• R – The resistance that goes through this node. This is only the metal resistance, it does
not include the resistance of the switch that leads to another routing resource node.

• C – The total capacitance of this node. This includes the metal capacitance, input capac-
itance of all the switches hanging off the node, the output capacitance of all the switches
to the node, and the connection box buffer capacitances that hangs off it.

<segment segment_id="int">

This optional subtag describes the information of the segment that connects to the node.

Required Attributes
• segment_id – This describes the index of the segment type. This value only applies

to horizontal and vertical channel types. It can be left empty, or as -1 for other types of
nodes.

Edges

The final subtag is the rr_edges tag that encloses information about all the edges between nodes. Each rr_edges tag
contains multiple subtags:

<edge src_node="int" sink_node="int" switch_id="int"/>

This subtag repeats every edge that connects nodes together in the graph.
Required Attributes

• src_node, sink_node – The index for the source and sink node that this edge connects
to.

• switch_id – The type of switch that connects the two nodes.

Node and Edge Metadata

metadata blocks (see Architecture metadata) are supported under both node and edge tags.

216 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Routing Resource Graph Format Example

An example of what a generated routing resource graph file would look like is shown below:

Listing 4.7: Example of a routing resource graph in XML format

1 <rr_graph tool_name="vpr" tool_version="82a3c72" tool_comment="Based on my_arch.xml">
2 <channels>
3 <channel chan_width_max="2" x_min="2" y_min="2" x_max="2" y_max="2"/>
4 <x_list index="1" info="5"/>
5 <x_list index="2" info="5"/>
6 <y_list index="1" info="5"/>
7 <y_list index="2" info="5"/>
8 </channels>
9 <switches>

10 <switch id="0" name="my_switch" buffered="1">
11 <timing R="100" Cin="1233-12" Cout="123e-12" Tdel="1e-9"/>
12 <sizing mux_trans_size="2.32" buf_size="23.54"/>
13 </switch>
14 </switches>
15 <segments>
16 <segment id="0" name="L4">
17 <timing R_per_meter="201.7" C_per_meter="18.110e-15"/>
18 </segment>
19 </segments>
20 <block_types>
21 <block_type id="0" name="io" width="1" height="1">
22 <pin_class type="input">
23 <pin ptc="0">DATIN[0]</pin>
24 <pin ptc="1">DATIN[1]</pin>
25 <pin ptc="2">DATIN[2]</pin>
26 <pin ptc="3">DATIN[3]</pin>
27 </pin_class>
28 <pin_class type="output">
29 <pin ptc="4">DATOUT[0]</pin>
30 <pin ptc="5">DATOUT[1]</pin>
31 <pin ptc="6">DATOUT[2]</pin>
32 <pin ptc="7">DATOUT[3]</pin>
33 </pin_class>
34 </block_type>
35 <block_type id="1" name="buf" width="1" height="1">
36 <pin_class type="input">
37 <pin ptc="0">IN</pin>
38 </pin_class>
39 <pin_class type="output">
40 <pin ptc="1">OUT</pin>
41 </pin_class>
42 </block_type>
43 </block_types>
44 <grid>
45 <grid_loc x="0" y="0" block_type_id="0" width_offset="0" height_offset="0"/>
46 <grid_loc x="1" y="0" block_type_id="1" width_offset="0" height_offset="0"/>
47 </grid>

(continues on next page)

4.7. File Formats 217

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

48 <rr_nodes>
49 <node id="0" type="SOURCE" direction="NONE" capacity="1">
50 <loc xlow="0" ylow="0" xhigh="0" yhigh="0" ptc="0"/>
51 <timing R="0" C="0"/>
52 </node>
53 <node id="1" type="CHANX" direction="INC" capacity="1">
54 <loc xlow="0" ylow="0" xhigh="2" yhigh="0" ptc="0"/>
55 <timing R="100" C="12e-12"/>
56 <segment segment_id="0"/>
57 </node>
58 </rr_nodes>
59 <rr_edges>
60 <edge src_node="0" sink_node="1" switch_id="0"/>
61 <edge src_node="1" sink_node="2" switch_id="0"/>
62 </rr_edges>
63 </rr_graph>

Binary Format (Cap’n Proto)

To aid in handling large graphs, rr_graph files can also be saved in a binary (Cap’n Proto) format. This will result in a
smaller file and faster read/write times.

4.7.9 Network-on-Chip (NoC) Traffic Flows Format (.flows)

In order to co-optimize for the NoC placement VPR needs expected performance metrics of the NoC. VPR defines
the performance requirements of the NoC as traffic flows. A traffic flow is a one-way communication between two
logical routers in a design. The traffic flows provide the communications bandwidth and Quality of Service (QoS)
requirements. The traffic flows are application dependant and need to be supplied externally by a user. The traffic flows
file is an XML based file format which designers can use to describe the traffic flows in a given application.

Note: Use vpr --noc_traffic_flows to specify an NoC traffic flows file to be loaded.

Top Level Tags

The first tag in all NoC traffic flow files is the <traffic_flows> tag that contains detailed subtags for each catagory
in the NoC traffic flows.

The traffic_flows tag contains the following tags:

• <single_flow>

– <single_flow>``content``</single_flow>

218 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

Detailed Tag Information

Single Flow

A given traffic flow information is contained within the single_flow tag. There can be 0 or more single flow tags. 0
would indicate that an application does not have any traffic flows.

<channel src="logical_router_name" dst="logical_router_name" bandwidth="float" latency_cons="float" priority="int"/
>

Optional Attributes
• latency_cons – A floating point number which indicates the upper bound on the la-

tency for a traffic flow. This is in units of seconds and is an optional attribute. If this
attribute is not provided then the CAD tool will try to reduce the latency as much as
possible.

• priority – An integer which represents the relative importance of the traffic flow
against all other traffic flows in an application. For example, a traffic flow with pri-
ority 10 would be weighted ten times more than a traffic flow with priority 1. This is an
optional attribute and by default all traffic flows have a priority of 1

Required Attributes
• src – A string which represents a logical router name in an application. This logical

router is the source endpoint for the traffic flow being described by the cor- respond-
ing single flow tag. The logical router name must match the name of the router as
found in the clustered netlist; since this name assigned by the CAD tool, instead of
having the designer go through the clustered netlist to retrieve the exact name we in-
stead allow designers to use regex patters in the logical router name. For example, in-
stead of ”noc_router_adapter_block:noc_router_layer1_mvm2:slave_tready_reg0” user
could pro- vide ”.*noc_router_layer1_mvm2.*”. This allows users to provide the in-
stance name for a given logical router module in the design. This is a required attribute.

• dst – A string which represents a logical router name in an application. This logical
router is the deastination endpoint for the traffic flow being described by the cor- re-
sponding single flow tag. The logical router name must match the name of the router
as found in the clustered netlist; since this name assigned by the CAD tool, instead of
having the designer go through the clustered netlist to retrieve the exact name we in-
stead allow designers to use regex patters in the logical router name. For example, in-
stead of ”noc_router_adapter_block:noc_router_layer1_mvm3:slave_tready_reg0” user
could pro- vide ”.*noc_router_layer1_mvm3.*”. This allows users to provide the in-
stance name for a given logical router module in the design. This is a required attribute.

• bandwidth – A floating point number which indicates the data size in the traffic flow
communication. This is in units of bits-per-second (bps) and is a required attribute.

NoC Traffic Flows File Example

An example of what a NoC traffic flows file looks like is shown below:

Listing 4.8: Example of a NoC traffic flows file in XML format

1 <traffic_flows>
2 <single_flow src="m0" dst="m1" bandwidth="2.3e9" latency_cons="3e-9"/>
3 <single_flow src="m0" dst="m2" bandwidth="5e8"/>
4 <single_flow src="ddr" dst="m0" bandwidth="1.3e8" priority=3/>

(continues on next page)

4.7. File Formats 219

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

5 <single_flow src="m3" dst="m2" bandwidth="4.8e9" latency_cons="5e-9" priority=2/>
6 </traffic_flows>

4.7.10 Block types usage summary (.txt .xml or .json)

Block types usage summary is a file written in human or machine readable format. It describes types and the amount
of cluster-level FPGA resources that are used by implemented design. This file is generated after the placement step
with option: –write_block_usage <filename>. It can be saved as a human readable text file or in XML or JSON file to
provide machine readable output. Format is selected based on the extension of the <filename>.

The summary consists of 4 parameters:

• nets number - the amount of created nets

• blocks number - sum of blocks used to implement the design

• input pins - sum of input pins

• output pins - sum of output pins

and a list of block types followed by the number of specific block types that are used in the design.

TXT

Presents the information in human readable format, the same as in log output:

Listing 4.9: TXT format of block types usage summary

1 Netlist num_nets: <int>
2 Netlist num_blocks: <int>
3 Netlist <block_type_name_0> blocks: <int>
4 Netlist <block_type_name_1> blocks: <int>
5 ...
6 Netlist <block_type_name_n> blocks: <int>
7 Netlist inputs pins: <int>
8 Netlist output pins: <int>

JSON

One of two available machine readable formats. The information is written as follows:

Listing 4.10: JSON format of block types usage summary

1 {
2 "num_nets": "<int>",
3 "num_blocks": "<int>",
4 "input_pins": "<int>",
5 "output_pins": "<int>",
6 "blocks": {
7 "<block_type_name_0>": <int>,
8 "<block_type_name_1>": <int>,
9 ...

(continues on next page)

220 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

10 "<block_type_name_n>": <int>
11 }
12 }

XML

Second machine readable format. The information is written as follows:

Listing 4.11: XML format of block types usage summary

1 <?xml version="1.0" encoding="UTF-8"?>
2 <block_usage_report>
3 <nets num="<int>"></nets>
4 <blocks num="<int>">
5 <block type="<block_type_name_0>" usage="<int>"></block>
6 <block type="<block_type_name_1>" usage="<int>"></block>
7 ...
8 <block type="<block_type_name_n>" usage="<int>"></block>
9 </blocks>

10 <input_pins num="<int>"></input_pins>
11 <output_pins num="<int>"></output_pins>
12 </block_usage_report>

4.7.11 Timing summary (.txt .xml or .json)

Timing summary is a file written in human or machine readable format. It describes final timing parameters of design
implemented for the FPGA device. This file is generated after the routing step with option: –write_timing_summary
<filename>. It can be saved as a human readable text file or in XML or JSON file to provide machine readable output.
Format is selected based on the extension of the <filename>.

The summary consists of 4 parameters:

• Critical Path Delay (cpd) [ns]

• Max Circuit Frequency (Fmax) [MHz]

• setup Worst Negative Slack (sWNS) [ns]

• setup Total Negative Slack (sTNS) [ns]

TXT

Presents the information in human readable format, the same as in log output:

Listing 4.12: TXT format of timing summary

1 Final critical path delay (least slack): <double> ns, Fmax: <double> MHz
2 Final setup Worst Negative Slack (sWNS): <double> ns
3 Final setup Total Negative Slack (sTNS): <double> ns

4.7. File Formats 221

Verilog-to-Routing Documentation, Release 8.1.0-dev

JSON

One of two available machine readable formats. The information is written as follows:

Listing 4.13: JSON format of timing summary

1 {
2 "cpd": <double>,
3 "fmax": <double>,
4 "swns": <double>,
5 "stns": <double>
6 }

XML

Second machine readable format. The information is written as follows:

Listing 4.14: XML format of timing summary

1 <?xml version="1.0" encoding="UTF-8"?>
2 <timing_summary_report>
3 <cpd value="<double>" unit="ns" description="Final critical path delay"></nets>
4 <fmax value="<double>" unit="MHz" description="Max circuit frequency"></fmax>
5 <swns value="<double>" unit="ns" description="setup Worst Negative Slack (sWNS)"></

→˓swns>
6 <stns value="<double>" unit="ns" description="setup Total Negative Slack (sTNS)"></

→˓stns>
7 </block_usage_report>

4.8 Debugging Aids

Note: This section is most relevant to developers modifying VPR

The report_timing.setup.rpt file lists details about the critical path of a circuit, and is very useful for determining
why your circuit is so fast or so slow.

To access detailed echo files from VPR’s operation, use the command-line option --echo_file on. After parsing the
netlist and architecture files, VPR dumps out an image of its internal data structures into echo files (typically ending in
.echo). These files can be examined to be sure that VPR is parsing the input files as you expect.

You ca visualize and control the placement move generator whenever the placement engine is paused in the UI. Run with
graphics and VTR_ENABLE_DEBUG_LOGGONG enabled and set a breakpoint to stop placement. The new location
of the moving block for each proposed move will be highlighted with GREEN and the old location will be highlighted
with GOLD. The fanin and fanout blocks will also be highlighted. The move type, move outcome and delta cost will
be printed in the status bar. .. warning:: VPR must have been compiled with VTR_ENABLE_DEBUG_LOGGING on
to get any debug output from this flag.

If the preprocessor flag DEBUG is defined in vpr_types.h, some additional sanity checks are performed during a run.
DEBUG only slows execution by 1 to 2%. The major sanity checks are always enabled, regardless of the state of DEBUG.
Finally, if VERBOSE is set in vpr_types.h, a great deal of intermediate data will be printed to the screen as VPR runs. If
you set verbose, you may want to redirect screen output to a file.

222 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

The initial and final placement costs provide useful numbers for regression testing the netlist parsers and the placer,
respectively. VPR generates and prints out a routing serial number to allow easy regression testing of the router.

Finally, if you need to route an FPGA whose routing architecture cannot be described in VPR’s architecture description
file, don’t despair! The router, graphics, sanity checker, and statistics routines all work only with a graph that defines
all the available routing resources in the FPGA and the permissible connections between them. If you change the
routines that build this graph (in rr_graph*.c) so that they create a graph describing your FPGA, you should be able
to route your FPGA. If you want to read a text file describing the entire routing resource graph, call the dump_rr_graph
subroutine.

4.9 Placer and Router Debugger

4.9.1 Overview

It can be very useful to stop the program at a significant point and evaluate the circuit at that stage. This debugger
allows setting breakpoints during placement and routing using a variety of variables and operations. For example the
user can stop the placer after a certain number of perturbations, temperature changes, or when a specific block is moved.
It can also stop after a net is routed in the routing process and other such scenarios. There are multiple ways to set and
manipulate breakpoints which are all explained in detail below.

4.9. Placer and Router Debugger 223

Verilog-to-Routing Documentation, Release 8.1.0-dev

4.9.2 Adding a breakpoint

Currently the user is required to have graphics on in order to set breakpoints. By clocking the “Debug” button, the
debugger window opens up and from there the user can enter integer values in the entry fields and set breakpoints.
A more advanced option is using expressions which allows a wider variety of settings since the user can incorporate
multiple variables and use boolean operators. This option is found by clicking the “Advanced” button in the debugger
window. Using an expression is more accurate than the entry fields when setting multiple breakpoints.

4.9.3 Enabling/Disabling a breakpoint

Enabling and disabling breakpoints are done using the checkboxes in front of each breakpoint in the breakpoint list.
The breakpoint is enabled when the box is checked and disabled otherwise.

4.9.4 Deleting a breakpoint

Deleting a breakpoint is done using the trash can button in front of each breakpoint in the breakpoint list.

4.9.5 Reaching a breakpoint

Upon reaching a breakpoint, the program will stop, notify the user which breakpoint was encountered, and give a
summary of the current variable values. This information is presented through a pop-up window and printed to the
terminal as well.

4.9.6 Available Variables

You can also find the variables’ list in the Advanced Settings Window, on the left.

Placer Variables
• move_num: every placer perturbation counts as a move, so the user can stop the program after a certain

number of moves. This breakpoint can be enabled through the entry field on the main debugger window
or using an expression. It should be noted however, that using the entry field would proceed the specified
number of moves. (as in the second example)

– Ex. move _num == 33

– Ex. move_num += 4

• temp_count: every time the temperature is updated it counts as an increase to temp_count. This
breakpoint can be enabled through the entry field on the main debugger window or using an expression.
It should be noted however, that using the entry field would proceed the specified number of
temperatures. (as in the second example)

224 Chapter 4. VPR

Verilog-to-Routing Documentation, Release 8.1.0-dev

– Ex. temp_count == 5

– Ex. temp_count += 5

• from_block: in every placer move one or more blocks are relocated. from_block specifies the first block
that is relocated in every move; and a breakpoint of this type stops the program when the first block
moved is the one indicated by the user. This breakpoint can be enabled through the entry field on the
main debugger window or using an expression.

– Ex. from_block == 83

• in_blocks_affected: this variable allows you to stop after your specified block was moved. Unlike
“from_block” which only checks the first block relocated in every move, in_blocks_affected looks
through all the blocks whose locations were changed by that move. This breakpoint can only be enabled
through the use of an expression.

– Ex. in_blocks_affected == 83

Router Variables
• router_iter: Every pass through the whole netlist (with each unrouted or poorly routed net being

re-routed) counts as a router iteration. This breakpoint can be enabled through the entry field on the
main debugger window or using an expression.

– Ex. router_iter == 2

• route_net_id: stops after the specified net is rerouted. This breakpoint can be enabled through the entry
field on the main debugger window or using an expression.

– route_net_id == 12

4.9.7 Available Operators

• ==
– Ex. temp_count == 2

• >
– Ex. move_num > 94

• <
– Ex. move_num < 94

• >=
– Ex. router_iter >=2

• <=
– Ex. router_iter <=2

• &&
– Ex. from_block == 83 && move_num > 72

• ||
– Ex. in_blocks_affected == 11 || temp_count == 9

• +=
– Ex. move_num += 8

4.9. Placer and Router Debugger 225

Verilog-to-Routing Documentation, Release 8.1.0-dev

226 Chapter 4. VPR

CHAPTER

FIVE

PARMYS

Parmys frontend utilizes Yosys which is a framework for Verilog RTL synthesis and Parmys-plugin as partial mapper.

5.1 Quickstart

5.1.1 Prerequisites

• ctags

• bison

• flex

• g++ 9.x

• cmake 3.16 (minimum version)

• time

• cairo

• build-essential

• libreadline-dev

• gawk tcl-dev

• libffi-dev

• git

• graphviz

• xdot

• pkg-config

• python3-dev

• libboost-system-dev

• libboost-python-dev

• libboost-filesystem-dev

• zlib1g-dev

227

Verilog-to-Routing Documentation, Release 8.1.0-dev

5.1.2 Building

To build the VTR flow with the Parmys front-end you may use the VTR Makefile wrapper, by calling the make
CMAKE_PARAMS="-DWITH_PARMYS=ON" command in the $VTR_ROOT directory.

Note: Our CI testing is on Ubuntu 22.04, so that is the best tested platform and recommended for development.

Note: Compiling the VTR flow with the -DYOSYS_F4PGA_PLUGINS=ON flag is required to build and install Yosys
SystemVerilog and UHDM plugins. Using this compile flag, the Yosys-F4PGA-Plugins and Surelog repositories are
cloned in the $VTR_ROOT/libs/EXTERNAL directory and then will be compiled and added as external plugins to the
Parmys front-end.

5.1.3 Basic Usage

To run the VTR flow with the Parmys front-end, you would need to run the run_vtr_flow.py script with the start stage
specified as parmys.

./run_vtr_flow `PATH_TO_VERILOG_FILE.v` `PATH_TO_ARCH_FILE.xml` -start parmys

Note: Please see Run VTR Flow for advanced usage of the Parmys front-end with external plugins.

Note: Parmys is the default frontend in VTR flow which means it is no more necessary to pass build flags to cmake
or explicitly define the start stage of vtr flow as parmys.

5.2 Yosys

Yosys is a Verilog RTL synthesis framework to perform logic synthesis, elaboration, and converting a subset of the
Verilog Hardware Description Language (HDL) into a BLIF netlist. Please see Yosys GitHub repository for more
information.

5.3 Parmys Plugin

Parmys (Partial Mapper for Yosys) is a Yosys plugin that performs intelligent partial mapping (inference, binding, and
hard/soft logic trade-offs) from Odin-II. Please see Parmys-Plugin GitHub repository for more information.

228 Chapter 5. Parmys

https://github.com/chipsalliance/yosys-f4pga-plugins
https://github.com/chipsalliance/Surelog
https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/vtr_flow/scripts/run_vtr_flow.py
https://docs.verilogtorouting.org/en/latest/vtr/run_vtr_flow/#advanced-usage
https://github.com/YosysHQ/yosys.git
https://github.com/CAS-Atlantic/parmys-plugin.git

Verilog-to-Routing Documentation, Release 8.1.0-dev

5.3.1 Available parameters

-a ARCHITECTURE_FILE

VTR FPGA architecture description file (XML)

-c XML_CONFIGURATION_FILE

Configuration file

-top top_module

set the specified module as design top module

-nopass

No additional passes will be executed.

-exact_mults int_value

To enable mixing hard block and soft logic implementation of adders

-mults_ratio float_value

To enable mixing hard block and soft logic implementation of adders

-vtr_prim

No additional passes will be executed.

-vtr_prim

loads vtr primitives as modules, if the design uses vtr primitives then this flag is mandatory for first run

5.4 Structure

5.4.1 Structure of Parmys Frontend (Yosys + Parmys Plugin)

$VTR_ROOT
vtr_flow

misc
parmys

synthesis.tcl
parmys

parmys-plugin
core
mapping
netlist
techlibs
tests
utils

test-utils
third_party

yosys
backends
examples
frontends
guidelines
kernel
libs

(continues on next page)

5.4. Structure 229

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

manual
misc
passes
techlibs
tests

230 Chapter 5. Parmys

CHAPTER

SIX

ODIN II

Odin II is used for logic synthesis and elaboration, converting a subset of the Verilog Hardware Description Language
(HDL) into a BLIF netlist.

Note: Odin-II has been deprecated and will be removed in a future version. Now VTR uses Parmys as the default
frontend which utilizes Yosys as elaborator with partial mapping features enabled.

To build the VTR flow with the Odin-II front-end you may use the VTR Makefile wrapper, by calling the make
CMAKE_PARAMS="-DWITH_ODIN=ON" command in the $VTR_ROOT directory.

6.1 Quickstart

6.1.1 Prerequisites

• ctags

• bison

• flex

• gcc 5.x

• cmake 3.9 (minimum version)

• time

• cairo

6.1.2 Building

To build you may use the Makefile wrapper in the $VTR_ROOT/odin_ii make build To build with debug symbols
you may use the Makefile wrapper in $VTR_ROOT/odin_ii make debug

NOTE

ODIN uses CMake as it’s build system. CMake provides a portable cross-platform build systems with
many useful features. For unix-like systems we provide a wrapper Makefile which supports the traditional
make and make clean commands, but calls CMake behind the scenes.

WARNING

After you build Odin, please run from the $VTR_ROOT/odin_ii make test. This will simulate and verify
all of the included microbenchmark circuits to ensure that Odin is working correctly on your system.

231

Verilog-to-Routing Documentation, Release 8.1.0-dev

6.1.3 Basic Usage

./odin_ii [arguments]

*Requires one and only one of -c, -v, or -b

6.1.4 Example Usage

The following are simple command-line arguments and a description of what they do. It is assumed that they are being
performed in the odin_ii directory.

./odin_ii -v <path/to/verilog/File>

Passes a verilog HDL file to Odin II where it is synthesized. Warnings and errors may appear regarding the HDL code.

./odin_ii -b <path/to/blif/file>

Passes a blif file to Odin II where it is synthesized.

./odin_ii -v <path/to/verilog/File> -a <path/to/arch/file> -o myModel.blif

Passes a verilog HDL file and and architecture to Odin II where it is synthesized. Odin will use the architecture to do
technology mapping. Odin will output the blif in the current directory at ./myModel.blif Warnings and errors may
appear regarding the HDL code.

6.2 User guide

6.2.1 Synthesis Arguments

6.2.2 Simulation Arguments

To activate simulation you must pass one and only one of the following argument:

• -g <number of random vector>

• -t <input vector file>

Simulation always produces the folowing files:

• input_vectors

• output_vectors

• test.do (ModelSim)

232 Chapter 6. Odin II

Verilog-to-Routing Documentation, Release 8.1.0-dev

6.2.3 Examples

Example for -p

NOTE
Matching for -p is done via strstr so general strings will match all similar pins and nodes. (Eg: FF_NODE
will create a single port with all flipflops)

Example of .xml configuration file for -c

<config>
<verilog_files>

<!-- Way of specifying multiple files in a project! -->
<verilog_file>verilog_file.v</verilog_file>

</verilog_files>
<output>

<!-- These are the output flags for the project -->
<output_type>blif</output_type>
<output_path_and_name>./output_file.blif</output_path_and_name>
<target>

<!-- This is the target device the output is being built for -->
<arch_file>fpga_architecture_file.xml</arch_file>

</target>
</output>
<optimizations>

<!-- This is where the optimization flags go -->
</optimizations>
<debug_outputs>

<!-- Various debug options -->
<debug_output_path>.</debug_output_path>
<output_ast_graphs>1</output_ast_graphs>
<output_netlist_graphs>1</output_netlist_graphs>

</debug_outputs>
</config>

NOTE
Hard blocks can be simulated; given a hardblock named block in the architecture file with an instance of
it named instance in the verilog file, write a C method with signature defined in SRC/sim_block.h and
compile it with an output filename of block+instance.so in the directory you plan to invoke Odin_II
from.

When compiling the file, you’ll need to specify the following arguments to the compiler (assuming that
you’re in the SANBOX directory):

cc -I../../libarchfpga_6/include/ -L../../libarchfpga_6 -lvpr_6 -lm --shared -o
block+instance.so block.c.

If the netlist generated by Odin II contains the definition of a hardblock which doesn’t have a shared object
file defined for it in the working directory, Odin II will not work if you specify it to use the simulator with
the -g or -t options.

WARNING

6.2. User guide 233

Verilog-to-Routing Documentation, Release 8.1.0-dev

Use of static memory within the simulation code necessitates compiling a distinct shared object file for
each instance of the block you wish to simulate. The method signature the simulator expects contains only
int and int[] parameters, leaving the code provided to simulate the hard block agnostic of the internal Odin
II data structures. However, a cycle parameter is included to provide researchers with the ability to delay
results of operations performed by the simulation code.

Examples vector file for -t or -T

Example vector input file
GLOBAL_SIM_BASE_CLK intput_1 input_2 input_3 clk_input
Comment
0 0XA 1011 0XD 0
0 0XB 0011 0XF 1
0 0XC 1100 0X2 0

Example vector output file
output_1 output_2
Comment
1011 0Xf
0110 0X4
1000 0X5

NOTE
Each line represents a vector. Each value must be specified in binary or hex. Comments may be included
by placing an # at the start of the line. Blank lines are ignored. Values may be separated by non-newline
whitespace. (tabs and spaces) Hex values must be prefixed with 0X or 0x.

Each line in the vector file represents one cycle, or one falling edge and one rising edge. Input vectors are
read on a falling edge, while output vectors are written on a rising edge.

The input vector file does not have a clock input, it is assumed it is controlled by a single global clock that
is why it is necessary to add a GLOBAL_SIM_BASE_CLK to the input. To read more about this please
visit here.

Examples using vector files -t and -T

A very useful function of Odin II is to compare the simulated output vector file with the expected output vector file
based on an input vector file and a verilog file. To do this the command line should be:

./odin_ii -v <Path/to/verilog/file> -t <Path/to/Input/Vector/File> -T <Path/to/Output/
→˓Vector/File>

An error will arrise if the output vector files do not match.

Without an expected vector output file the command line would be:

./odin_ii -v <Path/to/verilog/file> -t <Path/to/Input/Vector/File>

The generated output file can be found in the current directory under the name output_vectors.

234 Chapter 6. Odin II

http://www.cs.columbia.edu/~cs6861/sis/blif/index.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

Example using vector files -g

This function generates N amounnt of random input vectors for Odin II to simulate with.

./odin_ii -v <Path/to/verilog/file> -g 10

This example will produce 10 autogenerated input vectors. These vectors can be found in the current directory under
input_vectors and the resulting output vectors can be found under output_vectors.

6.2.4 Getting Help

If you have any questions or concerns there are multiple outlets to express them. There is a google group for users who
have questions that is checked regularly by Odin II team members. If you have found a bug please make an issue in the
vtr-verilog-to-routing GitHub repository.

6.2.5 Reporting Bugs and Feature Requests

Creating an Issue on GitHub

Odin II is still in development and there may be bugs present. If Odin II doesn’t perform as expected or doesn’t adhere
to the Verilog Standard, it is important to create a bug report in the GitHub repository. There is a template included,
but make sure to include micro-benchmark(s) that reproduces the bug. This micro-benchmark should be as simple as
possible. It is important to link some documentation that provides insight on what Odin II is doing that differs from
the Verilog Standard. Linked below is a pdf of the IEEE Standard of Verilog (2005) that could help.

IEEE Standard for Verilog Hardware Description Language

If unsure, there are several outlets to ask questions in the Help section.

Feature Requests

If there are any features that the Odin II system overlooks or would be a great addition, please make a feature request
in the GitHub repository. There is a template provided and be as in-depth as possible.

6.3 Verilog Support

6.3.1 Lexicon

Verilog Synthesizable Operators Support

Verilog NON-Synthesizable Operator Support

Verilog Synthesizable Keyword Support

Verilog NON-Synthesizable Keyword Support

C Functions support

6.3. Verilog Support 235

https://groups.google.com/forum/#!forum/vtr-users
https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues?q=is%3Aopen+is%3Aissue+label%3AOdin
https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues/new/choose
http://staff.ustc.edu.cn/~songch/download/IEEE.1364-2005.pdf
https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues/new/choose

Verilog-to-Routing Documentation, Release 8.1.0-dev

Verilog Synthesizable preprocessor Keywords Support

6.3.2 Syntax

inline port declaration in the module declaration i.e:

module a(input clk)
...
endmodule

6.4 Contributing

The Odin II team welcomes outside help from anyone interested. To fix issues or add a new feature submit a PR or
WIP PR following the provided guidelines.

6.4.1 Creating a Pull Request (PR)

Important Before creating a Pull Request (PR), if it is a bug you have happened upon and intend to fix make sure you
create an issue beforehand.

Pull requests are intended to correct bugs and improve Odin’s performance. To create a pull request, clone the vtr-
verilog-to-routing repository and branch from the master. Make changes to the branch that improve Odin II and correct
the bug. Important In addition to correcting the bug, it is required that test cases (benchmarks) are created that
reproduce the issue and are included in the regression tests. An example of a good test case could be the benchmark
found in the “Issue” being addressed. The results of these new tests need to be regenerate. See regression tests for
further instruction. Push these changes to the cloned repository and create the pull request. Add a description of the
changes made and reference the “issue” that it corrects. There is a template provided on GitHub.

Creating a “Work in progress” (WIP) PR

Important Before creating a WIP PR, if it is a bug you have happened upon and intend to fix make sure you create an
issue beforehand.

A “work in progress” PR is a pull request that isn’t complete or ready to be merged. It is intended to demonstrate
that an Issue is being addressed and indicates to other developers that they don’t need to fix it. Creating a WIP PR
is similar to a regular PR with a few adjustments. First, clone the vtr-verilog-to-routing repository and branch from
the master. Make changes to that branch. Then, create a pull request with that branch and include WIP in the title.
This will automatically indicate that this PR is not ready to be merged. Continue to work on the branch, pushing the
commits regularly. Like a PR, test cases must be included through the use of benchmarks. See regression tests for
further instruction.

236 Chapter 6. Odin II

https://github.com/verilog-to-routing/vtr-verilog-to-routing
https://github.com/verilog-to-routing/vtr-verilog-to-routing
https://github.com/verilog-to-routing/vtr-verilog-to-routing

Verilog-to-Routing Documentation, Release 8.1.0-dev

Formating

Odin II shares the same contributing philosophy as VPR. Most importantly PRs will be rejected if they do not respect
the coding standard: see VPRs coding standard

To correct any code formatting issues flagged by the CI system, simply run make format to adapt the newly added
code to VPR’s coding standard. If you have made alterations to python scripts, you would probably need to run make
format-py and ./dev/pylint_check.py from the VTR root directory to correct the python code formatting and
check for lint errors.

6.4.2 Odin II’s Flow

Odin II functions by systematically executing a set of steps determined by the files and arguments passed in. The figure
below illustrates the flow of Odin II if a Verilog File is passed, with an optional FPGA Architecture Specification File.
The simulator is only activated if an Input Vector file is passed in which creates the Output Vector File.

.. graphviz :: digraph G { 0 [label=”Verilog HDL File”,shape=plaintext]; 2 [label=”Input Vector File”,shape=plaintext];
3 [label=”Output Vector File”,shape=diamond]; 4 [label=”FPGA Architecture Specification File”,shape=plaintext];
5 [label=”Build Abstract Syntax Tree”,shape=box]; 6 [label=”Elaborate AST”,shape=box]; 7 [label=”Build
Netlist”,shape=box]; 8 [label=”Partial Mapping”,shape=box]; 10 [label=”Simulator”,shape=box]; 11 [label=”Output
Blif”,shape=diamond];

0 -> 5 -> 6 -> 7 -> 8
7->10 [color=purple]
4->8 [style=dotted] [color=purple]
8->11
4->10 [style=dotted] [color=purple]
2->10 [color=purple]
10->3 [color=purple]

}

Currently, BLIF files being passed in are only used for simulation; no partial mapping takes place. The flow is depicted
in the figure below.

.. graphviz :: digraph G { 0 [label=”Input Blif File”,shape=plaintext]; 1 [label=”Read Blif”,shape=box]; 3
[label=”Build Netlist”,shape=box]; 4 [label=”Output Blif”,shape=diamond]; 5 [label=”Simulator”,shape=box]; 6
[label=”FPGA Architecture Specification File”,shape=box]; 7 [label=”Input Vector File”,shape=plaintext]; 8 [la-
bel=”Output Vector File”,shape=diamond];

0->1->3
3->5 [color=purple]
3->4
5->8 [color=purple]
7->5 [color=purple]
6->5 [style=dotted] [color=purple]

}

6.4. Contributing 237

https://docs.verilogtorouting.org/en/latest/dev/contributing/contributing/
https://docs.verilogtorouting.org/en/latest/dev/developing/#code-formatting

Verilog-to-Routing Documentation, Release 8.1.0-dev

Building the Abstract Syntax Tree (AST)

Odin II uses Bison and Flex to parse a passed Verilog file and produce an Abstract Syntax Tree for each module found
in the Verilog File. The AST is considered the “front-end” of Odin II. Most of the code for this can be found in
verilog_bison.y, verilog_flex.l and parse_making_ast.cpp located in the odin_ii/SRC directory.

AST Elaboration

In this step, Odin II parses through the ASTs and elaborates specific parts like for loops, function instances, etc. It
also will simplify the tree and rid itself of useless parts, such as an unused if statement. It then builds one large AST,
incorporating each module. The code for this can mostly be found in ast_elaborate.cpp located in the odin_ii/SRC
directory.

NOTE
These ASTs can be viewed via graphviz using the command -A. The file(s) will appear in the main direc-
tory.

Building the Netlist

Once again, Odin II parses through the AST assembling a Netlist. During the Netlist creation, pins are assigned and
connected. The code for this can be found in netlist_create_from_ast.cpp located in the odin_ii/SRC directory.

NOTE
The Netlist can be viewed via graphviz using the command -G. The file will appear in the main directory
under net.dot.

Partial Mapping

During partial mapping, Odin II maps the logic using an architecture. If no architecture is passed in, Odin II will create
the soft logic and use LUTs for mapping. However, if an architecture is passed, Odin II will map accordingly to the
available hard blocks and LUTs. It uses a combination of soft logic and hard logic.

Simulator

The simulator of Odin II takes an Input Vector file and creates an Output Vector file determined by the behaviour
described in the Verilog file or BLIF file.

6.4.3 Useful tools of Odin II for Developers

When making improvements to Odin II, there are some features the developer should be aware of to make their job
easier. For instance, Odin II has a -A and -G command that prints the ASTs and Netlist viewable with GraphViz. These
files can be found in the odin_ii directory. This is very helpful to visualize what is being created and how everything is
related to each other in the Netlist and AST.

Another feature to be aware of is make test. This build runs through all the regression tests and will list all the
benchmarks that fail. It is important to run this after every major change implemented to ensure the change only affects
benchmarks it was intended to effect (if any). It sheds insight on what needs to be fixed and how close it is to being
merged with the master.

238 Chapter 6. Odin II

Verilog-to-Routing Documentation, Release 8.1.0-dev

6.5 Regression Tests

Regression tests are tests that are repeatedly executed to assess functionality. Each regression test targets a specific
function of Odin II. There are two main components of a regression test; benchmarks and a configuration file. The
benchmarks are comprised of verilog files, input vector files and output vector files. The configuration file calls upon
each benchmark and synthesizes them with different architectures. The current regression tests of Odin II can be found
in regression_test/benchmark.

6.5.1 Benchmarks

Benchmarks are used to test the functionality of Odin II and ensure that it runs properly. Benchmarks of Odin II can be
found in regression_test/benchmark/verilog/any_folder. Each benchmark is comprised of a verilog file, an input vector
file, and an output vector file. They are called upon during regression tests and synthesized with different architectures
to be compared against the expected results. These tests are useful for developers to test the functionality of Odin II
after implementing changes. The command make test runs through all these tests, comparing the results to previously
generated results, and should be run through when first installing.

Unit Benchmarks

Unit benchmarks are the simplest of benchmarks. They are meant to isolate different functions of Odin II. The goal
is that if it does not function properly, the error can be traced back to the function being tested. This cannot always
be achieved as different functions depend on others to work properly. It is ideal that these benchmarks test bit size
capacity, erroneous cases, as well as standards set by the IEEE Standard for Verilog® Hardware Description Language
- 2005.

Micro Benchmarks

Micro benchmarks are precise, like unit benchmarks, however are more syntactic. They are meant to isolate the be-
haviour of different functions. They trace the behaviour of functions to ensure they adhere to the IEEE Standard for
Verilog® Hardware Description Language - 2005. Like unit benchmarks, they should check erroneous cases and be-
havioural standards set by the IEEE Standard for Verilog® Hardware Description Language - 2005.

Macro Benchmarks

Macro benchmarks are more realistic tests that incorporate multiple functions of Odin II. They are intended to simulate
real-user behaviour to ensure that functions work together properly. These tests are designed to test things like syntax
and more complicated standards set by the IEEE Standard for Verilog® Hardware Description Language - 2005.

External Benchmarks

External benchmarks are benchmarks created by outside users to the project. It is possible to pull an outside directory
and build them on the fly thus creating a benchmark for Odin II.

6.5. Regression Tests 239

Verilog-to-Routing Documentation, Release 8.1.0-dev

6.5.2 Creating Regression Tests

New Regression Test Checklist

• Create benchmarks here

• Create configuration file here

• Create a folder in the task directory for the configuration file here

• Generate the results here

• Add the task to a suite (large suite if generating the results takes longer than 3 minutes, otherwise put in light
suite) here

• Update the documentation by providing a summary in Regression Test Summary section and updating the Di-
rectory Tree here

New Benchmarks added to Regression Test Checklist

• Create benchmarks and add them to the correct regression test folder found in the benchmark/verilog directory
here (There is a description of each regression test here)

• Regenerate the results here

Include

• verilog file

• input vector file

• expected output vector file

• configuration file (conditional)

• architecture file (optional)

Creating Benchmarks

If only a few benchmarks are needed for a PR, simply add the benchmarks to the appropriate set of regression tests.
The Regression Test Summary summarizes the target of each regression test which may be helpful.

The standard of naming the benchmarks are as follows:

• verilog file: meaningful_title.v

• input vector file: meaningful_title_input

• output vector file: meaningful_title_output

If the tests needed do not fit in an already existing set of regression tests or need certain architecture(s), create a separate
folder in the verilog directory and label appropriately. Store the benchmarks in that folder. Add the architecture (if it
isn’t one that already exists) to ../vtr_flow/arch.

NOTE
If a benchmark fails and should pass, include a $display statement in the verilog file in the following format:

$display("Expect::FUNCTION < message >);

240 Chapter 6. Odin II

Verilog-to-Routing Documentation, Release 8.1.0-dev

The function should be in all caps and state what is causing the issue. For instance, if else if was behaving
incorrectly it should read ELSE_IF. The message should illustrate what should happen and perhaps a
suggestion in where things are going wrong.

Creating a Configuration File

A configuration file is only necessary if the benchmarks added are placed in a new folder. The configuration file is
where architectures and commands are specified for the synthesis of the benchmarks. The configuration file must be
named task.conf. The following is an example of a standard task.conf (configuration) file:

########################
<title> benchmarks config
########################

commands
regression_params=--include_default_arch
script_synthesis_params=--time_limit 3600s
script_simulation_params=--time_limit 3600s
simulation_params= -L reset rst -H we

setup the architecture (standard architectures already available)
archs_dir=../vtr_flow/arch/timing

arch_list_add=k6_N10_40nm.xml
arch_list_add=k6_N10_mem32K_40nm.xml
arch_list_add=k6_frac_N10_frac_chain_mem32K_40nm.xml

setup the circuits
circuits_dir=regression_test/benchmark/verilog/

circuit_list_add=<verilog file group>/*.vh
circuit_list_add=<verilog file group>/*.v

synthesis_parse_file=regression_test/parse_result/conf/synth.toml
simulation_parse_file=regression_test/parse_result/conf/sim.toml

The following key = value are available for configuration files:

Regression Parameters:

• --verbose display error logs after batch of tests

• --concat_circuit_list concatenate the circuit list and pass it straight through to odin

• --generate_bench generate input and output vectors from scratch

• --disable_simulation disable the simulation for this task

• --disable_parallel_jobs disable running circuit/task pairs in parallel

• --randomize perform a dry run randomly to check the validity of the task and flow |

• --regenerate_expectationregenerate expectation and override the expected value only if there’s a mismatch
|

• --generate_expectation generate the expectation and override the expectation file |

6.5. Regression Tests 241

Verilog-to-Routing Documentation, Release 8.1.0-dev

Creating a Task

The following diagram illustrates the structure of regression tests. Each regression test needs a corresponding folder in
the task directory containing the configuration file. The <task display name> should have the same name as the verilog
file group in the verilog directory. This folder is where the synthesis results and simulation results will be stored. The
task diplay name and the verilog file group should share the same title.

odin_ii
regression_test

benchmark
task

< task display name >
[simulation_result.json]
[synthesis_result.json]
task.conf

verilog
< verilog file group >

*.v
*.vh

Creating a Complicated Task

There are times where multiple configuration files are needed in a regression test due to different commands wanted or
architectures. The task cmd_line_args is an example of this. If that is the case, each configuration file will still need its
own folder, however these folders should be placed in a parent folder.

odin_ii
regression_test

benchmark
task

< parent task display name >
| < task display name >

[simulation_result.json]
[synthesis_result.json]

| task.conf
< task display name >

. [simulation_result.json]

. [synthesis_result.json]
| . task.conf

verilog
< verilog file group >

*.v
*.vh

242 Chapter 6. Odin II

Verilog-to-Routing Documentation, Release 8.1.0-dev

Creating a Suite

Suites are used to call multiple tasks at once. This is handy for regenerating results for multiple tasks. In the diagram
below you can see the structure of the suite. The suite contains a configuration file that calls upon the different tasks
named task_list.conf.

odin_ii
regression_test

benchmark
suite

< suite display name >
| task_list.conf

task
< parent task display name >

| < task display name >
[simulation_result.json]
[synthesis_result.json]

| task.conf
< task display name >

[simulation_result.json]
[synthesis_result.json]

| task.conf
< task display name >

[simulation_result.json]
[synthesis_result.json]

| task.conf
verilog

< verilog file group >
*.v
*.vh

In the configuration file all that is required is to list the tasks to be included in the suite with the path. For example, if
the wanted suite was to call the binary task and the operators task, the configuration file would be as follows:

regression_test/benchmark/task/operators
regression_test/benchmark/task/binary

For more examples of task_list.conf configuration files look at the already existing configuration files in the suites.

Regenerating Results

WARNING
BEFORE regenerating the result, run make test to ensure any changes in the code don’t affect the results
of benchmarks beside your own. If they do, the failing benchmarks will be listed.

Regenerating results is necessary if any regression test is changed (added benchmarks), if a regression test is added, or
if a bug fix was implemented that changes the results of a regression test. For all cases, it is necessary to regenerate the
results of the task corresponding to said change. The following commands illustrate how to do so:

make sanitize

then: where N is the number of processors in the computer, and the path following -t ends with the same name as the
folder you placed

6.5. Regression Tests 243

Verilog-to-Routing Documentation, Release 8.1.0-dev

./verify_odin.sh -j N --regenerate_expectation -t regression_test/benchmark/task/<task_
→˓display_name>

NOTE
DO NOT run the make sanitize if regenerating the large test. It is probable that the computer will not
have enough ram to do so and it will take a long time. Instead run make build

For more on regenerating results, refer to the Verify Script section.

6.5.3 Regression Test Summaries

c_functions

This regression test targets c functions supported by Verilog such as clog_2.

cmd_line_args

This is a more complicated regression test that incorporates multiple child tasks. It targets different commands available
in Odin II. Although it doesn’t have a dedicated set of benchmarks in the verilog folder, the configuration files call on
different preexisting benchmarks.

FIR

FIR is an acronym for “Finite Impulse Response”. These benchmarks were sourced from Layout Aware Optimization
of High Speed Fixed Coefficient FIR Filters for FPGAs. They test a method of implementing high speed FIR filters on
FPGAs discussed in the paper.

full

The full regression test is designed to test real user behaviour.
It does this by simulating flip flop, muxes and other common uses of Verilog.

large

This regression test targets cases that require a lot of ram and time.

micro

The micro regression test targets hards blocks and pieces that can be easily instantiated in architectures.

244 Chapter 6. Odin II

http://kastner.ucsd.edu/fir-benchmarks/?fbclid=IwAR0sLk_qaBXfeCeDuzD2EWBrCJ_qGQd7rNISYPemU6u98F6CeFjWOMAM2NM
http://kastner.ucsd.edu/fir-benchmarks/?fbclid=IwAR0sLk_qaBXfeCeDuzD2EWBrCJ_qGQd7rNISYPemU6u98F6CeFjWOMAM2NM

Verilog-to-Routing Documentation, Release 8.1.0-dev

mixing_optimization

The mixing optimization regression test targets mixing implementations for operations implementable in hard blocks
and their soft logic counterparts that can be can be easily instantiated in architectures. The tests support extensive
command line coverage, as well as provide infrastructure to enable the optimization from an .xml configuration file,
require for using the optimization as a part of VTR synthesis flow.

operators

This regression test targets the functionality of different operators. It checks bit size capacity and behaviour.

syntax

The syntax regression test targets syntactic behaviour. It checks that functions work cohesively together and adhere to
the verilog standard.

keywords

This regression test targets the function of keywords. It has a folder or child for each keyword containing their respective
benchmarks. Some folders have benchmarks for two keywords like task_endtask because they both are required together
to function properly.

preprocessor

This set of regression test includes benchmarks targetting compiler directives available in Verilog.

Regression Tests Directory Tree

benchmark
suite

complex_synthesis_suite
task_list.conf

full_suite
task_list.conf

heavy_suite
task_list.conf

light_suite
task_list.conf

task
arch_sweep

synthesis_result.json
task.conf

c_functions
clog2

simulation_result.json
synthesis_result.json
task.conf

cmd_line_args
batch_simulation

(continues on next page)

6.5. Regression Tests 245

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

simulation_result.json
synthesis_result.json
task.conf

best_coverage
simulation_result.json
synthesis_result.json
task.conf

coverage
simulation_result.json
synthesis_result.json
task.conf

graphviz_ast
synthesis_result.json
task.conf

graphviz_netlist
synthesis_result.json
task.conf

parallel_simulation
simulation_result.json
synthesis_result.json
task.conf

FIR
simulation_result.json
synthesis_result.json
task.conf

fpu
hardlogic

simulation_result.json
synthesis_result.json
task.conf

full
simulation_result.json
synthesis_result.json
task.conf

keywords
always
and
assign
at_parenthathese
automatic
begin_end
buf
case_endcase
default
defparam
else
for
function_endfunction
generate
genvar
if
initial

(continues on next page)

246 Chapter 6. Odin II

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

inout
input_output
integer
localparam
macromodule
nand
negedge
nor
not
or
parameter
posedge
reg
signed_unsigned
specify_endspecify
specparam
star
task_endtask
while
wire
xnor
xor

koios
synthesis_result.json
task.conf

large
synthesis_result.json
task.conf

micro
simulation_result.json
synthesis_result.json
task.conf

mixing_optimization
mults_auto_full

simulation_result.json
synthesis_result.json
task.conf

mults_auto_half
simulation_result.json
synthesis_result.json
task.conf

mults_auto_none
simulation_result.json
synthesis_result.json
task.conf

config_file_half
config_file_half.xml
simulation_result.json
synthesis_result.json
task.conf

operators
simulation_result.json

(continues on next page)

6.5. Regression Tests 247

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

synthesis_result.json
task.conf

preprocessor
simulation_result.json
synthesis_result.json
task.conf

syntax
simulation_result.json
synthesis_result.json
task.conf

vtr
synthesis_result.json
task.conf

third_party
SymbiFlow

build.sh
task.mk

verilog
FIR
c_functions
common
full
keywords
large
micro
operators
preprocessor
syntax

6.6 Verify Script

The verify_odin.sh script is designed for generating regression test results.

./verify_odin.sh [args]

248 Chapter 6. Odin II

Verilog-to-Routing Documentation, Release 8.1.0-dev

6.6.1 Arguments

*The tool requires a task to run hence -t <task directory> must be passed in

6.6.2 Examples

The following examples are being performed in the odin_ii directory:

Generating Results for a New Task

To generate new results, synthesis_parse_file and simulation_parse_file must be specified in task.conf file.

The following commands will generate the results of a new regression test using N processors:

make sanitize

./verify_odin.sh --generate_expectation -j N -t <regression_test/benchmark/task/<task_
→˓name>

A synthesis_result.json and a simulation_result.json will be generated in the task’s folder. The simulation results for
each benchmark are only generated if they synthesize correctly (no exit error), thus if none of the benchmarks synthesize
there will be no simulation_result.json generated.

Regenerating Results for a Changed Test

The following commands will only generate the results of the changes. If there are new benchmarks it will add to the
results. If there are deleted benchmarks or modified benchmarks the results will be updated accordingly.

make sanitize

./verify_odin.sh --regenerate_expectation -t <regression_test/benchmark/task/<task_name>

Generating Results for a Suite

The following commands generate the results for all the tasks called upon in a suite.

make sanitize

NOTE
If the suite calls upon the large test DO NOT run make sanitize. Instead run make build.

./verify_odin.sh --generate_expectation -t <regression_test/benchmark/suite/<suite_name>

6.6. Verify Script 249

Verilog-to-Routing Documentation, Release 8.1.0-dev

Checking the configuration file

The following commands will check if a configuration file is being read properly.

make build

./verify_odin.sh --dry_run -t <regression_test/benchmark/<path/to/config_file/difrectory>

Running a subset of tests in a suite

The following commands will run only the tests matching <test regex>:

./verify_odin.sh -t <regression_test/benchmark/suite/<suite_name> <test regex>

You may specify as many test regular expressions as desired and the script will run any test that matches at least one
regex

NOTE
This uses grep’s extended regular expression syntax for matching test names.
Test names matched are of the form <suite_name>/<test_name>/

6.7 TESTING ODIN II

The verify_odin.sh script will simulate the microbenchmarks and a larger set of benchmark circuits. These scripts
use simulation results which have been verified against ModelSim.

After you build Odin-II, run make test to ensure that everything is working correctly on your system. The
verify_odin.sh also simulates the blif output, as well as simulating the verilog with and without the architecture
file.

Before checking in any changes to Odin II, please run both of these scripts to ensure that both of these scripts execute
correctly. If there is a failure, use ModelSim to verify that the failure is within Odin II and not a faulty regression test.
If it is a faulty regression test, make an issue on GitHub. The Odin II simulator will produce a test.do file containing
clock and input vector information for ModelSim.

When additional circuits are found to agree with ModelSim, they should be added to the regression tests. When new
features are added to Odin II, new microbenchmarks should be developed which test those features for regression. This
process is illustrated in the Developer Guide, in the Regression Tests section.

6.7.1 USING MODELSIM TO TEST ODIN II

ModelSim may be installed as part of the Quartus II Web Edition IDE. Load the Verilog circuit into a new project in
ModelSim. Compile the circuit, and load the resulting library for simulation.

You may use random vectors via the -g option, or specify your own input vectors using the -t option. When simulation
is complete, load the resulting test.do file into your ModelSim project and execute it. You may now directly compare
the vectors in the output_vectors file with those produced by ModelSim.

NOTE

For simulation purposes, you may need to handle the GLOBAL_SIM_BASE_CLK signal in the
input_vector by either adding this signal as an input signal to the top module or removing it from
the input_vector file.

250 Chapter 6. Odin II

https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues/new/choose

Verilog-to-Routing Documentation, Release 8.1.0-dev

To add the verified vectors and circuit to an existing test set, move the Verilog file (eg: test_circuit.v) to the test set
folder. Next, move the input_vectors file to the test set folder, and rename it test_circuit_odin_input. Finally,
move the output_vectors file to the test set folder and rename it test_circuit_odin_output.

6.7. TESTING ODIN II 251

Verilog-to-Routing Documentation, Release 8.1.0-dev

252 Chapter 6. Odin II

CHAPTER

SEVEN

ABC

ABC is included with in VTR to perform technology independant logic optimization and technology mapping.

ABC is developed at UC Berkeley, see the ABC homepage for details.

253

http://www.eecs.berkeley.edu/~alanmi/abc/

Verilog-to-Routing Documentation, Release 8.1.0-dev

254 Chapter 7. ABC

CHAPTER

EIGHT

TUTORIALS

8.1 Design Flow Tutorials

These tutorials describe how to run the VTR design flow.

8.1.1 Basic Design Flow Tutorial

The following steps show you to run the VTR design flow to map a sample circuit to an FPGA architecture containing
embedded memories and multipliers:

1. From the $VTR_ROOT , move to the vtr_flow/tasks/regression_tests/vtr_reg_basic directory, and
run:

../../../scripts/run_vtr_task.py basic_no_timing

or:

$VTR_ROOT/vtr_flow/scripts/run_vtr_task.py basic_no_timing

The subdirectory regression_tests/vtr_reg_basic contains tests that are to be run before each commit.
They check for basic functionallity to make sure nothing was extremely out of order. This command runs
the VTR flow on a set of circuits and a single architecture. The files generated from the run are stored in
basic_no_timing/run[#] where [#] is the number of runs you have done. If this is your first time running
the flow, the results will be stored in basic_no_timing/run001. When the script completes, enter the following
command:

../../../scripts/python_libs/vtr/parse_vtr_task.py basic_no_timing/

This parses out the information of the VTR run and outputs the results in a text file called run[#]/
parse_results.txt.

More info on how to run the flow on multiple circuits and architectures along with different options later. Before
that, we need to ensure that the run that you have done works.

2. The basic_no_timing comes with golden results that you can use to check for correctness. To do this check, enter
the following command:

../../../scripts/python_libs/vtr/parse_vtr_task.py -check_golden basic_no_timing

It should return: basic_no_timing...[Pass]

255

Verilog-to-Routing Documentation, Release 8.1.0-dev

Note: Due to the nature of the algorithms employed, the measurements that you get may not match exactly with
the golden measurements. We included margins in our scripts to account for that noise during the check. We
also included runtime estimates based on our machine. The actual runtimes that you get may differ dramatically
from these values.

3. To see precisely which see circuits, architecture, and CAD flow was employed by the run, look at vtr_flow/
tasks/regression_tests/vtr_reg_basic/config.txt. Inside this directory, the config.txt file con-
tains the circuits and architecture file employed in the run.

Some also contain a golden_results.txt file that is used by the scripts to check for correctness.

The $VTR_ROOT/vtr_flow/scripts/run_vtr_flow.py script describes the CAD flow employed in the test.
You can modify the flow by editing this script.

At this point, feel free to run any of the tasks with the prefix vtr_reg These are regression tests included with the
flow that test various combinations of flows, architectures, and benchmarks. Refer to the README for a description
what each task aims to test.

4. For more information on how the vtr_flow infrastructure works (and how to add the tests that you want to do to
this infrastructure) see Tasks.

8.2 Architecture Modeling

This page provides information on the FPGA architecture description language used by VPR. This page is geared
towards both new and experienced users of vpr.

New users may wish to consult the conference paper that introduces the language [LAR11]. This paper describes the
motivation behind this new language as well as a short tutorial on how to use the language to describe different complex
blocks of an FPGA.

New and experienced users alike should consult the detailed Architecture Reference which serves to documents every
property of the language.

Multiple examples of how this language can be used to describe different types of complex blocks are provided as
follows:

Complete Architecture Description Walkthrough Examples:

8.2.1 Classic Soft Logic Block Tutorial

The following is an example on how to use the VPR architecture description langauge to describe a classical academic
soft logic block. First we provide a step-by-step explanation on how to construct the logic block. Afterwards, we present
the complete code for the logic block.

Fig. 8.1 shows an example of a classical soft logic block found in academic FPGA literature. This block consists of
N Basic Logic Elements (BLEs). The BLE inputs can come from either the inputs to the logic block or from other
BLEs within the logic block via a full crossbar. The logic block in this figure has I general inputs, one clock input, and
N outputs (where each output corresponds to a BLE). A BLE can implement three configurations: a K-input look-up
table (K-LUT), a flip-flop, or a K-LUT followed by a flip-flop. The structure of a classical soft logic block results in
a property known as logical equivalence for certain groupings of input/output pins. Logically equivalent pins means
that connections to those pins can be swapped without changing functionality. For example, the input to AND gates
are logically equivalent while the inputs to a 4-bit adders are not logically equivalent. In the case of a classical soft
logic block, all input pins are logically equivalent (due to the fully populated crossbar) and all output pins are logically
equivalent (because one can swap any two BLEs without changing functionality). Logical equivalence is important

256 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 8.1: Model of a classic FPGA soft logic cluster

because it enables the CAD tools to make optimizations especially during routing. We describe a classical soft logic
block with N = 10, I = 22, and K = 4 below.

First, a complex block pb_type called CLB is declared with appropriate input, output and clock ports. Logical equiva-
lence is labelled at ports where it applies:

<pb_type name="clb">
<input name="I" num_pins="22" equivalent="full"/>
<output name="O" num_pins="10" equivalent="instance"/>
<clock name="clk" equivalent="false"/>

A CLB contains 10 BLEs. Each BLE has 4 inputs, one output, and one clock. A BLE block and its inputs and outputs
are specified as follows:

<pb_type name="ble" num_pb="10">
<input name="in" num_pins="4"/>
<output name="out" num_pins="1"/>
<clock name="clk"/>

A BLE consists of one LUT and one flip-flop (FF). Both of these are primitives. Recall that primitive physical blocks
must have a blif_model attribute that matches with the model name in the BLIF input netlist. For the LUT, the model is
.names in BLIF. For the FF, the model is .latch in BLIF. The class construct denotes that these are special (common)
primitives. The primitives contained in the BLE are specified as:

<pb_type name="lut_4" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>

</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>

Fig. 8.2 shows the ports of the BLE with the input and output pin sets. The inputs to the LUT and flip-flop are direct
connections. The multiplexer allows the BLE output to be either the LUT output or the flip-flop output. The code to
specify the interconnect is:

<interconnect>
<direct input="lut_4.out" output="ff.D"/>
<direct input="ble.in" output="lut_4.in"/>
<mux input="ff.Q lut_4.out" output="ble.out"/>

(continues on next page)

8.2. Architecture Modeling 257

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 8.2: Internal BLE names

(continued from previous page)

<direct input="ble.clk" output="ff.clk"/>
</interconnect>

</pb_type>

The CLB interconnect is then modeled (see Fig. 8.1). The inputs to the 10 BLEs (ble[9:0].in) can be connected to any
of the CLB inputs (clb.I) or any of the BLE outputs (ble[9:0].out) by using a full crossbar. The clock of the CLB is
wired to multiple BLE clocks, and is modeled as a full crossbar. The outputs of the BLEs have direct wired connections
to the outputs of the CLB and this is specified using one direct tag. The CLB interconnect specification is:

<interconnect>
<complete input="{clb.I ble[9:0].out}" output="ble[9:0].in"/>
<complete input="clb.clk" output="ble[9:0].clk"/>
<direct input="ble[9:0].out" output="clb.O"/>

</interconnect>

Finally, we model the connectivity between the CLB and the general FPGA fabric (recall that a CLB communicates
with other CLBs and I/Os using general-purpose interconnect). The ratio of tracks that a particular input/output pin of
the CLB connects to is defined by fc_in/fc_out. In this example, a fc_in of 0.15 means that each input pin connects
to 15% of the available routing tracks in the external-to-CLB routing channel adjacent to that pin. The pinlocations
tag is used to associate pins on the CLB with which side of the logic block pins reside on where the pattern spread
corresponds to evenly spreading out the pins on all sides of the CLB in a round-robin fashion. In this example, the CLB
has a total of 33 pins (22 input pins, 10 output pins, 1 clock pin) so 8 pins are assigned to all sides of the CLB except
one side which gets assigned 9 pins.

<!-- Describe complex block relation with FPGA -->

<fc_in type="frac">0.150000</fc_in>
<fc_out type="frac">0.125000</fc_out>

<pinlocations pattern="spread"/>

</pb_type>

Classic Soft Logic Block Complete Example

<!--
Example of a classical FPGA soft logic block with
N = 10, K = 4, I = 22, O = 10
BLEs consisting of a single LUT followed by a flip-flop that can be bypassed
-->

<pb_type name="clb">
(continues on next page)

258 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<input name="I" num_pins="22" equivalent="full"/>
<output name="O" num_pins="10" equivalent="instance"/>
<clock name="clk" equivalent="false"/>

<pb_type name="ble" num_pb="10">
<input name="in" num_pins="4"/>
<output name="out" num_pins="1"/>
<clock name="clk"/>

<pb_type name="lut_4" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="4" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>

</pb_type>
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>

<interconnect>
<direct input="lut_4.out" output="ff.D"/>
<direct input="ble.in" output="lut_4.in"/>
<mux input="ff.Q lut_4.out" output="ble.out"/>
<direct input="ble.clk" output="ff.clk"/>

</interconnect>
</pb_type>

<interconnect>
<complete input="{clb.I ble[9:0].out}" output="ble[9:0].in"/>
<complete input="clb.clk" output="ble[9:0].clk"/>
<direct input="ble[9:0].out" output="clb.O"/>

</interconnect>

<!-- Describe complex block relation with FPGA -->

<fc_in type="frac">0.150000</fc_in>
<fc_out type="frac">0.125000</fc_out>

<pinlocations pattern="spread"/>

</pb_type>

8.2. Architecture Modeling 259

Verilog-to-Routing Documentation, Release 8.1.0-dev

8.2.2 Multi-mode Logic Block Tutorial

This tutorial aims to introduce how to build a representative multi-mode logic block by exploiting VPR architecture
description language, as well as debugging tips to guarantee each mode of a logic block is functional.

Definition

Modern FPGA logic blocks are designed to operate in various modes, so as to provide best performance for different
applications. VPR offers enriched syntax to support highly flexible multi-mode logic block architecture.

Fig. 8.3 shows the physical implemenation of a Fracturable Logic Element (FLE), which consists of a fracturable 6-input
Look-Up Table (LUT), two Flip-flops (FFs) and routing multiplexers to select between combinational and sequential
outputs.

Fig. 8.3: Schematic of a fracturable logic element

The FLE in Fig. 8.3 can operate in two different modes: (a) dual 5-input LUT mode (see Fig. 8.4); and (b) single 6-input
LUT mode (see Fig. 8.5). Note that each operating mode does not change the physical implementation of FLE but uses
part of the programmable resources.

Architecture Description

To accurately model the operating modes of the FLE, we will use the syntax <pb_type> and <mode> in architecture
description language.

<!-- Multi-mode Fracturable Logic Element definition begin -->
<pb_type name="fle" num_pb="10">
<input name="in" num_pins="6"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>

<!-- Dual 5-input LUT mode definition begin -->
<mode name="n2_lut5">
<!-- Detailed definition of the dual 5-input LUT mode -->

(continues on next page)

260 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 8.4: Simplified organization when the FLE in Fig. 8.3 operates in dual 5-input LUT mode

Fig. 8.5: Simplified organization when the FLE in Fig. 8.3 operates in 6-input LUT mode

8.2. Architecture Modeling 261

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

</mode>
<!-- Dual 5-input LUT mode definition end -->

<!-- 6-input LUT mode definition begin -->
<mode name="n1_lut6">
<!-- Detailed definition of the 6-input LUT mode -->

</mode>
<!-- 6-input LUT mode definition end -->

</pb_type>

In the above XML codes, we define a <pb_type> for the FLE by following the port organization in Fig. 8.3. Under the
<pb_type>, we create two modes, n2_lut5 and n1_lut6, corresponding to the two operating modes as shown in Fig.
8.4 and Fig. 8.5. Note that we focus on operating modes here, which are sufficient to perform architecture evaluation.

Under the dual 5-input LUT mode, we can define <pb_type> and <interconnect> to model the schematic in Fig.
8.4.

<!-- Dual 5-input LUT mode definition begin -->
<mode name="n2_lut5">
<pb_type name="lut5inter" num_pb="1">
<input name="in" num_pins="5"/>
<output name="out" num_pins="2"/>
<clock name="clk" num_pins="1"/>
<!-- Define two LUT5 + FF pairs (num_pb=2) corresponding to :numref:`fig_frac_lut_le_

→˓dual_lut5_mode` -->
<pb_type name="ble5" num_pb="2">
<input name="in" num_pins="5"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define the LUT -->
<pb_type name="lut5" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="5" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->
<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR␣

→˓cannot do LUT rebalancing,
we instead take the average of these numbers to get more stable␣

→˓results
82e-12
173e-12
261e-12
263e-12
398e-12
-->

<delay_matrix type="max" in_port="lut5.in" out_port="lut5.out">
235e-12
235e-12
235e-12
235e-12
235e-12

</delay_matrix>
</pb_type>
<!-- Define the flip-flop -->

(continues on next page)

262 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>

</pb_type>
<interconnect>
<direct name="direct1" input="ble5.in[4:0]" output="lut5[0:0].in[4:0]"/>
<direct name="direct2" input="lut5[0:0].out" output="ff[0:0].D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -

→˓->
<pack_pattern name="ble5" in_port="lut5[0:0].out" out_port="ff[0:0].D"/>

</direct>
<direct name="direct3" input="ble5.clk" output="ff[0:0].clk"/>
<mux name="mux1" input="ff[0:0].Q lut5.out[0:0]" output="ble5.out[0:0]">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut5.out[0:0]" out_port="ble5.out[0:0]"/>
<delay_constant max="45e-12" in_port="ff[0:0].Q" out_port="ble5.out[0:0]"/>

</mux>
</interconnect>

</pb_type>
<interconnect>
<direct name="direct1" input="lut5inter.in" output="ble5[0:0].in"/>
<direct name="direct2" input="lut5inter.in" output="ble5[1:1].in"/>
<direct name="direct3" input="ble5[1:0].out" output="lut5inter.out"/>
<complete name="complete1" input="lut5inter.clk" output="ble5[1:0].clk"/>

</interconnect>
</pb_type>
<interconnect>
<direct name="direct1" input="fle.in[4:0]" output="lut5inter.in"/>
<direct name="direct2" input="lut5inter.out" output="fle.out"/>
<direct name="direct3" input="fle.clk" output="lut5inter.clk"/>

</interconnect>
</mode>
<!-- Dual 5-input LUT mode definition end -->

Under the 6-input LUT mode, we can define <pb_type> and <interconnect> to model the schematic in Fig. 8.5.

<!-- 6-LUT mode definition begin -->
<mode name="n1_lut6" disable_packing="false">
<!-- Define 6-LUT mode, consisting of a LUT6 + FF pair (num_pb=1) corresponding to␣

→˓:numref:`fig_frac_lut_le_lut6_mode`-->
<pb_type name="ble6" num_pb="1">
<input name="in" num_pins="6"/>
<output name="out" num_pins="1"/>
<clock name="clk" num_pins="1"/>
<!-- Define LUT -->
<pb_type name="lut6" blif_model=".names" num_pb="1" class="lut">
<input name="in" num_pins="6" port_class="lut_in"/>
<output name="out" num_pins="1" port_class="lut_out"/>
<!-- LUT timing using delay matrix -->

(continues on next page)

8.2. Architecture Modeling 263

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<!-- These are the physical delay inputs on a Stratix IV LUT but because VPR␣
→˓cannot do LUT rebalancing,

we instead take the average of these numbers to get more stable results
82e-12
173e-12
261e-12
263e-12
398e-12
397e-12
-->

<delay_matrix type="max" in_port="lut6.in" out_port="lut6.out">
261e-12
261e-12
261e-12
261e-12
261e-12
261e-12

</delay_matrix>
</pb_type>
<!-- Define flip-flop -->
<pb_type name="ff" blif_model=".latch" num_pb="1" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" num_pins="1" port_class="clock"/>
<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>

</pb_type>
<interconnect>
<direct name="direct1" input="ble6.in" output="lut6[0:0].in"/>
<direct name="direct2" input="lut6.out" output="ff.D">
<!-- Advanced user option that tells CAD tool to find LUT+FF pairs in netlist -->
<pack_pattern name="ble6" in_port="lut6.out" out_port="ff.D"/>

</direct>
<direct name="direct3" input="ble6.clk" output="ff.clk"/>
<mux name="mux1" input="ff.Q lut6.out" output="ble6.out">
<!-- LUT to output is faster than FF to output on a Stratix IV -->
<delay_constant max="25e-12" in_port="lut6.out" out_port="ble6.out"/>
<delay_constant max="45e-12" in_port="ff.Q" out_port="ble6.out"/>

</mux>
</interconnect>

</pb_type>
<interconnect>
<!--direct name="direct1" input="fle.in" output="ble6.in"/-->
<direct name="direct2" input="ble6.out" output="fle.out[0:0]"/>
<direct name="direct3" input="fle.clk" output="ble6.clk"/>

</interconnect>
</mode>
<!-- 6-LUT mode definition end -->

Full example can be found at link.

264 Chapter 8. Tutorials

https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/vtr_flow/arch/timing/k6_frac_N10_40nm.xml

Verilog-to-Routing Documentation, Release 8.1.0-dev

Validation in packer

After finishing the architecture description, the next step is to validate that VPR can map logic to each operating mode.
Since VPR packer will exhaustively try each operating mode and finally map logic to one of it. As long as there is an
operating mode that is feasible for mapping, VPR will complete packing without errors. However, this may shadow the
problems for other operating modes. It is entirely possible that an operating mode is not defined correctly and is always
dropped by VPR during packing. Therefore, it is necessary to validate the correctness of each operating mode. To
efficiently reach the goal, we will temporarily apply the syntax disable_packing to specific modes, so as to narrow
down the search space.

First, we can disable the dual 5-input LUT mode for packer, by changing

<mode name="n2_lut5">

to

<mode name="n2_lut5" disable_packing="true">

As a result, VPR packer will only consider the 6-input LUT mode during packing. We can try a benchmark
mult_2x2.blif by following the design flow tutorial Basic Design Flow Tutorial. If the flow-run succeed, it means
that the 6-input LUT mode is being successfully used by the packer.

Then, we can enable the dual 5-input LUT mode for packer, and disable the 6-input LUT mode, by changing

<mode name="n2_lut5" disable_packing="true">

<mode name="n1_lut6">

to

<mode name="n2_lut5">

<mode name="n1_lut6" disable_packing="true">

In this case, VPR packer will consider the dual 5-input LUT mode during packing. We can again try the same benchmark
mult_2x2.blif by following the design flow tutorial Basic Design Flow Tutorial. If the flow-run succeed, it means that
the dual 5-input LUT mode is being successfully used by the packer.

Finally, after having validated that both operating modes are being successfully used by the packer, we can re-enable
both operating modes by changing to

<mode name="n2_lut5">
<mode name="n1_lut6">

Now, VPR packer will try to choose the best operating mode to use.

Tips for Debugging

When packing fails on a multi-mode logic block, the following procedures are recommended to quickly spot the bugs.

• Apply disable_packing to all the modes, except the one you suspect to be problematic. In the example of this
tutorial, you may disable the packing for mode n2_lut5 and focus on debugging mode n1_lut6.

<mode name="n2_lut5" disable_packing="true">
<mode name="n1_lut6" disable_packing="false">

8.2. Architecture Modeling 265

https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/vtr_flow/benchmarks/microbenchmarks/mult_2x2.blif
https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/vtr_flow/benchmarks/microbenchmarks/mult_2x2.blif

Verilog-to-Routing Documentation, Release 8.1.0-dev

• Turn on verbose output of packer --pack_verbosity (see details in Packing Options. Recommend to use
a higher verbosity number than the default value, e.g., 5. Consider the example blif and architecture in this
tutorial, you may execute vpr with

vpr k6_frac_N10_40nm.xml mult_2x2.blif --pack_verbosity 5

• Packer will show detailed information about why it fails. For example:

FAILED Detailed Routing Legality
Placed atom 'p3' (.names) at clb[0][default]/fle[4][n1_lut6]/ble6[0][default]/
→˓lut6[0][lut6]/lut[0]
(921:cluster-external source (LB_SOURCE)-->1:'clb[0].I[1]') (1:'clb[0].I[1]'-->62:
→˓'fle[0].in[1]') (62:'fle[0].in[1]'-->123:'ble6[0].in[1]') (123:'ble6[0].in[1]'-->
→˓131:'lut6[0].in[1]') (131:'lut6[0].in[1]'-->138:'lut[0].in[1]') (138:'lut[0].in[1]
→˓'-->930:cluster-internal sink (LB_SINK accessible via architecture pins: clb[0]/
→˓fle[0]/ble6[0]/lut6[0]/lut[0].in[0], clb[0]/fle[0]/ble6[0]/lut6[0]/lut[0].in[1],␣
→˓clb[0]/fle[0]/ble6[0]/lut6[0]/lut[0].in[2], clb[0]/fle[0]/ble6[0]/lut6[0]/lut[0].
→˓in[3], clb[0]/fle[0]/ble6[0]/lut6[0]/lut[0].in[4], clb[0]/fle[0]/ble6[0]/lut6[0]/
→˓lut[0].in[5]))

Which indicates that input ports of <pb_type name=lut6> in the mode n1_lut6 may be dangling, and thus
leads to failures in routing stage of packing.

• You may modify the architecture description and re-run vpr until packing succeeds.

• Move on to the next mode you will debug and repeat from the first step.

The debugging tips are not only applicable to the example showed in this tutorial but rather general to any multi-mode
logic block architecture.

8.2.3 Configurable Memory Bus-Based Tutorial

Warning: The description in this tutorial is not yet supported by CAD tools due to bus-based routing.

See also:
Configurable Memory Block Example for a supported version.

Configurable memories are found in today’s commercial FPGAs for two primary reasons:

1. Memories are found in a variety of different applications including image processing, soft processors, etc and

2. Implementing memories in soft logic (LUTs and flip-flops) is very costly in terms of area.

Thus it is important for modern FPGA architects be able to describe the specific properties of the configurable memory
that they want to investigate. The following is an example on how to use the langauge to describe a configurable memory
block. First we provide a step-by-step explanation on how to construct the memory block. Afterwards, we present the
complete code for the memory block.

Fig. 8.6 shows an example of a single-ported memory. This memory block can support multiple different width and
depth combinations (called aspect ratios). The inputs can be either registered or combinational. Similarly, the outputs
can be either registered or combinational. Also, each memory configuration has groups of pins called ports that share
common properties. Examples of these ports include address ports, data ports, write enable, and clock. In this example,
the block memory has the following three configurations: 2048x1, 1024x2, and 512x4, which will be modeled using
modes. We begin by declaring the reconfigurable block RAM along with its I/O as follows:

266 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 8.6: Model of a configurable memory block

<pb_type name="block_RAM">
<input name="addr" num_pins="11" equivalent="false"/>
<input name="din" num_pins="4" equivalent="false"/>
<input name="wen" num_pins="1" equivalent="false"/>
<output name="dout" num_pins="4" equivalent="false"/>
<clock name="clk" equivalent="false"/>

The input and output registers are defined as 2 sets of bypassable flip-flops at the I/Os of the block RAM. There are
a total of 16 inputs that can be registered as a bus so 16 flip-flops (for the 11 address lines, 4 data lines, and 1 write
enable), named ff_reg_in, must be declared. There are 4 output bits that can also be registered, so 4 flip-flops (named
ff_reg_out) are declared:

<pb_type name="ff_reg_in" blif_model=".latch" num_pb="16" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="ff_reg_out" blif_model=".latch" num_pb="4" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>

Each aspect ratio of the memory is declared as a mode within the memory physical block type as shown below. Also,
observe that since memories are one of the special (common) primitives, they each have a class attribute:

Fig. 8.7: Different modes of operation for the memory block.

<pb_type name="mem_reconfig" num_pb="1">
<input name="addr" num_pins="11"/>
<input name="din" num_pins="4"/>

(continues on next page)

8.2. Architecture Modeling 267

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<input name="wen" num_pins="1"/>
<output name="dout" num_pins="4"/>

<!-- Declare a 512x4 memory type -->
<mode name="mem_512x4_mode">
<!-- Follows the same pattern as the 1024x2 memory type declared below -->

</mode>

<!-- Declare a 1024x2 memory type -->
<mode name="mem_1024x2_mode">
<pb_type name="mem_1024x2" blif_model=".subckt sp_mem" class="memory">
<input name="addr" num_pins="10" port_class="address"/>
<input name="din" num_pins="2" port_class="data_in"/>
<input name="wen" num_pins="1" port_class="write_en"/>
<output name="dout" num_pins="2" port_class="data_out"/>

</pb_type>
<interconnect>
<direct input="mem_reconfig.addr[9:0]" output="mem_1024x2.addr"/>
<direct input="mem_reconfig.din[1:0]" output="mem_1024x2.din"/>
<direct input="mem_reconfig.wen" output="mem_1024x2.wen"/>
<direct input="mem_1024x2.dout" output="mem_reconfig.dout[1:0]"/>

</interconnect>
</mode>

<!-- Declare a 2048x1 memory type -->
<mode name="mem_2048x1_mode">
<!-- Follows the same pattern as the 1024x2 memory type declared above -->

</mode>

</pb_type>

The top-level interconnect structure of the memory SPCB is shown in Fig. 8.8. The inputs of the SPCB can connect to
input registers or bypass the registers and connect to the combinational memory directly. Similarly, the outputs of the
combinational memory can either be registered or connect directly to the outputs. The description of the interconnect
is as follows:

Fig. 8.8: Interconnect within the configurable memory block.

1 <interconnect>
2 <direct input="{block_RAM.wen block_RAM.din block_RAM.addr}" output="ff_reg_in[15:0].D

→˓"/>
(continues on next page)

268 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

3 <direct input="mem_reconfig.dout" output="ff_reg_out[3:0].D"/>
4 <mux input="mem_reconfig.dout ff_reg_out[3:0].Q" output="block_RAM.dout"/>
5 <mux input="{block_RAM.wen block_RAM.din[3:0] block_RAM.addr[10:0]} ff_reg_in[15:0].Q"
6 output="{mem_reconfig.wen mem_reconfig.din mem_reconfig.addr}"/>
7 <complete input="block_RAM.clk" output="ff_reg_in[15:0].clk"/>
8 <complete input="block_RAM.clk" output="ff_reg_out[3:0].clk"/>
9 </interconnect>

10 </pb_type>

The interconnect for the bypassable registers is complex and so we provide a more detailed explanation. First, consider
the input registers. Line 2 shows that the SPCB inputs drive the input flip-flops using direct wired connections. Then, in
line 5, the combinational configurable memory inputs {mem_reconfig.wen mem_reconfig.din mem_reconfig.
addr} either come from the flip-flops ff_reg_in[15:0].Q or from the SPCB inputs {block_RAM.wen block_RAM.
din[3:0] block_RAM.addr[10:0]} through a 16-bit 2-to-1 bus-based mux. Thus completing the bypassable input
register interconnect. A similar scheme is used at the outputs to ensure that either all outputs are registered or none at
all. Finally, we model the relationship of the memory block with the general FPGA fabric. The ratio of tracks that a
particular input/output pin of the CLB connects to is defined by fc_in/fc_out. The pinlocations describes which side of
the logic block pins reside on where the pattern spread describes evenly spreading out the pins on all sides of the CLB
in a round-robin fashion.

<!-- Describe complex block relation with FPGA -->

<fc_in type="frac">0.150000</fc_in>
<fc_out type="frac">0.125000</fc_out>

<pinlocations pattern="spread"/>

Configurable Memory Bus-Based Complete Example

<pb_type name="block_RAM">
<input name="addr" num_pins="11" equivalent="false"/>
<input name="din" num_pins="4" equivalent="false"/>
<input name="wen" num_pins="1" equivalent="false"/>
<output name="dout" num_pins="4" equivalent="false"/>
<clock name="clk" equivalent="false"/>
<pb_type name="ff_reg_in" blif_model=".latch" num_pb="16" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="ff_reg_out" blif_model=".latch" num_pb="4" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>

<pb_type name="mem_reconfig" num_pb="1">
<input name="addr" num_pins="11"/>
<input name="din" num_pins="4"/>
<input name="wen" num_pins="1"/>
<output name="dout" num_pins="4"/>

(continues on next page)

8.2. Architecture Modeling 269

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<!-- Declare a 2048x1 memory type -->
<mode name="mem_2048x1_mode">
<pb_type name="mem_2048x1" blif_model=".subckt sp_mem" class="memory">
<input name="addr" num_pins="11" port_class="address"/>
<input name="din" num_pins="1" port_class="data_in"/>
<input name="wen" num_pins="1" port_class="write_en"/>
<output name="dout" num_pins="1" port_class="data_out"/>

</pb_type>
<interconnect>
<direct input="mem_reconfig.addr[10:0]" output="mem_2048x1.addr"/>
<direct input="mem_reconfig.din[0]" output="mem_2048x1.din"/>
<direct input="mem_reconfig.wen" output="mem_2048x1.wen"/>
<direct input="mem_2048x1.dout" output="mem_reconfig.dout[0]"/>

</interconnect>
</mode>

<!-- Declare a 1024x2 memory type -->
<mode name="mem_1024x2_mode">
<pb_type name="mem_1024x2" blif_model=".subckt sp_mem" class="memory">
<input name="addr" num_pins="10" port_class="address"/>
<input name="din" num_pins="2" port_class="data_in"/>
<input name="wen" num_pins="1" port_class="write_en"/>
<output name="dout" num_pins="2" port_class="data_out"/>

</pb_type>
<interconnect>
<direct input="mem_reconfig.addr[9:0]" output="mem_1024x2.addr"/>
<direct input="mem_reconfig.din[1:0]" output="mem_1024x2.din"/>
<direct input="mem_reconfig.wen" output="mem_1024x2.wen"/>
<direct input="mem_1024x2.dout" output="mem_reconfig.dout[1:0]"/>

</interconnect>
</mode>

<!-- Declare a 512x4 memory type -->
<mode name="mem_512x4_mode">
<pb_type name="mem_512x4" blif_model=".subckt sp_mem" class="memory">
<input name="addr" num_pins="9" port_class="address"/>
<input name="din" num_pins="4" port_class="data_in"/>
<input name="wen" num_pins="1" port_class="write_en"/>
<output name="dout" num_pins="4" port_class="data_out"/>

</pb_type>
<interconnect>
<direct input="mem_reconfig.addr[8:0]" output="mem_512x4.addr"/>
<direct input="mem_reconfig.din[3:0]" output="mem_512x4.din"/>
<direct input="mem_reconfig.wen" output="mem_512x4.wen"/>
<direct input="mem_512x4.dout" output="mem_reconfig.dout[3:0]"/>

</interconnect>
</mode>

</pb_type>

<interconnect>
<direct input="{block_RAM.wen block_RAM.din block_RAM.addr}" output="ff_reg_in[15:0].

(continues on next page)

270 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓D"/>
<direct input="mem_reconfig.dout" output="ff_reg_out[3:0].D"/>
<mux input="mem_reconfig.dout ff_reg_out[3:0].Q" output="block_RAM.dout"/>
<mux input="{block_RAM.wen block_RAM.din[3:0] block_RAM.addr[10:0]} ff_reg_in[15:0].Q

→˓"
output="{mem_reconfig.wen mem_reconfig.din mem_reconfig.addr}"/>

<complete input="block_RAM.clk" output="ff_reg_in[15:0].clk"/>
<complete input="block_RAM.clk" output="ff_reg_out[3:0].clk"/>

</interconnect>
</pb_type>

<!-- Describe complex block relation with FPGA -->

<fc_in type="frac">0.150000</fc_in>
<fc_out type="frac">0.125000</fc_out>

<pinlocations pattern="spread"/>

8.2.4 Fracturable Multiplier Bus-Based Tutorial

Warning: The description in this tutorial is not yet supported by CAD tools due to bus-based routing.

See also:
Fracturable Multiplier Example for a supported version.

Configurable multipliers are found in today’s commercial FPGAs for two primary reasons:

1. Multipliers are found in a variety of different applications including DSP, soft processors, scientific computing,
etc and

2. Implementing multipliers in soft logic is very area expensive.

Thus it is important for modern FPGA architects be able to describe the specific properties of the configurable multiplier
that they want to investigate. The following is an example on how to use the VPR architecture description langauge
to describe a common type of configurable multiplier called a fracturable multiplier shown in Fig. 8.9. We first give a
step-by-step description on how to construct the multiplier block followed by a complete example.

Fig. 8.9: Model of a fracturable multiplier block

The large block_mult can implement one 36x36 multiplier cluster called a mult_36x36_slice or it can imple-
ment two divisble 18x18 multipliers. A divisible 18x18 multiplier can implement a 18x18 multiplier cluster called a
mult_18x18_slice or it can be fractured into two 9x9 mulitplier clusters called mult_9x9_slice. Fig. 8.10 shows
a multiplier slice. Pins belonging to the same input or output port of a multiplier slice must be either all registered

8.2. Architecture Modeling 271

Verilog-to-Routing Documentation, Release 8.1.0-dev

or none registered. Pins belonging to different ports or different slices may have different register configurations. A
multiplier primitive itself has two input ports (A and B) and one output port (OUT).

Fig. 8.10: Multiplier slice

First, we describe the block_mult complex block as follows:

<pb_type name="block_mult">
<input name="A" num_pins="36"/>
<input name="B" num_pins="36"/>
<output name="OUT" num_pins="72"/>
<clock name="clk"/>

The block_mult complex block has two modes: a mode containing a 36x36 multiplier slice and a mode containing
two fracturable 18x18 multipliers. The mode containing the 36x36 multiplier slice is described first. The mode and
slice is declared here:

<mode name="mult_36x36">
<pb_type name="mult_36x36_slice" num_pb="1">
<input name="A_cfg" num_pins="36"/>
<input name="B_cfg" num_pins="36"/>
<input name="OUT_cfg" num_pins="72"/>
<clock name="clk"/>

This is followed by a description of the primitives within the slice. There are two sets of 36 flip-flops for the input ports
and one set of 72 flip-flops for the output port. There is one 36x36 multiplier primitive. These primitives are described
by four pb_types as follows:

<pb_type name="reg_36x36_A" blif_model=".latch" num_pb="36" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="reg_36x36_B" blif_model=".latch" num_pb="36" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="reg_36x36_out" blif_model=".latch" num_pb="72" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>

<pb_type name="mult_36x36" blif_model=".subckt mult" num_pb="1">
<input name="A" num_pins="36"/>

(continues on next page)

272 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<input name="B" num_pins="36"/>
<output name="OUT" num_pins="72"/>

</pb_type>

The slice description finishes with a specification of the interconnection. Using the same technique as in the memory
example, bus-based multiplexers are used to register the ports. Clocks are connected using the complete tag because
there is a one-to-many relationship. Direct tags are used to make simple, one-to-one connections.

<interconnect>
<direct input="mult_36x36_slice.A_cfg" output="reg_36x36_A[35:0].D"/>
<direct input="mult_36x36_slice.B_cfg" output="reg_36x36_B[35:0].D"/>
<mux input="mult_36x36_slice.A_cfg reg_36x36_A[35:0].Q" output="mult_36x36.A"/>
<mux input="mult_36x36_slice.B_cfg reg_36x36_B[35:0].Q" output="mult_36x36.B"/>

<direct input="mult_36x36.OUT" output="reg_36x36_out[71:0].D"/>
<mux input="mult_36x36.OUT reg_36x36_out[71:0].Q" output="mult_36x36_slice.OUT_cfg"/>

<complete input="mult_36x36_slice.clk" output="reg_36x36_A[35:0].clk"/>
<complete input="mult_36x36_slice.clk" output="reg_36x36_B[35:0].clk"/>
<complete input="mult_36x36_slice.clk" output="reg_36x36_out[71:0].clk"/>

</interconnect>
</pb_type>

The mode finishes with a specification of the interconnect between the slice and its parent.

<interconnect>
<direct input="block_mult.A" output="mult_36x36_slice.A_cfg"/>
<direct input="block_mult.B" output="mult_36x36_slice.A_cfg"/>
<direct input="mult_36x36_slice.OUT_cfg" output="block_mult.OUT"/>
<direct input="block_mult.clk" output="mult_36x36_slice.clk"/>

</interconnect>
</mode>

After the mode containing the 36x36 multiplier slice is described, the mode containing two fracturable 18x18 multi-
pliers is described:

<mode name="two_divisible_mult_18x18">
<pb_type name="divisible_mult_18x18" num_pb="2">
<input name="A" num_pins="18"/>
<input name="B" num_pins="18"/>
<input name="OUT" num_pins="36"/>
<clock name="clk"/>

This mode has two additional modes which are the actual 18x18 multiply block or two 9x9 mulitplier blocks. Both
follow a similar description as the mult_36x36_slice with just the number of pins halved so the details are not
repeated.

<mode name="two_divisible_mult_18x18">
<pb_type name="mult_18x18_slice" num_pb="1">
<!-- follows previous pattern for slice definition -->

</pb_type>
<interconnect>
<!-- follows previous pattern for slice definition -->

(continues on next page)

8.2. Architecture Modeling 273

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

</interconnect>
</mode>

<mode name="two_mult_9x9">
<pb_type name="mult_9x9_slice" num_pb="2">
<!-- follows previous pattern for slice definition -->

</pb_type>
<interconnect>
<!-- follows previous pattern for slice definition -->

</interconnect>
</mode>

</pb_type>

The interconnect for the divisible 18x18 mode is shown in Fig. 8.11. The unique characteristic of this interconnect is
that the input and output ports of the parent is split in half, one half for each child. A convenient way to specify this
is to use the syntax divisible_mult_18x18[1:0] which will append the pins of the ports of the children together. The
interconnect for the fracturable 18x18 mode is described here:

Fig. 8.11: Multiplier Cluster

<interconnect>
<direct input="block_mult.A" output="divisible_mult_18x18[1:0].A"/>
<direct input="block_mult.B" output="divisible_mult_18x18[1:0].B"/>
<direct input="divisible_mult_18x18[1:0].OUT" output="block_mult.OUT"/>
<complete input="block_mult.clk" output="divisible_mult_18x18[1:0].clk"/>

</interconnect>
</mode>

</pb_type>

Fracturable Multiplier Bus-Based Complete Example

<!-- Example of a fracturable mutliplier whose inputs and outputs may be optionally␣
→˓registered

The multiplier hard logic block can implement one 36x36, two 18x18, or four 9x9␣
→˓multiplies
-->
<pb_type name="block_mult">
<input name="A" num_pins="36"/>
<input name="B" num_pins="36"/>
<output name="OUT" num_pins="72"/>

(continues on next page)

274 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<clock name="clk"/>

<mode name="mult_36x36">
<pb_type name="mult_36x36_slice" num_pb="1">
<input name="A_cfg" num_pins="36" equivalence="false"/>
<input name="B_cfg" num_pins="36" equivalence="false"/>
<input name="OUT_cfg" num_pins="72" equivalence="false"/>
<clock name="clk"/>

<pb_type name="reg_36x36_A" blif_model=".latch" num_pb="36" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="reg_36x36_B" blif_model=".latch" num_pb="36" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="reg_36x36_out" blif_model=".latch" num_pb="72" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>

<pb_type name="mult_36x36" blif_model=".subckt mult" num_pb="1">
<input name="A" num_pins="36"/>
<input name="B" num_pins="36"/>
<output name="OUT" num_pins="72"/>

</pb_type>

<interconnect>
<direct input="mult_36x36_slice.A_cfg" output="reg_36x36_A[35:0].D"/>
<direct input="mult_36x36_slice.B_cfg" output="reg_36x36_B[35:0].D"/>
<mux input="mult_36x36_slice.A_cfg reg_36x36_A[35:0].Q" output="mult_36x36.A"/>
<mux input="mult_36x36_slice.B_cfg reg_36x36_B[35:0].Q" output="mult_36x36.B"/>

<direct input="mult_36x36.OUT" output="reg_36x36_out[71:0].D"/>
<mux input="mult_36x36.OUT reg_36x36_out[71:0].Q" output="mult_36x36_slice.OUT_

→˓cfg"/>

<complete input="mult_36x36_slice.clk" output="reg_36x36_A[35:0].clk"/>
<complete input="mult_36x36_slice.clk" output="reg_36x36_B[35:0].clk"/>
<complete input="mult_36x36_slice.clk" output="reg_36x36_out[71:0].clk"/>

</interconnect>
</pb_type>
<interconnect>
<direct input="block_mult.A" output="mult_36x36_slice.A_cfg"/>
<direct input="block_mult.B" output="mult_36x36_slice.A_cfg"/>
<direct input="mult_36x36_slice.OUT_cfg" output="block_mult.OUT"/>
<direct input="block_mult.clk" output="mult_36x36_slice.clk"/>

</interconnect>
(continues on next page)

8.2. Architecture Modeling 275

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

</mode>

<mode name="two_divisible_mult_18x18">
<pb_type name="divisible_mult_18x18" num_pb="2">
<input name="A" num_pins="18"/>
<input name="B" num_pins="18"/>
<input name="OUT" num_pins="36"/>
<clock name="clk"/>

<mode name="mult_18x18">
<pb_type name="mult_18x18_slice" num_pb="1">
<input name="A_cfg" num_pins="18"/>
<input name="B_cfg" num_pins="18"/>
<input name="OUT_cfg" num_pins="36"/>
<clock name="clk"/>

<pb_type name="reg_18x18_A" blif_model=".latch" num_pb="18" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="reg_18x18_B" blif_model=".latch" num_pb="18" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="reg_18x18_out" blif_model=".latch" num_pb="36" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>

<pb_type name="mult_18x18" blif_model=".subckt mult" num_pb="1">
<input name="A" num_pins="18"/>
<input name="B" num_pins="18"/>
<output name="OUT" num_pins="36"/>

</pb_type>

<interconnect>
<direct input="mult_18x18_slice.A_cfg" output="reg_18x18_A[17:0].D"/>
<direct input="mult_18x18_slice.B_cfg" output="reg_18x18_B[17:0].D"/>
<mux input="mult_18x18_slice.A_cfg reg_18x18_A[17:0].Q" output="mult_18x18.A

→˓"/>
<mux input="mult_18x18_slice.B_cfg reg_18x18_B[17:0].Q" output="mult_18x18.B

→˓"/>

<direct input="mult_18x18.OUT" output="reg_18x18_out[35:0].D"/>
<mux input="mult_18x18.OUT reg_18x18_out[35:0].Q" output="mult_18x18_slice.

→˓OUT_cfg"/>

<complete input="mult_18x18_slice.clk" output="reg_18x18_A[17:0].clk"/>
<complete input="mult_18x18_slice.clk" output="reg_18x18_B[17:0].clk"/>

(continues on next page)

276 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<complete input="mult_18x18_slice.clk" output="reg_18x18_out[35:0].clk"/>
</interconnect>

</pb_type>
<interconnect>
<direct input="divisible_mult_18x18.A" output="mult_18x18_slice.A_cfg"/>
<direct input="divisible_mult_18x18.B" output="mult_18x18_slice.A_cfg"/>
<direct input="mult_18x18_slice.OUT_cfg" output="divisible_mult_18x18.OUT"/>
<complete input="divisible_mult_18x18.clk" output="mult_18x18_slice.clk"/>

</interconnect>
</mode>

<mode name="two_mult_9x9">
<pb_type name="mult_9x9_slice" num_pb="2">
<input name="A_cfg" num_pins="9"/>
<input name="B_cfg" num_pins="9"/>
<input name="OUT_cfg" num_pins="18"/>
<clock name="clk"/>

<pb_type name="reg_9x9_A" blif_model=".latch" num_pb="9" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="reg_9x9_B" blif_model=".latch" num_pb="9" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>
<pb_type name="reg_9x9_out" blif_model=".latch" num_pb="18" class="flipflop">
<input name="D" num_pins="1" port_class="D"/>
<output name="Q" num_pins="1" port_class="Q"/>
<clock name="clk" port_class="clock"/>

</pb_type>

<pb_type name="mult_9x9" blif_model=".subckt mult" num_pb="1">
<input name="A" num_pins="9"/>
<input name="B" num_pins="9"/>
<output name="OUT" num_pins="18"/>

</pb_type>

<interconnect>
<direct input="mult_9x9_slice.A_cfg" output="reg_9x9_A[8:0].D"/>
<direct input="mult_9x9_slice.B_cfg" output="reg_9x9_B[8:0].D"/>
<mux input="mult_9x9_slice.A_cfg reg_9x9_A[8:0].Q" output="mult_9x9.A"/>
<mux input="mult_9x9_slice.B_cfg reg_9x9_B[8:0].Q" output="mult_9x9.B"/>

<direct input="mult_9x9.OUT" output="reg_9x9_out[17:0].D"/>
<mux input="mult_9x9.OUT reg_9x9_out[17:0].Q" output="mult_9x9_slice.OUT_cfg

→˓"/>

<complete input="mult_9x9_slice.clk" output="reg_9x9_A[8:0].clk"/>
<complete input="mult_9x9_slice.clk" output="reg_9x9_B[8:0].clk"/>

(continues on next page)

8.2. Architecture Modeling 277

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<complete input="mult_9x9_slice.clk" output="reg_9x9_out[17:0].clk"/>
</interconnect>

</pb_type>
<interconnect>
<direct input="divisible_mult_18x18.A" output="mult_9x9_slice[1:0].A_cfg"/>
<direct input="divisible_mult_18x18.B" output="mult_9x9_slice[1:0].A_cfg"/>
<direct input="mult_9x9_slice[1:0].OUT_cfg" output="divisible_mult_18x18.OUT"/>
<complete input="divisible_mult_18x18.clk" output="mult_9x9_slice[1:0].clk"/>

</interconnect>
</mode>

</pb_type>
<interconnect>
<direct input="block_mult.A" output="divisible_mult_18x18[1:0].A"/>
<direct input="block_mult.B" output="divisible_mult_18x18[1:0].B"/>
<direct input="divisible_mult_18x18[1:0].OUT" output="block_mult.OUT"/>
<complete input="block_mult.clk" output="divisible_mult_18x18[1:0].clk"/>

</interconnect>
</mode>

<fc_in type="frac">0.15</fc_in>
<fc_out type="frac">0.125</fc_out>

<pinlocations pattern="custom">
<loc side="left">a[35:0]</loc>
<loc side="left" offset="1">b[35:0]</loc>
<loc side="right">out[19:0]</loc>
<loc side="right" offset="1">out[39:20]</loc>
<loc side="right" offset="2">out[63:40]</loc>

</pinlocations>

</pb_type>

Architecture Description Examples:

8.2.5 Fracturable Multiplier Example

A 36x36 multiplier fracturable into 18x18s and 9x9s

<pb_type name="mult_36" height="3">
<input name="a" num_pins="36"/>
<input name="b" num_pins="36"/>
<output name="out" num_pins="72"/>

<mode name="two_divisible_mult_18x18">
<pb_type name="divisible_mult_18x18" num_pb="2">
<input name="a" num_pins="18"/>
<input name="b" num_pins="18"/>
<output name="out" num_pins="36"/>

<mode name="two_mult_9x9">
<pb_type name="mult_9x9_slice" num_pb="2">

(continues on next page)

278 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<input name="A_cfg" num_pins="9"/>
<input name="B_cfg" num_pins="9"/>
<output name="OUT_cfg" num_pins="18"/>

<pb_type name="mult_9x9" blif_model=".subckt multiply" num_pb="1" area="300">
<input name="a" num_pins="9"/>
<input name="b" num_pins="9"/>
<output name="out" num_pins="18"/>
<delay_constant max="2.03e-13" min="1.89e-13" in_port="{a b}" out_port="out

→˓"/>
</pb_type>

<interconnect>
<direct name="a2a" input="mult_9x9_slice.A_cfg" output="mult_9x9.a">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_9x9_slice.A_

→˓cfg" out_port="mult_9x9.a"/>
<C_constant C="1.89e-13" in_port="mult_9x9_slice.A_cfg" out_port="mult_

→˓9x9.a"/>
</direct>
<direct name="b2b" input="mult_9x9_slice.B_cfg" output="mult_9x9.b">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_9x9_slice.B_

→˓cfg" out_port="mult_9x9.b"/>
<C_constant C="1.89e-13" in_port="mult_9x9_slice.B_cfg" out_port="mult_

→˓9x9.b"/>
</direct>
<direct name="out2out" input="mult_9x9.out" output="mult_9x9_slice.OUT_cfg

→˓">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_9x9.out" out_

→˓port="mult_9x9_slice.OUT_cfg"/>
<C_constant C="1.89e-13" in_port="mult_9x9.out" out_port="mult_9x9_slice.

→˓OUT_cfg"/>
</direct>

</interconnect>
</pb_type>
<interconnect>
<direct name="a2a" input="divisible_mult_18x18.a" output="mult_9x9_

→˓slice[1:0].A_cfg">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="divisible_mult_

→˓18x18.a" out_port="mult_9x9_slice[1:0].A_cfg"/>
<C_constant C="1.89e-13" in_port="divisible_mult_18x18.a" out_port="mult_

→˓9x9_slice[1:0].A_cfg"/>
</direct>
<direct name="b2b" input="divisible_mult_18x18.b" output="mult_9x9_

→˓slice[1:0].B_cfg">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="divisible_mult_

→˓18x18.b" out_port="mult_9x9_slice[1:0].B_cfg"/>
<C_constant C="1.89e-13" in_port="divisible_mult_18x18.b" out_port="mult_

→˓9x9_slice[1:0].B_cfg"/>
</direct>
<direct name="out2out" input="mult_9x9_slice[1:0].OUT_cfg" output="divisible_

→˓mult_18x18.out">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_9x9_slice[1:0].

(continues on next page)

8.2. Architecture Modeling 279

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓OUT_cfg" out_port ="divisible_mult_18x18.out"/>
<C_constant C="1.89e-13" in_port="mult_9x9_slice[1:0].OUT_cfg" out_port=

→˓"divisible_mult_18x18.out"/>
</direct>

</interconnect>
</mode>

<mode name="mult_18x18">
<pb_type name="mult_18x18_slice" num_pb="1">
<input name="A_cfg" num_pins="18"/>
<input name="B_cfg" num_pins="18"/>
<output name="OUT_cfg" num_pins="36"/>

<pb_type name="mult_18x18" blif_model=".subckt multiply" num_pb="1" area=
→˓"1000">

<input name="a" num_pins="18"/>
<input name="b" num_pins="18"/>
<output name="out" num_pins="36"/>
<delay_constant max="2.03e-13" min="1.89e-13" in_port="{a b}" out_port="out

→˓"/>
</pb_type>

<interconnect>
<direct name="a2a" input="mult_18x18_slice.A_cfg" output="mult_18x18.a">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_18x18_slice.

→˓A_cfg" out_port="mult_18x18.a"/>
<C_constant C="1.89e-13" in_port="mult_18x18_slice.A_cfg" out_port="mult_

→˓18x18.a"/>
</direct>
<direct name="b2b" input="mult_18x18_slice.B_cfg" output="mult_18x18.b">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_18x18_slice.

→˓B_cfg" out_port="mult_18x18.b"/>
<C_constant C="1.89e-13" in_port="mult_18x18_slice.B_cfg" out_port="mult_

→˓18x18.b"/>
</direct>
<direct name="out2out" input="mult_18x18.out" output="mult_18x18_slice.OUT_

→˓cfg">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_18x18.out"␣

→˓out_port="mult_18x18_slice.OUT_cfg"/>
<C_constant C="1.89e-13" in_port="mult_18x18.out" out_port="mult_18x18_

→˓slice.OUT_cfg"/>
</direct>

</interconnect>
</pb_type>
<interconnect>
<direct name="a2a" input="divisible_mult_18x18.a" output="mult_18x18_slice.A_

→˓cfg">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="divisible_mult_

→˓18x18.a" out_port="mult_18x18_slice.A_cfg"/>
<C_constant C="1.89e-13" in_port="divisible_mult_18x18.a" out_port="mult_

→˓18x18_slice.A_cfg"/>
</direct>

(continues on next page)

280 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<direct name="b2b" input="divisible_mult_18x18.b" output="mult_18x18_slice.B_
→˓cfg">

<delay_constant max="2.03e-13" min="1.89e-13" in_port="divisible_mult_
→˓18x18.b" out_port="mult_18x18_slice.B_cfg"/>

<C_constant C="1.89e-13" in_port="divisible_mult_18x18.b" out_port="mult_
→˓18x18_slice.B_cfg"/>

</direct>
<direct name="out2out" input="mult_18x18_slice.OUT_cfg" output="divisible_

→˓mult_18x18.out">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_18x18_slice.

→˓OUT_cfg" out_port="divisible_mult_18x18.out"/>
<C_constant C="1.89e-13" in_port="mult_18x18_slice.OUT_cfg" out_port=

→˓"divisible_mult_18x18.out"/>
</direct>

</interconnect>
</mode>

</pb_type>
<interconnect>
<direct name="a2a" input="mult_36.a" output="divisible_mult_18x18[1:0].a">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36.a" out_port=

→˓"divisible_mult_18x18[1:0].a"/>
<C_constant C="1.89e-13" in_port="mult_36.a" out_port="divisible_mult_

→˓18x18[1:0].a"/>
</direct>
<direct name="b2b" input="mult_36.b" output="divisible_mult_18x18[1:0].a">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36.b" out_port=

→˓"divisible_mult_18x18[1:0].a"/>
<C_constant C="1.89e-13" in_port="mult_36.b" out_port="divisible_mult_

→˓18x18[1:0].a"/>
</direct>
<direct name="out2out" input="divisible_mult_18x18[1:0].out" output="mult_36.out

→˓">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="divisible_mult_

→˓18x18[1:0].out" out_port ="mult_36.out"/>
<C_constant C="1.89e-13" in_port="divisible_mult_18x18[1:0].out" out_port=

→˓"mult_36.out"/>
</direct>

</interconnect>
</mode>

<mode name="mult_36x36">
<pb_type name="mult_36x36_slice" num_pb="1">
<input name="A_cfg" num_pins="36"/>
<input name="B_cfg" num_pins="36"/>
<output name="OUT_cfg" num_pins="72"/>

<pb_type name="mult_36x36" blif_model=".subckt multiply" num_pb="1" area="4000">
<input name="a" num_pins="36"/>
<input name="b" num_pins="36"/>
<output name="out" num_pins="72"/>
<delay_constant max="2.03e-13" min="1.89e-13" in_port="{a b}" out_port="out"/>

</pb_type>
(continues on next page)

8.2. Architecture Modeling 281

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<interconnect>
<direct name="a2a" input="mult_36x36_slice.A_cfg" output="mult_36x36.a">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36x36_slice.A_cfg

→˓" out_port="mult_36x36.a"/>
<C_constant C="1.89e-13" in_port="mult_36x36_slice.A_cfg" out_port="mult_

→˓36x36.a"/>
</direct>
<direct name="b2b" input="mult_36x36_slice.B_cfg" output="mult_36x36.b">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36x36_slice.B_cfg

→˓" out_port="mult_36x36.b"/>
<C_constant C="1.89e-13" in_port="mult_36x36_slice.B_cfg" out_port="mult_

→˓36x36.b"/>
</direct>
<direct name="out2out" input="mult_36x36.out" output="mult_36x36_slice.OUT_cfg

→˓">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36x36.out" out_

→˓port="mult_36x36_slice.OUT_cfg"/>
<C_constant C="1.89e-13" in_port="mult_36x36.out" out_port="mult_36x36_slice.

→˓OUT_cfg"/>
</direct>

</interconnect>
</pb_type>
<interconnect>
<direct name="a2a" input="mult_36.a" output="mult_36x36_slice.A_cfg">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36.a" out_port=

→˓"mult_36x36_slice.A_cfg"/>
<C_constant C="1.89e-13" in_port="mult_36.a" out_port="mult_36x36_slice.A_cfg"/

→˓>
</direct>
<direct name="b2b" input="mult_36.b" output="mult_36x36_slice.B_cfg">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36.b" out_port=

→˓"mult_36x36_slice.B_cfg"/>
<C_constant C="1.89e-13" in_port="mult_36.b" out_port="mult_36x36_slice.B_cfg"/

→˓>
</direct>
<direct name="out2out" input="mult_36x36_slice.OUT_cfg" output="mult_36.out">
<delay_constant max="2.03e-13" min="1.89e-13" in_port="mult_36x36_slice.OUT_cfg

→˓" out_port="mult_36.out"/>
<C_constant C="1.89e-13" in_port="mult_36x36_slice.OUT_cfg" out_port="mult_36.

→˓out"/>
</direct>

</interconnect>
</mode>

<fc_in type="frac"> 0.15</fc_in>
<fc_out type="frac"> 0.125</fc_out>

<pinlocations pattern="spread"/>

</pb_type>

282 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

8.2.6 Configurable Memory Block Example

A memory block with a reconfigurable aspect ratio.

<pb_type name="memory" height="1">
<input name="addr1" num_pins="14"/>
<input name="addr2" num_pins="14"/>
<input name="data" num_pins="16"/>
<input name="we1" num_pins="1"/>
<input name="we2" num_pins="1"/>
<output name="out" num_pins="16"/>
<clock name="clk" num_pins="1"/>

<mode name="mem_1024x16_sp">
<pb_type name="mem_1024x16_sp" blif_model=".subckt single_port_ram" class="memory"␣

→˓num_pb="1" area="1000">
<input name="addr" num_pins="10" port_class="address"/>
<input name="data" num_pins="16" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="16" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[9:0]" output="mem_1024x16_sp.addr">
</direct>
<direct name="data1" input="memory.data[15:0]" output="mem_1024x16_sp.data">
</direct>
<direct name="writeen1" input="memory.we1" output="mem_1024x16_sp.we">
</direct>
<direct name="dataout1" input="mem_1024x16_sp.out" output="memory.out[15:0]">
</direct>
<direct name="clk" input="memory.clk" output="mem_1024x16_sp.clk">
</direct>

</interconnect>
</mode>
<mode name="mem_2048x8_dp">
<pb_type name="mem_2048x8_dp" blif_model=".subckt dual_port_ram" class="memory"␣

→˓num_pb="1" area="1000">
<input name="addr1" num_pins="11" port_class="address1"/>
<input name="addr2" num_pins="11" port_class="address2"/>
<input name="data1" num_pins="8" port_class="data_in1"/>
<input name="data2" num_pins="8" port_class="data_in2"/>
<input name="we1" num_pins="1" port_class="write_en1"/>
<input name="we2" num_pins="1" port_class="write_en2"/>
<output name="out1" num_pins="8" port_class="data_out1"/>
<output name="out2" num_pins="8" port_class="data_out2"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[10:0]" output="mem_2048x8_dp.addr1">
</direct>
<direct name="address2" input="memory.addr2[10:0]" output="mem_2048x8_dp.addr2">
</direct>

(continues on next page)

8.2. Architecture Modeling 283

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<direct name="data1" input="memory.data[7:0]" output="mem_2048x8_dp.data1">
</direct>
<direct name="data2" input="memory.data[15:8]" output="mem_2048x8_dp.data2">
</direct>
<direct name="writeen1" input="memory.we1" output="mem_2048x8_dp.we1">
</direct>
<direct name="writeen2" input="memory.we2" output="mem_2048x8_dp.we2">
</direct>
<direct name="dataout1" input="mem_2048x8_dp.out1" output="memory.out[7:0]">
</direct>
<direct name="dataout2" input="mem_2048x8_dp.out2" output="memory.out[15:8]">
</direct>
<direct name="clk" input="memory.clk" output="mem_2048x8_dp.clk">
</direct>

</interconnect>
</mode>

<mode name="mem_2048x8_sp">
<pb_type name="mem_2048x8_sp" blif_model=".subckt single_port_ram" class="memory"␣

→˓num_pb="1" area="1000">
<input name="addr" num_pins="11" port_class="address"/>
<input name="data" num_pins="8" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="8" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[10:0]" output="mem_2048x8_sp.addr">
</direct>
<direct name="data1" input="memory.data[7:0]" output="mem_2048x8_sp.data">
</direct>
<direct name="writeen1" input="memory.we1" output="mem_2048x8_sp.we">
</direct>
<direct name="dataout1" input="mem_2048x8_sp.out" output="memory.out[7:0]">
</direct>
<direct name="clk" input="memory.clk" output="mem_2048x8_sp.clk">
</direct>

</interconnect>
</mode>
<mode name="mem_4096x4_dp">
<pb_type name="mem_4096x4_dp" blif_model=".subckt dual_port_ram" class="memory"␣

→˓num_pb="1" area="1000">
<input name="addr1" num_pins="12" port_class="address1"/>
<input name="addr2" num_pins="12" port_class="address2"/>
<input name="data1" num_pins="4" port_class="data_in1"/>
<input name="data2" num_pins="4" port_class="data_in2"/>
<input name="we1" num_pins="1" port_class="write_en1"/>
<input name="we2" num_pins="1" port_class="write_en2"/>
<output name="out1" num_pins="4" port_class="data_out1"/>
<output name="out2" num_pins="4" port_class="data_out2"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>
(continues on next page)

284 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<interconnect>
<direct name="address1" input="memory.addr1[11:0]" output="mem_4096x4_dp.addr1">
</direct>
<direct name="address2" input="memory.addr2[11:0]" output="mem_4096x4_dp.addr2">
</direct>
<direct name="data1" input="memory.data[3:0]" output="mem_4096x4_dp.data1">
</direct>
<direct name="data2" input="memory.data[7:4]" output="mem_4096x4_dp.data2">
</direct>
<direct name="writeen1" input="memory.we1" output="mem_4096x4_dp.we1">
</direct>
<direct name="writeen2" input="memory.we2" output="mem_4096x4_dp.we2">
</direct>
<direct name="dataout1" input="mem_4096x4_dp.out1" output="memory.out[3:0]">
</direct>
<direct name="dataout2" input="mem_4096x4_dp.out2" output="memory.out[7:4]">
</direct>
<direct name="clk" input="memory.clk" output="mem_4096x4_dp.clk">
</direct>

</interconnect>
</mode>

<mode name="mem_4096x4_sp">
<pb_type name="mem_4096x4_sp" blif_model=".subckt single_port_ram" class="memory"␣

→˓num_pb="1" area="1000">
<input name="addr" num_pins="12" port_class="address"/>
<input name="data" num_pins="4" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="4" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[11:0]" output="mem_4096x4_sp.addr">
</direct>
<direct name="data1" input="memory.data[3:0]" output="mem_4096x4_sp.data">
</direct>
<direct name="writeen1" input="memory.we1" output="mem_4096x4_sp.we">
</direct>
<direct name="dataout1" input="mem_4096x4_sp.out" output="memory.out[3:0]">
</direct>
<direct name="clk" input="memory.clk" output="mem_4096x4_sp.clk">
</direct>

</interconnect>
</mode>
<mode name="mem_8192x2_dp">
<pb_type name="mem_8192x2_dp" blif_model=".subckt dual_port_ram" class="memory"␣

→˓num_pb="1" area="1000">
<input name="addr1" num_pins="13" port_class="address1"/>
<input name="addr2" num_pins="13" port_class="address2"/>
<input name="data1" num_pins="2" port_class="data_in1"/>
<input name="data2" num_pins="2" port_class="data_in2"/>
<input name="we1" num_pins="1" port_class="write_en1"/>

(continues on next page)

8.2. Architecture Modeling 285

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<input name="we2" num_pins="1" port_class="write_en2"/>
<output name="out1" num_pins="2" port_class="data_out1"/>
<output name="out2" num_pins="2" port_class="data_out2"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[12:0]" output="mem_8192x2_dp.addr1">
</direct>
<direct name="address2" input="memory.addr2[12:0]" output="mem_8192x2_dp.addr2">
</direct>
<direct name="data1" input="memory.data[1:0]" output="mem_8192x2_dp.data1">
</direct>
<direct name="data2" input="memory.data[3:2]" output="mem_8192x2_dp.data2">
</direct>
<direct name="writeen1" input="memory.we1" output="mem_8192x2_dp.we1">
</direct>
<direct name="writeen2" input="memory.we2" output="mem_8192x2_dp.we2">
</direct>
<direct name="dataout1" input="mem_8192x2_dp.out1" output="memory.out[1:0]">
</direct>
<direct name="dataout2" input="mem_8192x2_dp.out2" output="memory.out[3:2]">
</direct>
<direct name="clk" input="memory.clk" output="mem_8192x2_dp.clk">
</direct>

</interconnect>
</mode>

<mode name="mem_8192x2_sp">
<pb_type name="mem_8192x2_sp" blif_model=".subckt single_port_ram" class="memory"␣

→˓num_pb="1" area="1000">
<input name="addr" num_pins="13" port_class="address"/>
<input name="data" num_pins="2" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="2" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[12:0]" output="mem_8192x2_sp.addr">
</direct>
<direct name="data1" input="memory.data[1:0]" output="mem_8192x2_sp.data">
</direct>
<direct name="writeen1" input="memory.we1" output="mem_8192x2_sp.we">
</direct>
<direct name="dataout1" input="mem_8192x2_sp.out" output="memory.out[1:0]">
</direct>
<direct name="clk" input="memory.clk" output="mem_8192x2_sp.clk">
</direct>

</interconnect>
</mode>
<mode name="mem_16384x1_dp">
<pb_type name="mem_16384x1_dp" blif_model=".subckt dual_port_ram" class="memory"␣

→˓num_pb="1" area="1000">
(continues on next page)

286 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<input name="addr1" num_pins="14" port_class="address1"/>
<input name="addr2" num_pins="14" port_class="address2"/>
<input name="data1" num_pins="1" port_class="data_in1"/>
<input name="data2" num_pins="1" port_class="data_in2"/>
<input name="we1" num_pins="1" port_class="write_en1"/>
<input name="we2" num_pins="1" port_class="write_en2"/>
<output name="out1" num_pins="1" port_class="data_out1"/>
<output name="out2" num_pins="1" port_class="data_out2"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[13:0]" output="mem_16384x1_dp.addr1">
</direct>
<direct name="address2" input="memory.addr2[13:0]" output="mem_16384x1_dp.addr2">
</direct>
<direct name="data1" input="memory.data[0:0]" output="mem_16384x1_dp.data1">
</direct>
<direct name="data2" input="memory.data[1:1]" output="mem_16384x1_dp.data2">
</direct>
<direct name="writeen1" input="memory.we1" output="mem_16384x1_dp.we1">
</direct>
<direct name="writeen2" input="memory.we2" output="mem_16384x1_dp.we2">
</direct>
<direct name="dataout1" input="mem_16384x1_dp.out1" output="memory.out[0:0]">
</direct>
<direct name="dataout2" input="mem_16384x1_dp.out2" output="memory.out[1:1]">
</direct>
<direct name="clk" input="memory.clk" output="mem_16384x1_dp.clk">
</direct>

</interconnect>
</mode>

<mode name="mem_16384x1_sp">
<pb_type name="mem_16384x1_sp" blif_model=".subckt single_port_ram" class="memory"␣

→˓num_pb="1" area="1000">
<input name="addr" num_pins="14" port_class="address"/>
<input name="data" num_pins="1" port_class="data_in"/>
<input name="we" num_pins="1" port_class="write_en"/>
<output name="out" num_pins="1" port_class="data_out"/>
<clock name="clk" num_pins="1" port_class="clock"/>

</pb_type>
<interconnect>
<direct name="address1" input="memory.addr1[13:0]" output="mem_16384x1_sp.addr">
</direct>
<direct name="data1" input="memory.data[0:0]" output="mem_16384x1_sp.data">
</direct>
<direct name="writeen1" input="memory.we1" output="mem_16384x1_sp.we">
</direct>
<direct name="dataout1" input="mem_16384x1_sp.out" output="memory.out[0:0]">
</direct>
<direct name="clk" input="memory.clk" output="mem_16384x1_sp.clk">
</direct>

(continues on next page)

8.2. Architecture Modeling 287

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

</interconnect>
</mode>

<fc_in type="frac"> 0.15</fc_in>
<fc_out type="frac"> 0.125</fc_out>

<pinlocations pattern="spread"/>

</pb_type>

8.2.7 Virtex 6 like Logic Slice Example

In order to demonstrate the expressiveness of the architecture description language, we use it to describe a section of a
commercial logic block. In this example, we describe the Xilinx Virtex-6 FPGA logic slice [Xilinx Inc12], shown in
Fig. 8.12, as follows:

Fig. 8.12: Commercial FPGA logic block slice (Xilinx Virtex-6)

<pb_type name="v6_lslice">

<input name="AX" num_pins="1" equivalent="false"/>
<input name="A" num_pins="5" equivalent="false"/>
<input name="AI" num_pins="1" equivalent="false"/>
<input name="BX" num_pins="1" equivalent="false"/>
<input name="B" num_pins="5" equivalent="false"/>
<input name="BI" num_pins="1" equivalent="false"/>
<input name="CX" num_pins="1" equivalent="false"/>
<input name="C" num_pins="5" equivalent="false"/>
<input name="CI" num_pins="1" equivalent="false"/>
<input name="DX" num_pins="1" equivalent="false"/>
<input name="D" num_pins="5" equivalent="false"/>
<input name="DI" num_pins="1" equivalent="false"/>
<input name="SR" num_pins="1" equivalent="false"/>
<input name="CIN" num_pins="1" equivalent="false"/>
<input name="CE" num_pins="1" equivalent="false"/>

<output name="AMUX" num_pins="1" equivalent="false"/>
<output name="Aout" num_pins="1" equivalent="false"/>
<output name="AQ" num_pins="1" equivalent="false"/>
<output name="BMUX" num_pins="1" equivalent="false"/>
<output name="Bout" num_pins="1" equivalent="false"/>
<output name="BQ" num_pins="1" equivalent="false"/>
<output name="CMUX" num_pins="1" equivalent="false"/>

(continues on next page)

288 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<output name="Cout" num_pins="1" equivalent="false"/>
<output name="CQ" num_pins="1" equivalent="false"/>
<output name="DMUX" num_pins="1" equivalent="false"/>
<output name="Dout" num_pins="1" equivalent="false"/>
<output name="DQ" num_pins="1" equivalent="false"/>
<output name="COUT" num_pins="1" equivalent="false"/>

<clock name="CLK"/>

<!--
For the purposes of this example, the Virtex-6 fracturable LUT will be specified as␣

→˓a primitive.
If the architect wishes to explore the Xilinx Virtex-6 further, add more detail into␣

→˓this pb_type.
Similar convention for flip-flops

-->
<pb_type name="fraclut" num_pb="4" blif_model=".subckt vfraclut">
<input name="A" num_pins="5"/>
<input name="W" num_pins="5"/>
<input name="DI1" num_pins="1"/>
<input name="DI2" num_pins="1"/>
<output name="MC31" num_pins="1"/>
<output name="O6" num_pins="1"/>
<output name="O5" num_pins="1"/>

</pb_type>
<pb_type name="carry" num_pb="4" blif_model=".subckt carry">
<!-- This is actually the carry-chain but we don't have a special way to specify␣

→˓chain logic yet in UTFAL
so it needs to be specified as regular gate logic, the xor gate and the two␣

→˓muxes to the left of it that are shaded grey
comprise the logic gates representing the carry logic -->

<input name="xor" num_pins="1"/>
<input name="cmuxxor" num_pins="1"/>
<input name="cmux" num_pins="1"/>
<input name="cmux_select" num_pins="1"/>
<input name="mmux" num_pins="2"/>
<input name="mmux_select" num_pins="1"/>
<output name="xor_out" num_pins="1"/>
<output name="cmux_out" num_pins="1"/>
<output name="mmux_out" num_pins="1"/>

</pb_type>
<pb_type name="ff_small" num_pb="4" blif_model=".subckt vffs">
<input name="D" num_pins="1"/>
<input name="CE" num_pins="1"/>
<input name="SR" num_pins="1"/>
<output name="Q" num_pins="1"/>
<clock name="CK" num_pins="1"/>

</pb_type>
<pb_type name="ff_big" num_pb="4" blif_model=".subckt vffb">
<input name="D" num_pins="1"/>
<input name="CE" num_pins="1"/>
<input name="SR" num_pins="1"/>

(continues on next page)

8.2. Architecture Modeling 289

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<output name="Q" num_pins="1"/>
<clock name="CK" num_pins="1"/>

</pb_type>
<!-- TODO: Add in ability to specify constants such as gnd/vcc -->

<interconnect>
<direct name="fraclutA" input="{v6_lslice.A v6_lslice.B v6_lslice.C v6_lslice.D}"␣

→˓output="fraclut.A"/>
<direct name="fraclutW" input="{v6_lslice.A v6_lslice.B v6_lslice.C v6_lslice.D}"␣

→˓output="fraclut.W"/>
<direct name="fraclutDI2" input="{v6_lslice.AX v6_lslice.BX v6_lslice.CX v6_lslice.

→˓DX}" output="fraclut.DI2"/>
<direct name="DfraclutDI1" input="v6_lslice.DI" output="fraclut[3].DI1"/>

<direct name="carryO6" input="fraclut.O6" output="carry.xor"/>
<direct name="carrymuxxor" input="carry[2:0].cmux_out" output="carry[3:1].cmuxxor"/>
<direct name="carrymmux" input="{fraclut[3].O6 fraclut[2].O6 fraclut[2].O6␣

→˓fraclut[1].O6 fraclut[1].O6 fraclut[0].O6}" output="carry[2:0].mmux"/>
<direct name="carrymmux_select" input="{v6_lslice.AX v6_lslice.BX v6_lslice.CX}"␣

→˓output="carry[2:0].mmux_select"/>

<direct name="cout" input="carry[3].mmux_out" output="v6_lslice.COUT"/>
<direct name="ABCD" input="fraclut[3:0].O6" output="{v6_lslice.Dout v6_lslice.Cout␣

→˓v6_lslice.Bout v6_lslice.Aout}"/>
<direct name="Q" input="ff_big.Q" output="{DQ CQ BQ AQ}"/>

<mux name="ff_smallA" input="v6_lslice.AX fraclut[0].O5" output="ff_small[0].D"/>
<mux name="ff_smallB" input="v6_lslice.BX fraclut[1].O5" output="ff_small[1].D"/>
<mux name="ff_smallC" input="v6_lslice.CX fraclut[2].O5" output="ff_small[2].D"/>
<mux name="ff_smallD" input="v6_lslice.DX fraclut[3].O5" output="ff_small[3].D"/>

<mux name="ff_bigA" input="fraclut[0].O5 fraclut[0].O6 carry[0].cmux_out carry[0].
→˓mmux_out carry[0].xor_out" output="ff_big[0].D"/>
<mux name="ff_bigB" input="fraclut[1].O5 fraclut[1].O6 carry[1].cmux_out carry[1].

→˓mmux_out carry[1].xor_out" output="ff_big[1].D"/>
<mux name="ff_bigC" input="fraclut[2].O5 fraclut[2].O6 carry[2].cmux_out carry[2].

→˓mmux_out carry[2].xor_out" output="ff_big[2].D"/>
<mux name="ff_bigD" input="fraclut[3].O5 fraclut[3].O6 carry[3].cmux_out carry[3].

→˓mmux_out carry[3].xor_out" output="ff_big[3].D"/>

<mux name="AMUX" input="fraclut[0].O5 fraclut[0].O6 carry[0].cmux_out carry[0].mmux_
→˓out carry[0].xor_out ff_small[0].Q" output="AMUX"/>
<mux name="BMUX" input="fraclut[1].O5 fraclut[1].O6 carry[1].cmux_out carry[1].mmux_

→˓out carry[1].xor_out ff_small[1].Q" output="BMUX"/>
<mux name="CMUX" input="fraclut[2].O5 fraclut[2].O6 carry[2].cmux_out carry[2].mmux_

→˓out carry[2].xor_out ff_small[2].Q" output="CMUX"/>
<mux name="DMUX" input="fraclut[3].O5 fraclut[3].O6 carry[3].cmux_out carry[3].mmux_

→˓out carry[3].xor_out ff_small[3].Q" output="DMUX"/>

<mux name="CfraclutDI1" input="v6_lslice.CI v6_lslice.DI fraclut[3].MC31" output=
→˓"fraclut[2].DI1"/>
<mux name="BfraclutDI1" input="v6_lslice.BI v6_lslice.DI fraclut[2].MC31" output=

(continues on next page)

290 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓"fraclut[1].DI1"/>
<mux name="AfraclutDI1" input="v6_lslice.AI v6_lslice.BI v6_lslice.DI fraclut[2].

→˓MC31 fraclut[1].MC31" output="fraclut[0].DI1"/>

<mux name="carrymuxxorA" input="v6_lslice.AX v6_lslice.CIN" output="carry[0].muxxor"/
→˓>
<mux name="carrymuxA" input="v6_lslice.AX fraclut[0].O5" output="carry[0].cmux"/>
<mux name="carrymuxB" input="v6_lslice.BX fraclut[1].O5" output="carry[1].cmux"/>
<mux name="carrymuxC" input="v6_lslice.CX fraclut[2].O5" output="carry[2].cmux"/>
<mux name="carrymuxD" input="v6_lslice.DX fraclut[3].O5" output="carry[3].cmux"/>

<complete name="clock" input="v6_lslice.CLK" output="{ff_small.CK ff_big.CK}"/>
<complete name="ce" input="v6_lslice.CE" output="{ff_small.CE ff_big.CE}"/>
<complete name="SR" input="v6_lslice.SR" output="{ff_small.SR ff_big.SR}"/>

</interconnect>
</pb_type>

8.2.8 Equivalent Sites tutorial

This tutorial aims at providing information to the user on how to model the equivalent sites to enable equivalent
placement in VPR.

Equivalent site placement allows the user to define complex logical blocks (top-level pb_types) that can be used in
multiple physical location types of the FPGA device grid. In the same way, the user can define many physical tiles that
have different physical attributes that can implement the same logical block.

The first case (multiple physical grid location types for one complex logical block) is explained below. The device has
at disposal two different Configurable Logic Blocks (CLB), SLICEL and SLICEM. In this case, the SLICEM CLB is
a superset that implements additional features w.r.t. the SLICEL CLB. Therefore, the user can decide to model the
architecture to be able to place the SLICEL Complex Block in a SLICEM physical tile, being it a valid grid location.
This behavior can lead to the generation of more accurate and better placement results, given that a Complex Logic
Block is not bound to only one physical location type.

Below the user can find the implementation of this situation starting from an example that does not make use of the
equivalent site placement:

<tiles>
<tile name="SLICEL_TILE">

<input name="IN_A" num_pins="6"/>
<input name="AX" num_pins="1"/>
<input name="SR" num_pins="1"/>
<input name="CE" num_pins="1"/>
<input name="CIN" num_pins="1"/>
<clock name="CLK" num_pins="1"/>
<output name="A" num_pins="1"/>
<output name="AMUX" num_pins="1"/>
<output name="AQ" num_pins="1"/>

<equivalent_sites>
<site pb_type="SLICEL_SITE" pin_mapping="direct"/>

</equivalent_sites>
(continues on next page)

8.2. Architecture Modeling 291

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<fc />
<pinlocations />

</tile>
<tile name="SLICEM_TILE">

<input name="IN_A" num_pins="6"/>
<input name="AX" num_pins="1"/>
<input name="AI" num_pins="1"/>
<input name="SR" num_pins="1"/>
<input name="WE" num_pins="1"/>
<input name="CE" num_pins="1"/>
<input name="CIN" num_pins="1"/>
<clock name="CLK" num_pins="1"/>
<output name="A" num_pins="1"/>
<output name="AMUX" num_pins="1"/>
<output name="AQ" num_pins="1"/>

<equivalent_sites>
<site pb_type="SLICEM_SITE" pin_mapping="direct"/>

</equivalent_sites>

<fc />
<pinlocations />

</tile>
</tiles>

<complexblocklist>
<pb_type name="SLICEL_SITE"/>

<input name="IN_A" num_pins="6"/>
<input name="AX" num_pins="1"/>
<input name="AI" num_pins="1"/>
<input name="SR" num_pins="1"/>
<input name="CE" num_pins="1"/>
<input name="CIN" num_pins="1"/>
<clock name="CLK" num_pins="1"/>
<output name="A" num_pins="1"/>
<output name="AMUX" num_pins="1"/>
<output name="AQ" num_pins="1"/>
<mode />
/

</pb_type>
<pb_type name="SLICEM_SITE"/>

<input name="IN_A" num_pins="6"/>
<input name="AX" num_pins="1"/>
<input name="SR" num_pins="1"/>
<input name="WE" num_pins="1"/>
<input name="CE" num_pins="1"/>
<input name="CIN" num_pins="1"/>
<clock name="CLK" num_pins="1"/>
<output name="A" num_pins="1"/>
<output name="AMUX" num_pins="1"/>
<output name="AQ" num_pins="1"/>

(continues on next page)

292 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<mode />
/

</pb_type>
</complexblocklist>

As the user can see, SLICEL and SLICEM are treated as two different entities, even though they seem to be similar one
to another. To have the possibility to make VPR choose a SLICEM location when placing a SLICEL_SITE pb_type, the
user needs to change the SLICEM tile accordingly, as shown below:

<tile name="SLICEM_TILE">
<input name="IN_A" num_pins="6"/>
<input name="AX" num_pins="1"/>
<input name="AI" num_pins="1"/>
<input name="SR" num_pins="1"/>
<input name="WE" num_pins="1"/>
<input name="CE" num_pins="1"/>
<input name="CIN" num_pins="1"/>
<clock name="CLK" num_pins="1"/>
<output name="A" num_pins="1"/>
<output name="AMUX" num_pins="1"/>
<output name="AQ" num_pins="1"/>

<equivalent_sites>
<site pb_type="SLICEM_SITE" pin_mapping="direct"/>
<site pb_type="SLICEL_SITE" pin_mapping="custom">

<direct from="SLICEM_TILE.IN_A" to="SLICEL_SITE.IN_A"/>
<direct from="SLICEM_TILE.AX" to="SLICEL_SITE.AX"/>
<direct from="SLICEM_TILE.SR" to="SLICEL_SITE.SR"/>
<direct from="SLICEM_TILE.CE" to="SLICEL_SITE.CE"/>
<direct from="SLICEM_TILE.CIN" to="SLICEL_SITE.CIN"/>
<direct from="SLICEM_TILE.CLK" to="SLICEL_SITE.CLK"/>
<direct from="SLICEM_TILE.A" to="SLICEL_SITE.A"/>
<direct from="SLICEM_TILE.AMUX" to="SLICEL_SITE.AMUX"/>
<direct from="SLICEM_TILE.AQ" to="SLICEL_SITE.AQ"/>

</site>
</equivalent_sites>

<fc />
<pinlocations />

</tile>

With the above description of the SLICEM tile, the user can now have the SLICEL sites to be placed in SLICEM physical
locations. One thing to notice is that not all the pins have been mapped for the SLICEL_SITE. For instance, the WE and
AI port are absent from the SLICEL_SITE definition, hence they cannot appear in the pin mapping between physical
tile and logical block.

The second case described in this tutorial refers to the situation for which there are multiple different physical location
types in the device grid that are used by one complex logical blocks. Imagine the situation for which the device has
left and right I/O tile types which have different pinlocations, hence they need to be defined in two different ways.
With equivalent site placement, the user doesn’t need to define multiple different pb_types that implement the same
functionality.

Below the user can find the implementation of this situation starting from an example that does not make use of the
equivalent site placement:

8.2. Architecture Modeling 293

Verilog-to-Routing Documentation, Release 8.1.0-dev

<tiles>
<tile name="LEFT_IOPAD_TILE">

<input name="INPUT" num_pins="1"/>
<output name="OUTPUT" num_pins="1"/>

<equivalent_sites>
<site pb_type="LEFT_IOPAD_SITE" pin_mapping="direct"/>

</equivalent_sites>

<fc />
<pinlocations pattern="custom">

<loc side="left">LEFT_IOPAD_TILE.INPUT</loc>
<loc side="right">LEFT_IOPAD_TILE.OUTPUT</loc>

</pinlocations>
</tile>
<tile name="RIGHT_IOPAD_TILE">

<input name="INPUT" num_pins="1"/>
<output name="OUTPUT" num_pins="1"/>

<equivalent_sites>
<site pb_type="RIGHT_IOPAD_SITE" pin_mapping="direct"/>

</equivalent_sites>

<fc />
<pinlocations pattern="custom">

<loc side="right">RIGHT_IOPAD_TILE.INPUT</loc>
<loc side="left">RIGHT_IOPAD_TILE.OUTPUT</loc>

</pinlocations>
</tile>

</tiles>

<complexblocklist>
<pb_type name="LEFT_IOPAD_SITE">

<input name="INPUT" num_pins="1"/>
<output name="OUTPUT" num_pins="1"/>
<mode />
/

</pb_type>
<pb_type name="RIGHT_IOPAD_SITE">

<input name="INPUT" num_pins="1"/>
<output name="OUTPUT" num_pins="1"/>
<mode />
/

</pb_type>
</complexblocklist>

To avoid duplicating the complex logic blocks in LEFT and RIGHT IOPADS, the user can describe the pb_type only
once and add it to the equivalent sites tag of the two different tiles, as follows:

<tiles>
<tile name="LEFT_IOPAD_TILE">

<input name="INPUT" num_pins="1"/>
<output name="OUTPUT" num_pins="1"/>

(continues on next page)

294 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<equivalent_sites>
<site pb_type="IOPAD_SITE" pin_mapping="direct"/>

</equivalent_sites>

<fc />
<pinlocations pattern="custom">

<loc side="left">LEFT_IOPAD_TILE.INPUT</loc>
<loc side="right">LEFT_IOPAD_TILE.OUTPUT</loc>

</pinlocations>
</tile>
<tile name="RIGHT_IOPAD_TILE">

<input name="INPUT" num_pins="1"/>
<output name="OUTPUT" num_pins="1"/>

<equivalent_sites>
<site pb_type="IOPAD_SITE" pin_mapping="direct"/>

</equivalent_sites>

<fc />
<pinlocations pattern="custom">

<loc side="right">RIGHT_IOPAD_TILE.INPUT</loc>
<loc side="left">RIGHT_IOPAD_TILE.OUTPUT</loc>

</pinlocations>
</tile>

</tiles>

<complexblocklist>
<pb_type name="IOPAD_SITE">

<input name="INPUT" num_pins="1"/>
<output name="OUTPUT" num_pins="1"/>
<mode>

...
</mode>

</pb_type>
</complexblocklist>

With this implementation, the IOPAD_SITE can be placed both in the LEFT and RIGHT physical location types. Note
that the pin_mapping is set as direct, given that the physical tile and the logical block share the same IO pins.

The two different cases can be mixed to have a N to M mapping of physical tiles/logical blocks.

8.2.9 Heterogeneous tiles tutorial

This tutorial aims at providing information to the user on how to model sub tiles to enable heterogeneous tiles in VPR.

An heterogeneous tile is a tile that includes two or more site types that may differ in the following aspects:

• Block types (pb_type)

• Fc definition

• Pin locations definition

• IO ports definition

8.2. Architecture Modeling 295

Verilog-to-Routing Documentation, Release 8.1.0-dev

As a result, an heterogeneous tile has the possibility of having multiple block types at the same (x, y) location in the
grid. This comes with the introduction of a third spatial coordinate (sub-block) that identifies the placement of the
block type within the x and y grid coordinate.

Moreover, the placer can choose and assign different locations for each block type within the same coordinates as well.

Fig. 8.13: Device grid, with (x, y, sub-block) coordinates. Each block can be moved by the placer in all the three spatial
dimensions.

To correctly model an architecture, each Physical Tiles requires at least one sub tile definition. This represents a default
homogeneous architecture, composed of one or many instances of the sub tile within the physical tile (the number of
such sub-tiles is referred to as the capacity).

To enhance the expressivity of VPR architecture, additional sub tiles can be inserted alongside with the default sub tile.
This enables the definition of the heterogeneous tiles.

With this new capability, the device grid of a given architecture does include a new sub-block coordinate that identifies
the type of sub tile used and its actual location, in case the capacity is greater than 1.

Heterogeneous tiles examples

Following, there are two examples to illustrate some potential use cases of the heterogeneous tiles, that might be of
interest to the reader.

Note: The examples below are a simplified versions of the real architectural specification.

296 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

Sub-tiles with different pin locations

The Xilinx Series 7 Clock tile is composed of 16 BUFGCTRL sites (pg. 36 of the 7 Series FPGAs Clocking Resources
guide). Even though they are equivalent regarding the ports and Fc definition, some of the sites differ in terms of pin
locations, as depicted by the simplified representation of the Clock tile in Fig. 8.14.

Heterogeneous tiles come in hand to model this kind of tiles and an example is the following:

<tiles>
<tile name="BUFG_TILE">

<sub_tile name="BUFG_SUB_TILE_0" capacity="1">
<clock name="I0" num_pins="1"/>
<clock name="I1" num_pins="1"/>
<input name="CE0" num_pins="1"/>
<input name="CE1" num_pins="1"/>
<input name="IGNORE0" num_pins="1"/>
<input name="IGNORE1" num_pins="1"/>
<input name="S0" num_pins="1"/>
<input name="S1" num_pins="1"/>
<output name="O" num_pins="1"/>
<fc in_type="abs" in_val="2" out_type="abs" out_val="2"/>
<pinlocations pattern="custom">

<loc side="top">BUFG_SUB_TILE_0.I1 BUFG_SUB_TILE_0.I0 BUFG_SUB_TILE_0.
→˓CE0 BUFG_SUB_TILE_0.S0 BUFG_SUB_TILE_0.IGNORE1 BUFG_SUB_TILE_0.CE1 BUFG_SUB_TILE_0.
→˓IGNORE0 BUFG_SUB_TILE_0.S1</loc>

<loc side="right">BUFG_SUB_TILE_0.I1 BUFG_SUB_TILE_0.I0 BUFG_SUB_TILE_0.O
→˓</loc>

</pinlocations>
<equivalent_sites>
<site pb_type="BUFGCTRL" pin_mapping="direct"/>

</equivalent_sites>
</sub_tile>
<sub_tile name="BUFG_SUB_TILE_1" capacity="14">

<clock name="I0" num_pins="1"/>
<clock name="I1" num_pins="1"/>
<input name="CE0" num_pins="1"/>
<input name="CE1" num_pins="1"/>
<input name="IGNORE0" num_pins="1"/>
<input name="IGNORE1" num_pins="1"/>
<input name="S0" num_pins="1"/>
<input name="S1" num_pins="1"/>
<output name="O" num_pins="1"/>
<fc in_type="abs" in_val="2" out_type="abs" out_val="2"/>
<pinlocations pattern="custom">

<loc side="top">BUFG_SUB_TILE_1.S1 BUFG_SUB_TILE_1.I0 BUFG_SUB_TILE_1.
→˓CE1 BUFG_SUB_TILE_1.I1 BUFG_SUB_TILE_1.IGNORE1 BUFG_SUB_TILE_1.IGNORE0 BUFG_SUB_TILE_1.
→˓CE0 BUFG_SUB_TILE_1.S0</loc>

<loc side="right">BUFG_SUB_TILE_1.I0 BUFG_SUB_TILE_1.I1 BUFG_SUB_TILE_1.O
→˓</loc>

</pinlocations>
<equivalent_sites>
<site pb_type="BUFGCTRL" pin_mapping="direct"/>

</equivalent_sites>
</sub_tile>

(continues on next page)

8.2. Architecture Modeling 297

https://www.xilinx.com/support/documentation/user_guides/ug472_7Series_Clocking.pdf

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 8.14: Simplified view of the Clock tile of the Xilinx Series 7 fabric.

298 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<sub_tile name="BUFG_SUB_TILE_2" capacity="1">
<clock name="I0" num_pins="1"/>
<clock name="I1" num_pins="1"/>
<input name="CE0" num_pins="1"/>
<input name="CE1" num_pins="1"/>
<input name="IGNORE0" num_pins="1"/>
<input name="IGNORE1" num_pins="1"/>
<input name="S0" num_pins="1"/>
<input name="S1" num_pins="1"/>
<output name="O" num_pins="1"/>
<fc in_type="abs" in_val="2" out_type="abs" out_val="2"/>
<pinlocations pattern="custom">

<loc side="right">BUFG_SUB_TILE_2.S1 BUFG_SUB_TILE_2.I0 BUFG_SUB_TILE_2.
→˓CE1 BUFG_SUB_TILE_2.I1 BUFG_SUB_TILE_2.IGNORE1 BUFG_SUB_TILE_2.IGNORE0 BUFG_SUB_TILE_2.
→˓CE0 BUFG_SUB_TILE_2.S0</loc>

<loc side="left">BUFG_SUB_TILE_2.I0 BUFG_SUB_TILE_2.I1 BUFG_SUB_TILE_2.O
→˓</loc>

</pinlocations>
<equivalent_sites>
<site pb_type="BUFGCTRL" pin_mapping="direct"/>

</equivalent_sites>
</sub_tile>

</tile>
</tiles>

<complexblocklist>
<pb_type name="BUFGCTRL"/>

<clock name="I0" num_pins="1"/>
<clock name="I1" num_pins="1"/>
<input name="CE0" num_pins="1"/>
<input name="CE1" num_pins="1"/>
<input name="IGNORE0" num_pins="1"/>
<input name="IGNORE1" num_pins="1"/>
<input name="S0" num_pins="1"/>
<input name="S1" num_pins="1"/>
<output name="O" num_pins="1"/>

</pb_type>
</complexblocklist>

The above BUFG_TILE contains three types of sub-tiles (BUFG_SUB_TILE_0, BUFG_SUB_TILE_1 and
BUFG_SUB_TILE_2).

While each sub-tile type contains the same pb_type (equivalent_sites of BUFGCTRL), they differ in two ways:

1. Each sub-tile has different pin locations. For example BUFG_SUB_TILE_0 has the I1 pins on the top side of the
tile, while BUFG_SUB_TILE_1 and BUFG_SUB_TILE_2 have them on the right and left sides respectively.

2. Each sub-tile has a different ‘capacity’ (i.e. a different number of sites). BUFG_SUB_TILE_1 and
BUFG_SUB_TILE_2 have capacity 1, while BUFG_SUB_TILE_1 has capacity 14. As a result the BUFG_TILE
can implement a total of 16 BUFGCTRL blocks.

8.2. Architecture Modeling 299

Verilog-to-Routing Documentation, Release 8.1.0-dev

Sub-tiles containing different block types

As another example taken from the Xilinx Series 7 fabric, the HCLK_IOI tile is composed of three different block
types, namely BUFIO, BUFR and IDELAYCTRL.

Fig. 8.15: Simplified view of the HCLK_IOI tile in the Xilinx Series 7 fabric.

The reader might think that it is possible to model this situation using the Complex Blocks to model this situation, with
a <pb_type> containing the various blocks.

Indeed, this could be done, but, for some architectures, the placement location of a sub block is particularly relevant,
hence the need of leaving this choice to the placement algorithm instead of the packer one.

Each one of these site types has different IO pins as well as pin locations.

<tile name="HCLK_IOI">
<sub_tile name="BUFIO" capacity="4">

<clock name="I" num_pins="1"/>
<output name="O" num_pins = "1"/>
<equivalent_sites>

<site pb_type="BUFIO_SITE" pin_mapping="direct"/>
</equivalent_sites>
<fc />
<pinlocations />

</sub_tile>
<sub_tile name="BUFR" capacity="4">

<clock name="I" num_pins="1"/>
<input name="CE" num_pins="1"/>
<output name="O" num_pins = "1"/>
<equivalent_sites>

<site pb_type="BUFR_SITE" pin_mapping="direct"/>
</equivalent_sites>
<fc />
<pinlocations />

</sub_tile>
<sub_tile name="IDELAYCTRL" capacity="1">

<clock name="REFCLK" num_pins="1"/>
<output name="RDY" num_pins="1"/>

(continues on next page)

300 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<equivalent_sites>
<site pb_type="IDELAYCTRL_SITE" pin_mapping="direct"/>

</equivalent_sites>
<fc />
<pinlocations />

</sub_tile>
</tile>

Each HCLK_IOI tile contains three sub-tiles, each containing a different type of pb_type:

• the BUFIO sub-tile supports 4 instances (capacity = 4) of pb_type BUFIO_SITE

• the BUFR sub-tile supports 4 instances of BUFR_SITE pb_types

• the IDELAYCTRL sub-tile supports 1 instances of the IDELAYCTRL_SITE

Modeling Guides:

8.2.10 Primitive Block Timing Modeling Tutorial

To accurately model an FPGA, the architect needs to specify the timing characteristics of the FPGA’s primitives blocks.
This involves two key steps:

1. Specifying the logical timing characteristics of a primitive including:

• whether primitive pins are sequential or combinational, and

• what the timing dependencies are between the pins.

2. Specifying the physical delay values

These two steps separate the logical timing characteristics of a primitive, from the physically dependant delays. This
enables a single logical netlist primitive type (e.g. Flip-Flop) to be mapped into different physical locations with
different timing characteristics.

The FPGA architecture description describes the logical timing characteristics in the models section, while the physical
timing information is specified on pb_types within complex block.

The following sections illustrate some common block timing modeling approaches.

Combinational block

A typical combinational block is a full adder,

where a, b and cin are combinational inputs, and sum and cout are combinational outputs.

We can model these timing dependencies on the model with the combinational_sink_ports, which specifies the
output ports which are dependant on an input port:

<model name="adder">
<input_ports>
<port name="a" combinational_sink_ports="sum cout"/>
<port name="b" combinational_sink_ports="sum cout"/>
<port name="cin" combinational_sink_ports="sum cout"/>

</input_ports>
<output_ports>
<port name="sum"/>

(continues on next page)

8.2. Architecture Modeling 301

Verilog-to-Routing Documentation, Release 8.1.0-dev

sum

cin

b

a

cout

Fig. 8.16: Full Adder

(continued from previous page)

<port name="cout"/>
</output_ports>

</model>

The physical timing delays are specified on any pb_type instances of the adder model. For example:

<pb_type name="adder" blif_model=".subckt adder" num_pb="1">
<input name="a" num_pins="1"/>
<input name="b" num_pins="1"/>
<input name="cin" num_pins="1"/>
<output name="cout" num_pins="1"/>
<output name="sum" num_pins="1"/>

<delay_constant max="300e-12" in_port="adder.a" out_port="adder.sum"/>
<delay_constant max="300e-12" in_port="adder.b" out_port="adder.sum"/>
<delay_constant max="300e-12" in_port="adder.cin" out_port="adder.sum"/>
<delay_constant max="300e-12" in_port="adder.a" out_port="adder.cout"/>
<delay_constant max="300e-12" in_port="adder.b" out_port="adder.cout"/>
<delay_constant max="10e-12" in_port="adder.cin" out_port="adder.cout"/>

</pb_type>

specifies that all the edges of 300ps delays, except to cin to cout edge which has a delay of 10ps.

Sequential block (no internal paths)

A typical sequential block is a D-Flip-Flop (DFF). DFFs have no internal timing paths between their input and output
ports.

Note: If you are using BLIF’s .latch directive to represent DFFs there is no need to explicitly provide a <model>
definition, as it is supported by default.

Sequential model ports are specified by providing the clock="<name>" attribute, where <name> is the name of the
associated clock ports. The assoicated clock port must have is_clock="1" specified to indicate it is a clock.

<model name="dff">
<input_ports>

(continues on next page)

302 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

D Q

clk

Tsu Tcq

Fig. 8.17: DFF

(continued from previous page)

<port name="d" clock="clk"/>
<port name="clk" is_clock="1"/>

</input_ports>
<output_ports>
<port name="q" clock="clk"/>

</output_ports>
</model>

The physical timing delays are specified on any pb_type instances of the model. In the example below the setup-time
of the input is specified as 66ps, while the clock-to-q delay of the output is set to 124ps.

<pb_type name="ff" blif_model=".subckt dff" num_pb="1">
<input name="D" num_pins="1"/>
<output name="Q" num_pins="1"/>
<clock name="clk" num_pins="1"/>

<T_setup value="66e-12" port="ff.D" clock="clk"/>
<T_clock_to_Q max="124e-12" port="ff.Q" clock="clk"/>

</pb_type>

Mixed Sequential/Combinational Block

It is possible to define a block with some sequential ports and some combinational ports.

In the example below, the single_port_ram_mixed has sequential input ports: we, addr and data (which are con-
trolled by clk).

However the output port (out) is a combinational output, connected internally to the we, addr and data input registers.

<model name="single_port_ram_mixed">
<input_ports>
<port name="we" clock="clk" combinational_sink_ports="out"/>
<port name="addr" clock="clk" combinational_sink_ports="out"/>
<port name="data" clock="clk" combinational_sink_ports="out"/>
<port name="clk" is_clock="1"/>

(continues on next page)

8.2. Architecture Modeling 303

Verilog-to-Routing Documentation, Release 8.1.0-dev

data

clk

addr

we

out

Fig. 8.18: Mixed sequential/combinational single port ram

(continued from previous page)

</input_ports>
<output_ports>
<port name="out"/>

</output_ports>
</model>

In the pb_typewe define the external setup time of the input registers (50ps) as we did for Sequential block (no internal
paths). However, we also specify the following additional timing information:

• The internal clock-to-q delay of the input registers (200ps)

• The combinational delay from the input registers to the out port (800ps)

<pb_type name="mem_sp" blif_model=".subckt single_port_ram_mixed" num_pb="1">
<input name="addr" num_pins="9"/>
<input name="data" num_pins="64"/>
<input name="we" num_pins="1"/>
<output name="out" num_pins="64"/>
<clock name="clk" num_pins="1"/>

<!-- External input register timing -->
<T_setup value="50e-12" port="mem_sp.addr" clock="clk"/>
<T_setup value="50e-12" port="mem_sp.data" clock="clk"/>
<T_setup value="50e-12" port="mem_sp.we" clock="clk"/>

<!-- Internal input register timing -->
<T_clock_to_Q max="200e-12" port="mem_sp.addr" clock="clk"/>

(continues on next page)

304 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<T_clock_to_Q max="200e-12" port="mem_sp.data" clock="clk"/>
<T_clock_to_Q max="200e-12" port="mem_sp.we" clock="clk"/>

<!-- Internal combinational delay -->
<delay_constant max="800e-12" in_port="mem_sp.addr" out_port="mem_sp.out"/>
<delay_constant max="800e-12" in_port="mem_sp.data" out_port="mem_sp.out"/>
<delay_constant max="800e-12" in_port="mem_sp.we" out_port="mem_sp.out"/>

</pb_type>

Sequential block (with internal paths)

Some primitives represent more complex architecture primitives, which have timing paths contained completely within
the block.

The model below specifies a sequential single-port RAM. The ports we, addr, and data are sequential inputs, while
the port out is a sequential output. clk is the common clock.

data

clk

addr

we

out

Fig. 8.19: Sequential single port ram

<model name="single_port_ram_seq">
<input_ports>
<port name="we" clock="clk" combinational_sink_ports="out"/>
<port name="addr" clock="clk" combinational_sink_ports="out"/>
<port name="data" clock="clk" combinational_sink_ports="out"/>
<port name="clk" is_clock="1"/>

</input_ports>
<output_ports>
<port name="out" clock="clk"/>

(continues on next page)

8.2. Architecture Modeling 305

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

</output_ports>
</model>

Similarly to Mixed Sequential/Combinational Block the pb_type defines the input register timing:

• external input register setup time (50ps)

• internal input register clock-to-q time (200ps)

Since the output port out is sequential we also define the:

• internal output register setup time (60ps)

• external output register clock-to-q time (300ps)

The combinational delay between the input and output registers is set to 740ps.

Note the internal path from the input to output registers can limit the maximum operating frequency. In this case the
internal path delay is 1ns (200ps + 740ps + 60ps) limiting the maximum frequency to 1 GHz.

<pb_type name="mem_sp" blif_model=".subckt single_port_ram_seq" num_pb="1">
<input name="addr" num_pins="9"/>
<input name="data" num_pins="64"/>
<input name="we" num_pins="1"/>
<output name="out" num_pins="64"/>
<clock name="clk" num_pins="1"/>

<!-- External input register timing -->
<T_setup value="50e-12" port="mem_sp.addr" clock="clk"/>
<T_setup value="50e-12" port="mem_sp.data" clock="clk"/>
<T_setup value="50e-12" port="mem_sp.we" clock="clk"/>

<!-- Internal input register timing -->
<T_clock_to_Q max="200e-12" port="mem_sp.addr" clock="clk"/>
<T_clock_to_Q max="200e-12" port="mem_sp.data" clock="clk"/>
<T_clock_to_Q max="200e-12" port="mem_sp.we" clock="clk"/>

<!-- Internal combinational delay -->
<delay_constant max="740e-12" in_port="mem_sp.addr" out_port="mem_sp.out"/>
<delay_constant max="740e-12" in_port="mem_sp.data" out_port="mem_sp.out"/>
<delay_constant max="740e-12" in_port="mem_sp.we" out_port="mem_sp.out"/>

<!-- Internal output register timing -->
<T_setup value="60e-12" port="mem_sp.out" clock="clk"/>

<!-- External output register timing -->
<T_clock_to_Q max="300e-12" port="mem_sp.out" clock="clk"/>

</pb_type>

306 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

Sequential block (with internal paths and combinational input)

A primitive may have a mix of sequential and combinational inputs.

The model below specifies a mostly sequential single-port RAM. The ports addr, and data are sequential inputs, while
the port we is a combinational input. The port out is a sequential output. clk is the common clock.

Fig. 8.20: Sequential single port ram with a combinational input

<model name="single_port_ram_seq_comb">
<input_ports>
<port name="we" combinational_sink_ports="out"/>
<port name="addr" clock="clk" combinational_sink_ports="out"/>
<port name="data" clock="clk" combinational_sink_ports="out"/>
<port name="clk" is_clock="1"/>

</input_ports>
<output_ports>
<port name="out" clock="clk"/>

</output_ports>
</model>

We use register delays similar to Sequential block (with internal paths). However we also specify the purely combi-
national delay between the combinational we input and sequential output out (800ps). Note that the setup time of the
output register still effects the we to out path for an effective delay of 860ps.

<pb_type name="mem_sp" blif_model=".subckt single_port_ram_seq_comb" num_pb="1">
<input name="addr" num_pins="9"/>
<input name="data" num_pins="64"/>
<input name="we" num_pins="1"/>
<output name="out" num_pins="64"/>
<clock name="clk" num_pins="1"/>

(continues on next page)

8.2. Architecture Modeling 307

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<!-- External input register timing -->
<T_setup value="50e-12" port="mem_sp.addr" clock="clk"/>
<T_setup value="50e-12" port="mem_sp.data" clock="clk"/>

<!-- Internal input register timing -->
<T_clock_to_Q max="200e-12" port="mem_sp.addr" clock="clk"/>
<T_clock_to_Q max="200e-12" port="mem_sp.data" clock="clk"/>

<!-- External combinational delay -->
<delay_constant max="800e-12" in_port="mem_sp.we" out_port="mem_sp.out"/>

<!-- Internal combinational delay -->
<delay_constant max="740e-12" in_port="mem_sp.addr" out_port="mem_sp.out"/>
<delay_constant max="740e-12" in_port="mem_sp.data" out_port="mem_sp.out"/>

<!-- Internal output register timing -->
<T_setup value="60e-12" port="mem_sp.out" clock="clk"/>

<!-- External output register timing -->
<T_clock_to_Q max="300e-12" port="mem_sp.out" clock="clk"/>

</pb_type>

Multi-clock Sequential block (with internal paths)

It is also possible for a sequential primitive to have multiple clocks.

The following model represents a multi-clock simple dual-port sequential RAM with:

• one write port (addr1 and data1, we1) controlled by clk1, and

• one read port (addr2 and data2) controlled by clk2.

<model name="multiclock_dual_port_ram">
<input_ports>
<!-- Write Port -->
<port name="we1" clock="clk1" combinational_sink_ports="data2"/>
<port name="addr1" clock="clk1" combinational_sink_ports="data2"/>
<port name="data1" clock="clk1" combinational_sink_ports="data2"/>
<port name="clk1" is_clock="1"/>

<!-- Read Port -->
<port name="addr2" clock="clk2" combinational_sink_ports="data2"/>
<port name="clk2" is_clock="1"/>

</input_ports>
<output_ports>
<!-- Read Port -->
<port name="data2" clock="clk2" combinational_sink_ports="data2"/>

</output_ports>
</model>

On the pb_type the input and output register timing is defined similarly to Sequential block (with internal paths),
except multiple clocks are used.

308 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

clk2

data2

data1

clk1

addr1

we1

addr2

Fig. 8.21: Multi-clock sequential simple dual port ram

<pb_type name="mem_dp" blif_model=".subckt multiclock_dual_port_ram" num_pb="1">
<input name="addr1" num_pins="9"/>
<input name="data1" num_pins="64"/>
<input name="we1" num_pins="1"/>
<input name="addr2" num_pins="9"/>
<output name="data2" num_pins="64"/>
<clock name="clk1" num_pins="1"/>
<clock name="clk2" num_pins="1"/>

<!-- External input register timing -->
<T_setup value="50e-12" port="mem_dp.addr1" clock="clk1"/>
<T_setup value="50e-12" port="mem_dp.data1" clock="clk1"/>
<T_setup value="50e-12" port="mem_dp.we1" clock="clk1"/>
<T_setup value="50e-12" port="mem_dp.addr2" clock="clk2"/>

<!-- Internal input register timing -->
<T_clock_to_Q max="200e-12" port="mem_dp.addr1" clock="clk1"/>
<T_clock_to_Q max="200e-12" port="mem_dp.data1" clock="clk1"/>
<T_clock_to_Q max="200e-12" port="mem_dp.we1" clock="clk1"/>
<T_clock_to_Q max="200e-12" port="mem_dp.addr2" clock="clk2"/>

<!-- Internal combinational delay -->
<delay_constant max="740e-12" in_port="mem_dp.addr1" out_port="mem_dp.data2"/>
<delay_constant max="740e-12" in_port="mem_dp.data1" out_port="mem_dp.data2"/>
<delay_constant max="740e-12" in_port="mem_dp.we1" out_port="mem_dp.data2"/>

(continues on next page)

8.2. Architecture Modeling 309

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

<delay_constant max="740e-12" in_port="mem_dp.addr2" out_port="mem_dp.data2"/>

<!-- Internal output register timing -->
<T_setup value="60e-12" port="mem_dp.data2" clock="clk2"/>

<!-- External output register timing -->
<T_clock_to_Q max="300e-12" port="mem_dp.data2" clock="clk2"/>

</pb_type>

Clock Generators

Some blocks (such as PLLs) generate clocks on-chip. To ensure that these generated clocks are identified as clock
sources, the associated model output port should be marked with is_clock="1".

As an example consider the following simple PLL model:

<model name="simple_pll">
<input_ports>
<port name="in_clock" is_clock="1"/>

</input_ports>
<output_ports>
<port name="out_clock" is_clock="1"/>

</output_ports>
</model>

The port named in_clock is specified as a clock sink, since it is an input port with is_clock="1" set.

The port named out_clock is specified as a clock generator, since it is an output port with is_clock="1" set.

Note: Clock generators should not be the combinational sinks of primitive input ports.

Consider the following example netlist:

.subckt simple_pll \
in_clock=clk \
out_clock=clk_pll

Since we have specified that simple_pll.out_clock is a clock generator (see above), the user must specify what the
clock relationship is between the input and output clocks. This information must be either specified in the SDC file (if
no SDC file is specified VPR’s default timing constraints will be used instead).

Note: VPR has no way of determining what the relationship is between the clocks of a black-box primitive.

Consider the case where the simple_pll above creates an output clock which is 2 times the frequency of the input
clock. If the input clock period was 10ns then the SDC file would look like:

create_clock clk -period 10
create_clock clk_pll -period 5 #Twice the frequency of clk

It is also possible to specify in SDC that there is a phase shift between the two clocks:

310 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

create_clock clk -waveform {0 5} -period 10 #Equivalent to 'create_clock clk -
→˓period 10'
create_clock clk_pll -waveform {0.2 2.7} -period 5 #Twice the frequency of clk with a 0.
→˓2ns phase shift

Clock Buffers & Muxes

Some architectures contain special primitives for buffering or controling clocks. VTR supports modelling these using
the is_clock attritube on the model to differentiate between ‘data’ and ‘clock’ signals, allowing users to control how
clocks are traced through these primitives.

When VPR traces through the netlist it will propagate clocks from clock inputs to the downstream combinationally
connected pins.

Clock Buffers/Gates

Consider the following black-box clock buffer with an enable:

.subckt clkbufce \
in=clk3 \
enable=clk3_enable \
out=clk3_buf

We wish to have VPR understand that the in port of the clkbufce connects to the out port, and that as a result the
nets clk3 and clk3_buf are equivalent.

This is accomplished by tagging the in port as a clock (is_clock="1"), and combinationally connecting it to the out
port (combinational_sink_ports="out"):

<model name="clkbufce">
<input_ports>
<port name="in" combinational_sink_ports="out" is_clock="1"/>
<port name="enable" combinational_sink_ports="out"/>

</input_ports>
<output_ports>
<port name="out"/>

</output_ports>
</model>

With the corresponding pb_type:

<pb_type name="clkbufce" blif_model="clkbufce" num_pb="1">
<clock name="in" num_pins="1"/>
<input name="enable" num_pins="1"/>
<output name="out" num_pins="1"/>
<delay_constant max="10e-12" in_port="clkbufce.in" out_port="clkbufce.out"/>
<delay_constant max="5e-12" in_port="clkbufce.enable" out_port="clkbufce.out"/>

</pb_type>

Notably, although the enable port is combinationally connected to the out port it will not be considered as a potential
clock since it is not marked with is_clock="1".

8.2. Architecture Modeling 311

Verilog-to-Routing Documentation, Release 8.1.0-dev

Clock Muxes

Another common clock control block is a clock mux, which selects from one of several potential clocks.

For instance, consider:

.subckt clkmux \
clk1=clka \
clk2=clkb \
sel=select \
clk_out=clk_downstream

which selects one of two input clocks (clk1 and clk2) to be passed through to (clk_out), controlled on the value of
sel.

This could be modelled as:

<model name="clkmux">
<input_ports>
<port name="clk1" combinational_sink_ports="clk_out" is_clock="1"/>
<port name="clk2" combinational_sink_ports="clk_out" is_clock="1"/>
<port name="sel" combinational_sink_ports="clk_out"/>

</input_ports>
<output_ports>
<port name="clk_out"/>

</output_ports>
</model>

<pb_type name="clkmux" blif_model="clkmux" num_pb="1">
<clock name="clk1" num_pins="1"/>
<clock name="clk2" num_pins="1"/>
<input name="sel" num_pins="1"/>
<output name="clk_out" num_pins="1"/>
<delay_constant max="10e-12" in_port="clkmux.clk1" out_port="clkmux.clk_out"/>
<delay_constant max="10e-12" in_port="clkmux.clk2" out_port="clkmux.clk_out"/>
<delay_constant max="20e-12" in_port="clkmux.sel" out_port="clkmux.clk_out"/>

</pb_type>

where both input clock ports clk1 and clk2 are tagged with is_clock="1" and combinationally connected to the
clk_out port. As a result both nets clka and clkb in the netlist would be identified as independent clocks feeding
clk_downstream.

Note: Clock propagation is driven by netlist connectivity so if one of the input clock ports (e.g. clk1) was disconnected
in the netlist no associated clock would be created/considered.

312 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

Clock Mux Timing Constraints

For the clock mux example above, if the user specified the following SDC timing constraints:

create_clock -period 3 clka
create_clock -period 2 clkb

VPR would propagate both clka and clkb through the clock mux. Therefore the logic connected to clk_downstream
would be analyzed for both the clka and clkb constraints.

Most likely (unless clka and clkb are used elswhere) the user should additionally specify:

set_clock_groups -exclusive -group clka -group clkb

Which avoids analyzing paths between the two clocks (i.e. clka -> clkb and clkb -> clka) which are not physically
realizable. The muxing logic means only one clock can drive clk_downstream at any point in time (i.e. the mux
enforces that clka and clkb are mutually exclusive). This is the behaviour of VPR’s default timing constraints.

8.3 Running the Titan Benchmarks

This tutorial describes how to run the Titan benchmarks with VTR.

8.3.1 Integrating the Titan benchmarks into VTR

The Titan benchmarks take up a large amount of disk space and are not distributed directly with VTR.

The Titan benchmarks can be automatically integrated into the VTR source tree by running the following from the root
of the VTR source tree:

$ make get_titan_benchmarks

which downloads and extracts the benchmarks into the VTR source tree:

Warning: A typical Titan release is a ~1GB download, and uncompresses to ~10GB.
Starting download in 15 seconds...
Downloading http://www.eecg.utoronto.ca/~kmurray/titan/titan_release_1.1.0.tar.gz
...
→˓............
Downloading http://www.eecg.utoronto.ca/~kmurray/titan/titan_release_1.1.0.md5
Verifying checksum
OK
Searching release for benchmarks and architectures...
Extracting titan_release_1.1.0/benchmarks/titan23/sparcT2_core/netlists/sparcT2_core_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/sparcT2_core_stratixiv_
→˓arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/LU230/netlists/LU230_stratixiv_arch_
→˓timing.blif to ./vtr_flow/benchmarks/titan_blif/LU230_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/segmentation/netlists/segmentation_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/segmentation_stratixiv_
→˓arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/openCV/netlists/openCV_stratixiv_arch_
→˓timing.blif to ./vtr_flow/benchmarks/titan_blif/openCV_stratixiv_arch_timing.blif

(continues on next page)

8.3. Running the Titan Benchmarks 313

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

Extracting titan_release_1.1.0/benchmarks/titan23/bitcoin_miner/netlists/bitcoin_miner_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/bitcoin_miner_stratixiv_
→˓arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/sparcT1_chip2/netlists/sparcT1_chip2_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/sparcT1_chip2_stratixiv_
→˓arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/mes_noc/netlists/mes_noc_stratixiv_
→˓arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/mes_noc_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/bitonic_mesh/netlists/bitonic_mesh_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/bitonic_mesh_stratixiv_
→˓arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/dart/netlists/dart_stratixiv_arch_
→˓timing.blif to ./vtr_flow/benchmarks/titan_blif/dart_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/cholesky_bdti/netlists/cholesky_bdti_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/cholesky_bdti_stratixiv_
→˓arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/stereo_vision/netlists/stereo_vision_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/stereo_vision_stratixiv_
→˓arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/neuron/netlists/neuron_stratixiv_arch_
→˓timing.blif to ./vtr_flow/benchmarks/titan_blif/neuron_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/gaussianblur/netlists/gaussianblur_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/gaussianblur_stratixiv_
→˓arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/gsm_switch/netlists/gsm_switch_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/gsm_switch_stratixiv_
→˓arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/sparcT1_core/netlists/sparcT1_core_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/sparcT1_core_stratixiv_
→˓arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/des90/netlists/des90_stratixiv_arch_
→˓timing.blif to ./vtr_flow/benchmarks/titan_blif/des90_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/LU_Network/netlists/LU_Network_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/LU_Network_stratixiv_
→˓arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/denoise/netlists/denoise_stratixiv_
→˓arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/denoise_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/stap_qrd/netlists/stap_qrd_stratixiv_
→˓arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/stap_qrd_stratixiv_arch_timing.
→˓blif
Extracting titan_release_1.1.0/benchmarks/titan23/directrf/netlists/directrf_stratixiv_
→˓arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/directrf_stratixiv_arch_timing.
→˓blif
Extracting titan_release_1.1.0/benchmarks/titan23/SLAM_spheric/netlists/SLAM_spheric_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/SLAM_spheric_stratixiv_
→˓arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/minres/netlists/minres_stratixiv_arch_
→˓timing.blif to ./vtr_flow/benchmarks/titan_blif/minres_stratixiv_arch_timing.blif
Extracting titan_release_1.1.0/benchmarks/titan23/cholesky_mc/netlists/cholesky_mc_
→˓stratixiv_arch_timing.blif to ./vtr_flow/benchmarks/titan_blif/cholesky_mc_stratixiv_
→˓arch_timing.blif
Extracting titan_release_1.1.0/arch/stratixiv_arch.timing.no_pack_patterns.xml to ./vtr_

(continues on next page)

314 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓flow/arch/titan/stratixiv_arch.timing.no_pack_patterns.xml
Extracting titan_release_1.1.0/arch/stratixiv_arch.timing.xml to ./vtr_flow/arch/titan/
→˓stratixiv_arch.timing.xml
Extracting titan_release_1.1.0/arch/stratixiv_arch.timing.no_directlink.xml to ./vtr_
→˓flow/arch/titan/stratixiv_arch.timing.no_directlink.xml
Extracting titan_release_1.1.0/arch/stratixiv_arch.timing.no_chain.xml to ./vtr_flow/
→˓arch/titan/stratixiv_arch.timing.no_chain.xml
Done
Titan architectures: vtr_flow/arch/titan
Titan benchmarks: vtr_flow/benchmarks/titan_blif

Once completed all the Titan benchmark BLIF netlists can be found under $VTR_ROOT/vtr_flow/benchmarks/
titan_blif, and the Titan architectures under $VTR_ROOT/vtr_flow/arch/titan.

Note: $VTR_ROOT corresponds to the root of the VTR source tree.

8.3.2 Running benchmarks manually

Once the benchmarks have been integrated into VTR they can be run manually.

For example, the follow uses VPR to implement the neuron benchmark onto the startixiv_arch.timing.xml
architecture at a channel width of 300 tracks:

$ vpr $VTR_ROOT/vtr_flow/arch/titan/stratixiv_arch.timing.xml $VTR_ROOT/vtr_flow/
→˓benchmarks/titan_blif/neuron_stratixiv_arch_timing.blif --route_chan_width 300

8.4 Post-Implementation Timing Simulation

This tutorial describes how to simulate a circuit which has been implemented by VPR with back-annotated timing
delays.

Back-annotated timing simulation is useful for a variety of reasons:
• Checking that the circuit logic is correctly implemented

• Checking that the circuit behaves correctly at speed with realistic delays

• Generating VCD (Value Change Dump) files with realistic delays (e.g. for power estimation)

8.4.1 Generating the Post-Implementation Netlist

For the purposes of this tutorial we will be using the stereovision3 benchmark, and will target the k6_N10_40nm
architecture.

First lets create a directory to work in:

$ mkdir timing_sim_tut
$ cd timing_sim_tut

Next we’ll copy over the stereovision3 benchmark netlist in BLIF format and the FPGA architecture description:

8.4. Post-Implementation Timing Simulation 315

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 8.22: Timing simulation waveform for stereovision3

316 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

$ cp $VTR_ROOT/vtr_flow/benchmarks/vtr_benchmarks_blif/stereovision3.blif .
$ cp $VTR_ROOT/vtr_flow/arch/timing/k6_N10_40nm.xml .

Note: Replace $VTR_ROOT with the root directory of the VTR source tree

Now we can run VPR to implement the circuit onto the k6_N10_40nm architecture. We also need to provide the vpr
--gen_post_synthesis_netlist option to generate the post-implementation netlist and dump the timing informa-
tion in Standard Delay Format (SDF):

$ vpr k6_N10_40nm.xml stereovision3.blif --gen_post_synthesis_netlist on

Once VPR has completed we should see the generated verilog netlist and SDF:

$ ls *.v *.sdf
sv_chip3_hierarchy_no_mem_post_synthesis.sdf sv_chip3_hierarchy_no_mem_post_synthesis.v

8.4.2 Inspecting the Post-Implementation Netlist

Lets take a quick look at the generated files.

First is a snippet of the verilog netlist:

Listing 8.1: Verilog netlist snippet

fpga_interconnect \routing_segment_lut_n616_output_0_0_to_lut_n497_input_0_4 (
.datain(\lut_n616_output_0_0),
.dataout(\lut_n497_input_0_4)

);

//Cell instances
LUT_K #(

.K(6),

.LUT_MASK(64'b0000000000000000000000000000000000100001001000100000000100000010)
) \lut_n452 (

.in({
1'b0,
\lut_n452_input_0_4 ,
\lut_n452_input_0_3 ,
\lut_n452_input_0_2 ,
1'b0,
\lut_n452_input_0_0 }),

.out(\lut_n452_output_0_0)
);

DFF #(
.INITIAL_VALUE(1'b0)

) \latch_top^FF_NODE~387 (
.D(\latch_top^FF_NODE~387_input_0_0),
.Q(\latch_top^FF_NODE~387_output_0_0),

(continues on next page)

8.4. Post-Implementation Timing Simulation 317

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

.clock(\latch_top^FF_NODE~387_clock_0_0)
);

Here we see three primitives instantiated:

• fpga_interconnect represent connections between netlist primitives

• LUT_K represent look-up tables (LUTs) (corresponding to .names in the BLIF netlist). Two parameters define
the LUTs functionality:

– K the number of inputs, and

– LUT_MASK which defines the logic function.

• DFF represents a D-Flip-Flop (corresponding to .latch in the BLIF netlist).

– The INITIAL_VALUE parameter defines the Flip-Flop’s initial state.

Different circuits may produce other types of netlist primitives corresponding to hardened primitive blocks in the FPGA
such as adders, multipliers and single or dual port RAM blocks.

Note: The different primitives produced by VPR are defined in $VTR_ROOT/vtr_flow/primitives.v

Lets now take a look at the Standard Delay Fromat (SDF) file:

Listing 8.2: SDF snippet

1 (CELL
2 (CELLTYPE "fpga_interconnect")
3 (INSTANCE routing_segment_lut_n616_output_0_0_to_lut_n497_input_0_4)
4 (DELAY
5 (ABSOLUTE
6 (IOPATH datain dataout (312.648:312.648:312.648) (312.648:312.648:312.648))
7)
8)
9)

10

11 (CELL
12 (CELLTYPE "LUT_K")
13 (INSTANCE lut_n452)
14 (DELAY
15 (ABSOLUTE
16 (IOPATH in[0] out (261:261:261) (261:261:261))
17 (IOPATH in[2] out (261:261:261) (261:261:261))
18 (IOPATH in[3] out (261:261:261) (261:261:261))
19 (IOPATH in[4] out (261:261:261) (261:261:261))
20)
21)
22)
23

24 (CELL
25 (CELLTYPE "DFF")
26 (INSTANCE latch_top\^FF_NODE\~387)
27 (DELAY
28 (ABSOLUTE

(continues on next page)

318 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

29 (IOPATH (posedge clock) Q (124:124:124) (124:124:124))
30)
31)
32 (TIMINGCHECK
33 (SETUP D (posedge clock) (66:66:66))
34)
35)

The SDF defines all the delays in the circuit using the delays calculated by VPR’s STA engine from the architecture
file we provided.

Here we see the timing description of the cells in Listing 8.1.

In this case the routing segment routing_segment_lut_n616_output_0_0_to_lut_n497_input_0_4 has a delay
of 312.648 ps, while the LUT lut_n452 has a delay of 261 ps from each input to the output. The DFF latch_top\
^FF_NODE\~387 has a clock-to-q delay of 124 ps and a setup time of 66ps.

8.4.3 Creating a Test Bench

In order to simulate a benchmark we need a test bench which will stimulate our circuit (the Device-Under-Test or DUT).

An example test bench which will randomly perturb the inputs is shown below:

Listing 8.3: The test bench tb.sv.

1 `timescale 1ps/1ps
2 module tb();
3

4 localparam CLOCK_PERIOD = 8000;
5 localparam CLOCK_DELAY = CLOCK_PERIOD / 2;
6

7 //Simulation clock
8 logic sim_clk;
9

10 //DUT inputs
11 logic \top^tm3_clk_v0 ;
12 logic \top^tm3_clk_v2 ;
13 logic \top^tm3_vidin_llc ;
14 logic \top^tm3_vidin_vs ;
15 logic \top^tm3_vidin_href ;
16 logic \top^tm3_vidin_cref ;
17 logic \top^tm3_vidin_rts0 ;
18 logic \top^tm3_vidin_vpo~0 ;
19 logic \top^tm3_vidin_vpo~1 ;
20 logic \top^tm3_vidin_vpo~2 ;
21 logic \top^tm3_vidin_vpo~3 ;
22 logic \top^tm3_vidin_vpo~4 ;
23 logic \top^tm3_vidin_vpo~5 ;
24 logic \top^tm3_vidin_vpo~6 ;
25 logic \top^tm3_vidin_vpo~7 ;
26 logic \top^tm3_vidin_vpo~8 ;
27 logic \top^tm3_vidin_vpo~9 ;
28 logic \top^tm3_vidin_vpo~10 ;

(continues on next page)

8.4. Post-Implementation Timing Simulation 319

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

29 logic \top^tm3_vidin_vpo~11 ;
30 logic \top^tm3_vidin_vpo~12 ;
31 logic \top^tm3_vidin_vpo~13 ;
32 logic \top^tm3_vidin_vpo~14 ;
33 logic \top^tm3_vidin_vpo~15 ;
34

35 //DUT outputs
36 logic \top^tm3_vidin_sda ;
37 logic \top^tm3_vidin_scl ;
38 logic \top^vidin_new_data ;
39 logic \top^vidin_rgb_reg~0 ;
40 logic \top^vidin_rgb_reg~1 ;
41 logic \top^vidin_rgb_reg~2 ;
42 logic \top^vidin_rgb_reg~3 ;
43 logic \top^vidin_rgb_reg~4 ;
44 logic \top^vidin_rgb_reg~5 ;
45 logic \top^vidin_rgb_reg~6 ;
46 logic \top^vidin_rgb_reg~7 ;
47 logic \top^vidin_addr_reg~0 ;
48 logic \top^vidin_addr_reg~1 ;
49 logic \top^vidin_addr_reg~2 ;
50 logic \top^vidin_addr_reg~3 ;
51 logic \top^vidin_addr_reg~4 ;
52 logic \top^vidin_addr_reg~5 ;
53 logic \top^vidin_addr_reg~6 ;
54 logic \top^vidin_addr_reg~7 ;
55 logic \top^vidin_addr_reg~8 ;
56 logic \top^vidin_addr_reg~9 ;
57 logic \top^vidin_addr_reg~10 ;
58 logic \top^vidin_addr_reg~11 ;
59 logic \top^vidin_addr_reg~12 ;
60 logic \top^vidin_addr_reg~13 ;
61 logic \top^vidin_addr_reg~14 ;
62 logic \top^vidin_addr_reg~15 ;
63 logic \top^vidin_addr_reg~16 ;
64 logic \top^vidin_addr_reg~17 ;
65 logic \top^vidin_addr_reg~18 ;
66

67

68 //Instantiate the dut
69 sv_chip3_hierarchy_no_mem dut (.*);
70

71 //Load the SDF
72 initial $sdf_annotate("sv_chip3_hierarchy_no_mem_post_synthesis.sdf", dut);
73

74 //The simulation clock
75 initial sim_clk = '1;
76 always #CLOCK_DELAY sim_clk = ~sim_clk;
77

78 //The circuit clocks
79 assign \top^tm3_clk_v0 = sim_clk;
80 assign \top^tm3_clk_v2 = sim_clk;

(continues on next page)

320 Chapter 8. Tutorials

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

81

82 //Randomized input
83 always@(posedge sim_clk) begin
84 \top^tm3_vidin_llc <= $urandom_range(1,0);
85 \top^tm3_vidin_vs <= $urandom_range(1,0);
86 \top^tm3_vidin_href <= $urandom_range(1,0);
87 \top^tm3_vidin_cref <= $urandom_range(1,0);
88 \top^tm3_vidin_rts0 <= $urandom_range(1,0);
89 \top^tm3_vidin_vpo~0 <= $urandom_range(1,0);
90 \top^tm3_vidin_vpo~1 <= $urandom_range(1,0);
91 \top^tm3_vidin_vpo~2 <= $urandom_range(1,0);
92 \top^tm3_vidin_vpo~3 <= $urandom_range(1,0);
93 \top^tm3_vidin_vpo~4 <= $urandom_range(1,0);
94 \top^tm3_vidin_vpo~5 <= $urandom_range(1,0);
95 \top^tm3_vidin_vpo~6 <= $urandom_range(1,0);
96 \top^tm3_vidin_vpo~7 <= $urandom_range(1,0);
97 \top^tm3_vidin_vpo~8 <= $urandom_range(1,0);
98 \top^tm3_vidin_vpo~9 <= $urandom_range(1,0);
99 \top^tm3_vidin_vpo~10 <= $urandom_range(1,0);

100 \top^tm3_vidin_vpo~11 <= $urandom_range(1,0);
101 \top^tm3_vidin_vpo~12 <= $urandom_range(1,0);
102 \top^tm3_vidin_vpo~13 <= $urandom_range(1,0);
103 \top^tm3_vidin_vpo~14 <= $urandom_range(1,0);
104 \top^tm3_vidin_vpo~15 <= $urandom_range(1,0);
105 end
106

107 endmodule

The testbench instantiates our circuit as dut at line 69. To load the SDF we use the $sdf_annotate() system task
(line 72) passing the SDF filename and target instance. The clock is defined on lines 75-76 and the random circuit
inputs are generated at the rising edge of the clock on lines 84-104.

8.4.4 Performing Timing Simulation in Modelsim

To perform the timing simulation we will use Modelsim, an HDL simulator from Mentor Graphics.

Note: Other simulators may use different commands, but the general approach will be similar.

It is easiest to write a tb.do file to setup and configure the simulation:

Listing 8.4: Modelsim do file tb.do. Note that $VTR_ROOT should be
replaced with the relevant path.

1 #Enable command logging
2 transcript on
3

4 #Setup working directories
5 if {[file exists gate_work]} {
6 vdel -lib gate_work -all
7 }

(continues on next page)

8.4. Post-Implementation Timing Simulation 321

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

8 vlib gate_work
9 vmap work gate_work

10

11 #Load the verilog files
12 vlog -sv -work work {sv_chip3_hierarchy_no_mem_post_synthesis.v}
13 vlog -sv -work work {tb.sv}
14 vlog -sv -work work {$VTR_ROOT/vtr_flow/primitives.v}
15

16 #Setup the simulation
17 vsim -t 1ps -L gate_work -L work -voptargs="+acc" +sdf_verbose +bitblast tb
18

19 #Log signal changes to a VCD file
20 vcd file sim.vcd
21 vcd add /tb/dut/*
22 vcd add /tb/dut/*
23

24 #Setup the waveform viewer
25 log -r /tb/*
26 add wave /tb/*
27 view structure
28 view signals
29

30 #Run the simulation for 1 microsecond
31 run 1us -all

We link together the post-implementation netlist, test bench and VTR primitives on lines 12-14. The simulation is then
configured on line 17, some of the options are worth discussing in more detail:

• +bitblast: Ensures Modelsim interprets the primitives in primitives.v correctly for SDF back-annotation.

Warning: Failing to provide +bitblast can cause errors during SDF back-annotation

• +sdf_verbose: Produces more information about SDF back-annotation, useful for verifying that back-
annotation succeeded.

Lastly, we tell the simulation to run on line 31.

Now that we have a .do file, lets launch the modelsim GUI:

$ vsim

and then run our .do file from the internal console:

ModelSim> do tb.do

Once the simulation completes we can view the results in the waveform view as shown in at the top of the page, or
process the generated VCD file sim.vcd.

322 Chapter 8. Tutorials

CHAPTER

NINE

UTILITIES

9.1 FPGA Assembly (FASM) Output Support

After VPR has generated a placed and routed design, the genfasm utility can emit a FASM file to represent the design
at a level detailed enough to allow generation of a bitstream to program a device. This FASM output file is enabled by
FASM metadata encoded in the VPR architecture definition and routing graph. The output FASM file can be converted
into a bitstream format suitable to program the target architecture via architecture specific tooling. Current devices that
can be programmed using the vpr + fasm flow include Lattice iCE40 and Xilinx Artix-7 devices, with work on more
devices underway. More information on supported devices is available from the Symbiflow website and an overview
of the flow for Artix-7 devices is described in IEEE Micro [MurrayAnsellRothman+20].

9.1.1 FASM metadata

The genfasm utility uses metadata blocks (see Architecture metadata) attached to the architecture definition and
routing graph to emit FASM features. By adding FASM specific metadata to both the architecture definition and the
routing graph, a FASM file that represents the place and routed design can be generated.

All metadata tags are ignored when packing, placing and routing. After VPR has been completed placement, genfasm
utility loads the VPR output files (.net, .place, .route) and then uses the FASM metadata to emit a FASM file. The
following metadata “keys” are recognized by genfasm:

• “fasm_prefix”

• “fasm_features”

• “fasm_type” and “fasm_lut”

• “fasm_mux”

• “fasm_params”

9.1.2 Invoking genfasm

genfasm expects that place and route on the design is completed (e.g. .net, .place, .route files are present), so ensure
that routing is complete before executing genfasm. genfasm should be invoked in the same subdirectory as the routing
output. The output FASM file will be written to <blif root>.fasm.

323

https://github.com/SymbiFlow/fasm
https://symbiflow.github.io

Verilog-to-Routing Documentation, Release 8.1.0-dev

9.1.3 FASM prefixing

FASM feature names has structure through their prefixes. In general the first part of the FASM feature is the location of
the feature, such as the name of the tile the feature is located in, e.g. INT_L_X5Y6 or CLBLL_L_X10Y12. The next
part is typically an identifier within the tile. For example a CLBLL tile has two slices, so the next part of the FASM
feature name is the slice identifier, e.g. SLICE_X0 or SLICE_X1.

Now consider the CLBLL_L pb_type. This pb_type is repeated in the grid for each tile of that type. To allow one
pb_type definition to be defined, the “fasm_prefix” metadata tag is allowed to be attached at the layout level on the
<single> tag. This enables the same pb_type to be used for all CLBLL_L tiles, and the “fasm_prefix” is prepended to
all FASM metadata within that pb_type. For example:

<single priority="1" type="BLK_TI-CLBLL_L" x="35" y="51">
<metadata>
<meta name="fasm_prefix">CLBLL_L_X12Y100</meta>

</metadata>
</single>
<single priority="1" type="BLK_TI-CLBLL_L" x="35" y="50">
<metadata>
<meta name="fasm_prefix">CLBLL_L_X12Y101</meta>

</metadata>
</single>

“fasm_prefix” tags can also be used within a pb_type to handle repeated features. For example in the CLB, there are 4
LUTs that can be described by a common pb_type, except that the prefix changes for each. For example, consider the
FF’s within a CLB. There are 8 FF’s that share a common structure, except for a prefix change. “fasm_prefix” can be a
space separated list to assign prefixes to the index of the pb_type, rather than needing to emit N copies of the pb_type
with varying prefixes.

<pb_type name="BEL_FF-FDSE_or_FDRE" num_pb="8">
<input name="D" num_pins="1"/>
<input name="CE" num_pins="1"/>
<clock name="C" num_pins="1"/>
<input name="SR" num_pins="1"/>
<output name="Q" num_pins="1"/>
<metadata>
<meta name="fasm_prefix">AFF BFF CFF DFF A5FF B5FF C5FF D5FF</meta>

</metadata>
</pb_type>

324 Chapter 9. Utilities

Verilog-to-Routing Documentation, Release 8.1.0-dev

Construction of the prefix

“fasm_prefix” is accumulated throughout the structure of the architecture definition. Each “fasm_prefix” is joined
together with a period (‘.’), and then a period is added after the prefix before the FASM feature name.

9.1.4 Simple FASM feature emissions

In cases where a FASM feature needs to be emitted simply via use of a pb_type, the “fasm_features” tag can be used.
If the pb_type (or mode) is selected, then all “fasm_features” in the metadata will be emitted. Multiple features can be
listed, whitespace separated. Example:

<metadata>
<meta name="fasm_features">ZRST</meta>

</metadata>

The other place that “fasm_features” is used heavily is on <edge> tags in the routing graph. If an edge is used in the
final routed design, “genfasm” will emit features attached to the edge. Example:

<edge sink_node="431195" src_node="418849" switch_id="0">
<metadata>
<meta name="fasm_features">HCLK_R_X58Y130.HCLK_LEAF_CLK_B_TOP4.HCLK_CK_BUFHCLK7 HCLK_

→˓R_X58Y130.ENABLE_BUFFER.HCLK_CK_BUFHCLK7</meta>
</metadata>

</edge>

In this example, when the routing graph connects node 418849 to 431195, two FASM features will be emitted:

• HCLK_R_X58Y130.HCLK_LEAF_CLK_B_TOP4.HCLK_CK_BUFHCLK7

• HCLK_R_X58Y130.ENABLE_BUFFER.HCLK_CK_BUFHCLK7

9.1.5 Emitting LUTs

LUTs are a structure that is explicitly understood by VPR. In order to emit LUTs, two metadata keys must be used,
“fasm_type” and “fasm_lut”. “fasm_type” must be either “LUT” or “SPLIT_LUT”. The “fasm_type” modifies how
the “fasm_lut” key is interpreted. If the pb_type that the metadata is attached to has no “num_pb” or “num_pb” equals 1,
then “fasm_type” can be “LUT”. “fasm_lut” is then the feature that represents the LUT table storage features, example:

<metadata>
<meta name="fasm_type">LUT</meta>
<meta name="fasm_lut">
ALUT.INIT[63:0]

</meta>
</metadata>

FASM LUT metadata must be attached to the <pb_type> at or within the <mode> tag directly above the <pb_type>
with blif_model=".names". Do note that there is an implicit <mode> tag within intermediate <pb_type> when no
explicit <mode> tag is present. The FASM LUT metadata tags will not be recognized attached inside of <pb_type>’s
higher above the leaf type.

When specifying a FASM features with more than one bit, explicitly specify the bit range being set. This is required
because “genfasm” does not have access to the actual bit database, and would otherwise not have the width of the
feature.

9.1. FPGA Assembly (FASM) Output Support 325

Verilog-to-Routing Documentation, Release 8.1.0-dev

When “fasm_type” is “SPLIT_LUT”, “fasm_lut” must specify both the feature that represents the LUT table storage
features and the pb_type path to the LUT being specified. Example:

<metadata>
<meta name="fasm_type">SPLIT_LUT</meta>
<meta name="fasm_lut">

ALUT.INIT[31:0] = BEL_LT-A5LUT[0]
ALUT.INIT[63:32] = BEL_LT-A5LUT[1]

</meta>
</metadata>

In this case, the LUT in pb_type BEL_LT-A5LUT[0] will use INIT[31:0], and the LUT in pb_type BEL_LT-A5LUT[1]
will use INIT[63:32].

9.1.6 Within tile interconnect features

When a tile has interconnect feature, e.g. output muxes, the “fasm_mux” tag should be attached to the interconnect tag,
likely the <direct> or <mux> tags. From the perspective of genfasm, the <direct> and <mux> tags are equivalent.
The syntax for the “fasm_mux” newline separated relationship between mux input wire names and FASM features.
Example:

<mux name="D5FFMUX" input="BLK_IG-COMMON_SLICE.DX BLK_IG-COMMON_SLICE.DO5" output="BLK_
→˓BB-SLICE_FF.D5[3]" >
<metadata>
<meta name="fasm_mux">
BLK_IG-COMMON_SLICE.DO5 : D5FFMUX.IN_A
BLK_IG-COMMON_SLICE.DX : D5FFMUX.IN_B

</meta>
</metadata>

</mux>

The above mux connects input BLK_IG-COMMON_SLICE.DX or BLK_IG-COMMON_SLICE.DO5 to BLK_BB-
SLICE_FF.D5[3]. When VPR selects BLK_IG-COMMON_SLICE.DO5 for the mux, “genfasm” will emit
D5FFMUX.IN_A, etc.

There is not a requirement that all inputs result in a feature being set. In cases where some mux selections result in no
feature being set, use “NULL” as the feature name. Example:

<mux name="CARRY_DI3" input="BLK_IG-COMMON_SLICE.DO5 BLK_IG-COMMON_SLICE.DX" output="BEL_
→˓BB-CARRY[2].DI" >
<metadata>
<meta name="fasm_mux">
BLK_IG-COMMON_SLICE.DO5 : CARRY4.DCY0
BLK_IG-COMMON_SLICE.DX : NULL

</meta>
</metadata>

</mux>

The above examples all used the <mux> tag. The “fasm_mux” metadata key can also be used with the <direct> tag
in the same way, example:

<direct name="WA7" input="BLK_IG-SLICEM.CX" output="BLK_IG-SLICEM_MODES.WA7">
<metadata>
<meta name="fasm_mux">

(continues on next page)

326 Chapter 9. Utilities

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

BLK_IG-SLICEM.CX = WA7USED
</meta>

</metadata>
</direct>

If multiple FASM features are required for a mux, they can be specified using comma’s as a seperator. Example:

<mux name="D5FFMUX" input="BLK_IG-COMMON_SLICE.DX BLK_IG-COMMON_SLICE.DO5" output="BLK_
→˓BB-SLICE_FF.D5[3]" >
<metadata>
<meta name="fasm_mux">
BLK_IG-COMMON_SLICE.DO5 : D5FFMUX.IN_A
BLK_IG-COMMON_SLICE.DX : D5FFMUX.IN_B, D5FF.OTHER_FEATURE

</meta>
</metadata>

</mux>

9.1.7 Passing parameters through to the FASM Output

In many cases there are parameters that need to be passed directly from the input Extended BLIF (.eblif) to the FASM
file. These can be passed into a FASM feature via the “fasm_params” key. Note that care must be taken to have the
“fasm_params” metadata be attached to pb_type that the packer uses, the pb_type with the blif_model= “.subckt”.

The “fasm_params” value is a newline separated list of FASM features to eblif parameters. Example:

<metadata>
<meta name="fasm_params">

INIT[31:0] = INIT_00
INIT[63:32] = INIT_01

</meta>
</metadata>

The FASM feature is on the left hand side of the equals. When setting a parameter with multiple bits, the bit range
must be specified. If the parameter is a single bit, the bit range is not required, but can be supplied for clarity. The right
hand side is the parameter name from eblif. If the parameter name is not found in the eblif, that FASM feature will not
be emitted.

No errors or warnings will be generated for unused parameters from eblif or unused mappings between eblif parameters
and FASM parameters to allow for flexibility in the synthesis output. This does mean it is important to check spelling
of the metadata, and create tests that the mapping is working as expected.

Also note that “genfasm” will not accept “x” (unknown/don’t care) or “z” (high impedence) values in parameters. Prior
to emitting the eblif for place and route, ensure that all parameters that will be mapped to FASM have a valid “1” or
“0”.

9.1. FPGA Assembly (FASM) Output Support 327

Verilog-to-Routing Documentation, Release 8.1.0-dev

9.2 Router Diagnosis Tool

The Router Diagnosis tool (route_diag) is an utility that helps developers understand the issues related to the routing
phase of VPR. Instead of running the whole routing step, route_diag performs one step of routing, aimed at analyzing
specific connections between a SINK/SOURCE nodes pair. Moreover, it is able also to profile all the possible paths of
a given SOURCE node.

To correctly run the utility tool, the user needs to compile VTR with the VTR_ENABLE_DEBUG_LOGGING set to ON and
found in the CMakeLists.txt configuration file.

The tool is compiled with all the other targets when running the full build of VtR. It is also possible, though, to build
the route_diag utility standalone, by running the following command:

make route_diag

To use the Route Diagnosis tool, the users has different parameters at disposal:

--sink_rr_node <int>

Specifies the SINK RR NODE part of the pair that needs to be analyzed

--source_rr_node <int>

Specifies the SOURCE RR NODE part of the pair that needs to be analyzed

--router_debug_sink_rr <int>

Controls when router debugging is enabled for the specified sink RR.
• For values >= 0, the value is taken as the sink RR Node ID for which to enable router debug output.
• For values < 0, sink-based router debug output is disabled.

The Router Diagnosis tool must be provided at least with the RR GRAPH and the architecture description file to
correctly function.

328 Chapter 9. Utilities

https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/01ff7e174d9d53753a2f981d7be0052b612b5874/CMakeLists.txt#L36

CHAPTER

TEN

DEVELOPER GUIDE

10.1 Contribution Guidelines

Thanks for considering contributing to VTR! Here are some helpful guidelines to follow.

10.1.1 Common Scenarios

I have a question

If you have questions about VTR take a look at our Support Resources.

If the answer to your question wasn’t in the documentation (and you think it should have been), consider enhancing the
documentation. That way someone (perhaps your future self!) will be able to quickly find the answer in the future.

I found a bug!

While we strive to make VTR reliable and robust, bugs are inevitable in large-scale software projects.

Please file a detailed bug report. This ensures we know about the problem and can work towards fixing it.

It would be great if VTR supported . . .

VTR has many features and is highly flexible. Make sure you’ve checkout out all our Support Resources to see if VTR
already supports what you want.

If VTR does not support your use case, consider filling an enhancement.

I have a bug-fix/feature I’d like to include in VTR

Great! Submitting bug-fixes and features is a great way to improve VTR. See the guidlines for submitting code.

329

Verilog-to-Routing Documentation, Release 8.1.0-dev

10.1.2 The Details

Enhancing Documentation

Enhancing documentation is a great way to start contributing to VTR.

You can edit the documentation directly by clicking the Edit on GitHub link of the relevant page, or by editing the
re-structured text (.rst) files under doc/src.

Generally it is best to make small incremental changes. If you are considering larger changes its best to discuss them
first (e.g. file a bug or enhancement).

Once you’ve made your enhancements open a pull request to get your changes considered for inclusion in the docu-
mentation.

How do I build the documentation?

The documentation can be built by using the command make html in the $VTR_ROOT/doc directory and you can view
it in a web browser by loading the file at $VTR_ROOT/_build/html/index.html. More information on building the
documentation can be found on the README on GitHub.

Filling Bug Reports

First, search for existing issues to see if the bug has already been reported.

If no bug exists you will need to collect key pieces of information. This information helps us to quickly reproduce (and
hopefully fix) the issue:

• What behaviour you expect

How you think VTR should be working.

• What behaviour you are seeing

What VTR actually does on your system.

• Detailed steps to re-produce the bug

This is key to getting your bug fixed.

Provided detailed steps to reproduce the bug, including the exact commands to reproduce the bug. Attach all
relevant files (e.g. FPGA architecture files, benchmark circuits, log files).

If we can’t re-produce the issue it is very difficult to fix.

• Context about what you are trying to achieve

Sometimes VTR does things in a different way than you expect. Telling us what you are trying to accomplish
helps us to come up with better real-world solutions.

• Details about your environment

Tell us what version of VTR you are using (e.g. the output of vpr --version), which Operating System and
compiler you are using, or any other relevant information about where or how you are building/running VTR.

Once you’ve gathered all the information open an Issue on our issue tracker.

If you know how to fix the issue, or already have it coded-up, please also consider submitting the fix. This is likely the
fastest way to get bugs fixed!

330 Chapter 10. Developer Guide

https://docs.verilogtorouting.org
https://github.com/verilog-to-routing/vtr-verilog-to-routing/tree/master/doc
https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues?&=
https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues/new?template=bug_report.md

Verilog-to-Routing Documentation, Release 8.1.0-dev

Filling Enhancement Requests

First, search existing issues to see if your enhancement request overlaps with an existing Issue.

If not feature request exists you will need to describe your enhancement:

• New behaviour

How your proposed enhancement will work (from a user’s perspective).

• Contrast with current behaviour

How will your enhancement differ from the current behaviour (from a user’s perspective).

• Potential Implementation

Describe (if you have some idea) how the proposed enhancement would be implemented.

• Context

What is the broader goal you are trying to accomplish? How does this enhancement help? This allows us to
understand why this enhancement is beneficial, and come up with the best real-world solution.

VTR developers have limited time and resources, and will not be able to address all feature requests. Typically,
simple enhancements, and those which are broadly useful to a wide group of users get higher priority.

Features which are not generally useful, or useful to only a small group of users will tend to get lower priority. (Of
course coding the enhancement yourself is an easy way to bypass this challenge).

Once you’ve gathered all the information open an Issue on our issue tracker.

Submitting Code to VTR

VTR welcomes external contributions.

In general changes that are narrowly focused (e.g. small bug fixes) are easier to review and include in the code base.

Large changes, such as substantial new features or significant code-refactoring are more challenging to review. It is
probably best to file an enhancement first to discuss your approach.

Additionally, new features which are generally useful are much easier to justify adding to the code base, whereas
features useful in only a few specialized cases are more difficult to justify.

Once your fix/enahcement is ready to go, start a pull request.

Making Pull Requests

It is assumed that by opening a pull request to VTR you have permission to do so, and the changes are under the
relevant License. VTR does not require a Contributor License Agreement (CLA) or formal Developer Certificate of
Origin (DCO) for contributions.

Each pull request should describe it’s motivation and context (linking to a relevant Issue for non-trivial changes).

Code-changes should also describe:

• The type of change (e.g. bug-fix, feature)

• How it has been tested

• What tests have been added

All new features must have tests added which exercise the new features. This ensures any future changes which
break your feature will be detected. It is also best to add tests when fixing bugs, for the same reason

10.1. Contribution Guidelines 331

https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues
https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues/new?template=feature_request.md

Verilog-to-Routing Documentation, Release 8.1.0-dev

See Adding Tests for details on how to create new regression tests. If you aren’t sure what tests are needed, ask
a maintainer.

• How the feature has been documented

Any new user-facing features should be documented in the public documentation, which is in .rst format under
doc/src, and served at https://docs.verilogtorouting.org

Once everything is ready create a pull request.

Tips for Pull Requests The following are general tips for making your pull requests easy to review (and hence more
likely to be merged):

• Keep changes small

Large change sets are difficult and time-consuming to review. If a change set is becoming too large, consider
splitting it into smaller pieces; you’ll probably want to file an issue to discuss things first.

• Do one thing only

All the changes and commits in your pull request should be relevant to the bug/feature it addresses. There should
be no unrelated changes (e.g. adding IDE files, re-formatting unchanged code).

Unrelated changes make it difficult to accept a pull request, since it does more than what the pull request described.

• Match existing code style When modifying existing code, try match the existing coding style. This helps to keep
the code consistent and reduces noise in the pull request (e.g. by avoiding re-formatting changes), which makes
it easier to review and more likely to be merged.

10.2 Commit Procedures

For general guidance on contributing to VTR see Submitting Code to VTR.

The actual machanics of submitting code are outlined below.

However they differ slightly depending on whether you are:

• an internal developer (i.e. you have commit access to the main VTR repository at github.com/
verilog-to-routing/vtr-verilog-to-routing) or,

• an (external developer) (i.e. no commit access).

The overall approach is similar, but we call out the differences below.

1. Setup a local repository on your development machine.

a. External Developers
• Create a ‘fork’ of the VTR repository.

Usually this is done on GitHub, giving you a copy of the VTR repository (i.e. github.com/<username>/
vtr-verilog-to-routing, where <username> is your GitHub username) to which you have commit
rights. See About forks in the GitHub documentation.

• Clone your ‘fork’ onto your local machine.

For example, git clone git@github.com:<username>/vtr-verilog-to-routing.git, where
<username> is your GitHub username.

b. Internal Developers

332 Chapter 10. Developer Guide

https://github.com/verilog-to-routing/vtr-verilog-to-routing/pulls
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-forks

Verilog-to-Routing Documentation, Release 8.1.0-dev

• Clone the main VTR repository onto your local machine.

For example, git clone git@github.com:verilog-to-routing/vtr-verilog-to-routing.
git.

2. Move into the cloned repository.

For example, cd vtr-verilog-to-routing.

3. Create a branch, based off of master to work on.

For example, git checkout -b my_awesome_branch master, where my_awesome_branch is some helpful
(and descriptive) name you give you’re branch. Please try to pick descriptive branch names!

4. Make your changes to the VTR code base.

5. Test your changes to ensure they work as intended and have not broken other features.

At the bare minimum it is recommended to run:

make #Rebuild the code
./run_reg_test.py vtr_reg_basic vtr_reg_strong #Run tests

See Running Tests for more details.

Also note that additional code formatting checks, and tests will be run when you open a Pull Request.

6. Commit your changes (i.e. git add followed by git commit).

Please try to use good commit messages!

See Commit Messages and Structure for details.

7. Push the changes to GitHub.

For example, git push origin my_awesome_branch.

a. External Developers
Your code changes will now exist in your branch (e.g. my_awesome_branch) within your fork (e.g.
github.com/<username>/vtr-verilog-to-routing/tree/my_awesome_branch, where <username> is
your GitHub username)

b. Internal Developers
Your code changes will now exist in your branch (e.g. my_awesome_branch) within the main VTR repository
(i.e. github.com/verilog-to-routing/vtr-verilog-to-routing/tree/my_awesome_branch)

8. Create a Pull Request (PR) to request your changes be merged into VTR.

• Navigate to your branch on GitHub

a. External Developers
Navigate to your branch within your fork on GitHub (e.g. https://github.com/<username/
vtr-verilog-to-routing/tree/my_awesome_branch, where <username> is your GitHub user-
name, and my_awesome_branch is your branch name).

b. Internal Developers
Navigate to your branch on GitHub (e.g. https://github.com/verilog-to-routing/
vtr-verilog-to-routing/tree/my_awesome_branch, where my_awesome_branch is your
branch name).

• Select the New pull request button.

a. External Developers

10.2. Commit Procedures 333

Verilog-to-Routing Documentation, Release 8.1.0-dev

If prompted, select verilog-to-routing/vtr-verilog-to-routing as the base repository.

10.3 Commit Messages and Structure

10.3.1 Commit Messages

Commit messages are an important part of understanding the code base and its history. It is therefore extremely impor-
tant to provide the following information in the commit message:

• What is being changed?

• Why is this change occurring?

The diff of changes included with the commit provides the details of what is actually changed, so only a high-level
description of what is being done is needed. However a code diff provides no insight into why the change is being
made, so this extremely helpful context can only be encoded in the commit message.

The preferred convention in VTR is to structure commit messages as follows:

Header line: explain the commit in one line (use the imperative)

More detailed explanatory text. Explain the problem that this commit
is solving. Focus on why you are making this change as opposed to how
(the code explains that). Are there side effects or other unintuitive
consequences of this change? Here's the place to explain them.

If necessary. Wrap lines at some reasonable point (e.g. 74 characters,
or so) In some contexts, the header line is treated as the subject
of the commit and the rest of the text as the body. The blank line
separating the summary from the body is critical (unless you omit
the body entirely); various tools like `log`, `shortlog` and `rebase`
can get confused if you run the two together.

Further paragraphs come after blank lines.

- Bullet points are okay, too

- Typically a hyphen or asterisk is used for the bullet, preceded
by a single space, with blank lines in between, but conventions
vary here

You can also put issue tracker references at the bottom like this:

Fixes: #123
See also: #456, #789

(based off of here, and here).

Commit messages do not always need to be long, so use your judgement. More complex or involved changes with
wider ranging implications likely deserve longer commit messages than fixing a simple typo.

It is often helpful to phrase the first line of a commit as an imperative/command written as if to tell the repository what to
do (e.g. Update netlist data structure comments, Add tests for feature XYZ, Fix bug which ...).

To provide quick context, some VTR developers also tag the first line with the main part of the code base effected, some
common ones include:

334 Chapter 10. Developer Guide

https://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html
https://github.com/torvalds/subsurface-for-dirk/blob/master/README.md#contributing

Verilog-to-Routing Documentation, Release 8.1.0-dev

• vpr: for the VPR place and route tool (vpr/)

• flow: VTR flow architectures, scripts, tests, . . . (vtr_flow/)

• archfpga: for FPGA architecture library (libs/libarchfpga)

• vtrutil: for common VTR utilities (libs/libvtrutil)

• doc: Documentation (doc/, *.md, . . .)

• infra: Infrastructure (CI, .github/, . . .)

10.3.2 Commit Structure

Generally, you should strive to keep commits atomic (i.e. they do one logical change to the code). This often means
keeping commits small and focused in what they change. Of course, a large number of miniscule commits is also
unhelpful (overwhelming and difficult to see the structure), and sometimes things can only be done in large changes –
so use your judgement. A reasonable rule of thumb is to try and ensure VTR will still compile after each commit.

For those familiar with history re-writing features in git (e.g. rebase) you can sometimes use these to clean-up your
commit history after the fact. However these should only be done on private branches, and never directly on master.

10.4 Code Formatting

Some parts of the VTR code base (e.g. VPR, libarchfpga, libvtrutil) have C/C++ code formatting requirements which
are checked automatically by regression tests. If your code changes are not compliant with the formatting, you can run:

make format

from the root of the VTR source tree. This will automatically reformat your code to be compliant with formatting
requirements (this requires the clang-format tool to be available on your system).

Python code must also be compliant with the formatting. To format Python code, you can run:

make format-py

from the root of the VTR source tree (this requires the black tool to be available on your system).

10.4.1 Large Scale Reformatting

For large scale reformatting (should only be performed by VTR maintainers) the script dev/autoformat.py can be
used to reformat the C/C++ code and commit it as ‘VTR Robot’, which keeps the revision history clearer and records
metadata about reformatting commits (which allows git hyper-blame to skip such commits). The --python option
can be used for large scale formatting of Python code.

10.4. Code Formatting 335

Verilog-to-Routing Documentation, Release 8.1.0-dev

10.4.2 Python Linting

Python files are automatically checked using pylint to ensure they follow established Python conventions. You
can run pylint on the entire repository by running ./dev/pylint_check.py. Certain files which were created
before we adopted Python lint checking are grandfathered and are not checked. To check all files, provide the
--check_grandfathered argument. You can also manually check individual files using ./dev/pylint_check.
py <path_to_file1> <path_to_file2>

10.5 Running Tests

VTR has a variety of tests which are used to check for correctness, performance and Quality of Result (QoR).

10.5.1 Tests

There are 4 main regression testing suites:

vtr_reg_basic

~1 minute serial

Goal: Fast functionality check

Feature Coverage: Low

Benchmarks: A few small and simple circuits

Architectures: A few simple architectures

This regression test is not suitable for evaluating QoR or performance. Its primary purpose is to make sure the various
tools do not crash/fail in the basic VTR flow.

QoR checks in this regression test are primarily ‘canary’ checks to catch gross degradations in QoR. Occasionally, code
changes can cause QoR failures (e.g. due to CAD noise – particularly on small benchmarks); usually such failures are
not a concern if the QoR differences are small.

vtr_reg_strong

~20 minutes serial, ~15 minutes with -j4

Goal: Broad functionality check

Feature Coverage: High

Benchmarks: A few small circuits, with some special benchmarks to exercise specific features

Architectures: A variety of architectures, including special architectures to exercise specific features

This regression test is not suitable for evaluating QoR or performance. Its primary purpose is try and achieve high
functionality coverage.

QoR checks in this regression test are primarily ‘canary’ checks to catch gross degradations in QoR. Occasionally,
changes can cause QoR failures (e.g. due to CAD noise – particularly on small benchmarks); usually such failures are
not a concern if the QoR differences are small.

336 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

vtr_reg_nightly_test1-N

Goal: Most QoR and Performance evaluation

Feature Coverage: Medium

Architectures: A wider variety of architectures

Benchmarks: Small-large size, diverse. Includes:

• VTR benchmarks

• Titan benchmarks except gaussian_blur (which has the longest run time)

• Koios benchmarks

• Various special benchmarks and tests for functionality

QoR checks in these regression suites are aimed at evaluating quality and run-time of the VTR flow. As a result
any QoR failures are a concern and should be investigated and understood.

Note:

These suites comprise a single large suite, vtr_reg_nightly and should be run together to test nightly level
regression. They are mostly similar in benchmark coverage interms of size and diversity however each suite tests
some unique benchmarks in addition to the VTR benchmarks. Each vtr_reg_nightly suite runs on a different
server (in parallel), so by having N such test suites we speed up CI by a factor of N. Currently the runtime of
each suite is capped at 6 hours, so if the runtime exceeds six hours a new vtr_reg_nightly suite (i.e. N+1) should
be created.

vtr_reg_weekly

~42 hours with -j4

Goal: Full QoR and Performance evaluation.

Feature Coverage: Medium

Benchmarks: Medium-Large size, diverse. Includes:

• VTR benchmarks

• Titan23 benchmarks, including gaussian_blur

Architectures: A wide variety of architectures

QoR checks in this regression are aimed at evaluating quality and run-time of the VTR flow. As a result any QoR
failures are a concern and should be investigated and understood.

These can be run with run_reg_test.py:

#From the VTR root directory
$./run_reg_test.py vtr_reg_basic
$./run_reg_test.py vtr_reg_strong

The nightly and weekly regressions require the Titan, ISPD, and Symbiflow benchmarks which can be integrated into
your VTR tree with:

$ make get_titan_benchmarks
$ make get_ispd_benchmarks
$ make get_symbiflow_benchmarks

They can then be run using run_reg_test.py:

10.5. Running Tests 337

Verilog-to-Routing Documentation, Release 8.1.0-dev

$./run_reg_test.py vtr_reg_nightly_test1
$./run_reg_test.py vtr_reg_nightly_test2
$./run_reg_test.py vtr_reg_nightly_test3
$./run_reg_test.py vtr_reg_weekly

To speed-up things up, individual sub-tests can be run in parallel using the -j option:

#Run up to 4 tests in parallel
$./run_reg_test.py vtr_reg_strong -j4

You can also run multiple regression tests together:

#Run both the basic and strong regression, with up to 4 tests in parallel
$./run_reg_test.py vtr_reg_basic vtr_reg_strong -j4

10.5.2 Running in a large cluster using SLURM

For the very large runs, you can submit your runs on a large cluster. A template of submission script to a Slurm-managed
cluster can be found under vtr_flow/tasks/slurm/

10.5.3 Continuous integration (CI)

For the following tests, you can use remote servers instead of running them locally. Once the changes are pushed into
the remote repository, or a PR is created, the Test Workflow will be triggered. Many tests are included in the workflow,
including:

• vtr_reg_nightly_test1-N

• vtr_reg_strong

• vtr_reg_basic

• odin_reg_strong

• parmys_reg_basic

instructions on how to gather QoR results of CI runs can be found here.

Re-run CI Tests

In the case that you want to re-run the CI tests, due to certain issues such as infrastructure fail-
ure, go to the “Action” tab and find your workflow under Test Workflow. Select the test which you
want to re-run. There is a re-run button on the top-right corner of the newly appeared window.

338 Chapter 10. Developer Guide

https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/.github/workflows/test.yml

Verilog-to-Routing Documentation, Release 8.1.0-dev

Attention If the previous run is not finished, you will not be able to re-run the CI tests. To circumvent this limitation,
there are two options:

1. Cancel the workflow. After a few minutes, you would be able to re-run the workflow

2. Wait until the workflow finishes, then re-run the failed jobs

10.5.4 Odin Functionality Tests

Odin has its own set of tests to verify the correctness of its synthesis results:

• odin_reg_basic: ~2 minutes serial

• odin_reg_strong: ~6 minutes serial

These can be run with:

#From the VTR root directory
$./run_reg_test.py odin_reg_basic
$./run_reg_test.py odin_reg_strong

and should be used when making changes to Odin.

10.5.5 Unit Tests

VTR also has a limited set of unit tests, which can be run with:

#From the VTR root directory
$ make && make test

10.5. Running Tests 339

Verilog-to-Routing Documentation, Release 8.1.0-dev

10.6 Evaluating Quality of Result (QoR) Changes

VTR uses highly tuned and optimized algorithms and data structures. Changes which effect these can have significant
impacts on the quality of VTR’s design implementations (timing, area etc.) and VTR’s run-time/memory usage. Such
changes need to be evaluated carefully before they are pushed/merged to ensure no quality degradation occurs.

If you are unsure of what level of QoR evaluation is necessary for your changes, please ask a VTR developer for
guidance.

10.6.1 General QoR Evaluation Principles

The goal of performing a QoR evaluation is to measure precisely the impact of a set of code/architecture/benchmark
changes on both the quality of VTR’s design implementation (i.e. the result of VTR’s optimizations), and on tool
run-time and memory usage.

This process is made more challenging by the fact that many of VTR’s optimization algorithms are based on heuristics
(some of which depend on randomization). This means that VTR’s implementation results are dependent upon:

• The initial conditions (e.g. input architecture & netlist, random number generator seed), and

• The precise optimization algorithms used.

The result is that a minor change to either of these can can make the measured QoR change. This effect can be viewed
as an intrinsic ‘noise’ or ‘variance’ to any QoR measurement for a particular architecture/benchmark/algorithm com-
bination.

There are typically two key methods used to measure the ‘true’ QoR:

1. Averaging metrics across multiple architectures and benchmark circuits.

2. Averaging metrics multiple runs of the same architecture and benchmark, but using different random number
generator seeds

This is a further variance reduction technique, although it can be very CPU-time intensive. A typical example
would be to sweep an entire benchmark set across 3 or 5 different seeds.

In practice any algorithm changes will likely cause improvements on some architecture/benchmark combinations, and
degradations on others. As a result we primarily focus on the average behaviour of a change to evaluate its impact.
However extreme outlier behaviour on particular circuits is also important, since it may indicate bugs or other unex-
pected behaviour.

Key QoR Metrics

The following are key QoR metrics which should be used to evaluate the impact of changes in VTR.

Implementation Quality Metrics:

340 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

Metric Meaning Sensitivity
num_pre_packed_blocks Number of primitive netlist blocks (after tech. mapping, before

packing)
Low

num_post_packed_blocks Number of Clustered Blocks (after packing) Medium
device_grid_tiles FPGA size in grid tiles Low-

Medium
min_chan_width The minimum routable channel width Medium*
crit_path_routed_wirelength The routed wirelength at the relaxed channel width Medium
NoC_agg_bandwidth** The total link bandwidth utilized by all traffic flows Low
NoC_latency** The total time of traffic flow data transfer (summed over all traffic

flows)
Low

NoC_latency_constraints_cost**Total number of traffic flows that meet their latency constraints Low

* By default, VPR attempts to find the minimum routable channel width; it then performs routing at a relaxed (e.g.
1.3x minimum) channel width. At minimum channel width routing congestion can distort the true timing/wirelength
characteristics. Combined with the fact that most FPGA architectures are built with an abundance of routing, post-
routing metrics are usually only evaluated at the relaxed channel width.

** NoC-related metrics are only reported when –noc option is enabled.

Run-time/Memory Usage Metrics:

Metric Meaning Sensitiv-
ity

vtr_flow_elapsed_time Wall-clock time to complete the VTR flow Low
pack_time Wall-clock time VPR spent during packing Low
place_time Wall-clock time VPR spent during placement Low
min_chan_width_route_timeWall-clock time VPR spent during routing at the minimum routable chan-

nel width
High*

crit_path_route_time Wall-clock time VPR spent during routing at the relaxed channel width Low
max_vpr_mem Maximum memory used by VPR (in kilobytes) Low

* Note that the minimum channel width route time is chaotic and can be highly variable (e.g. 10x variation is not
unusual). Minimum channel width routing performs a binary search to find the minimum channel width. Since route
time is highly dependent on congestion, run-time is highly dependent on the precise channel widths searched (which
may change due to perturbations).

In practice you will likely want to consider additional and more detailed metrics, particularly those directly related to
the changes you are making. For example, if your change related to hold-time optimization you would want to include
hold-time related metrics such as hold_TNS (hold total negative slack) and hold_WNS (hold worst negative slack). If
your change related to packing, you would want to report additional packing-related metrics, such as the number of
clusters formed by each block type (e.g. numbers of CLBs, RAMs, DSPs, IOs).

10.6. Evaluating Quality of Result (QoR) Changes 341

Verilog-to-Routing Documentation, Release 8.1.0-dev

Benchmark Selection

An important factor in performing any QoR evaluation is the benchmark set selected. In order to draw reasonably
general conclusions about the impact of a change we desire two characteristics of the benchmark set:

1. It includes a large number of benchmarks which are representative of the application domains of interest.

This ensures we don’t over-tune to a specific benchmark or application domain.

2. It should include benchmarks of large sizes.

This ensures we can optimize and scale to large problem spaces.

In practice (for various reasons) satisfying both of these goals simultaneously is challenging. The key goal here is to
ensure the benchmark set is not unreasonably biased in some manner (e.g. benchmarks which are too small, benchmarks
too skewed to a particular application domain).

Fairly measuring tool run-time

Accurately and fairly measuring the run-time of computer programs is challenging in practice. A variety of factors
effect run-time including:

• Operating System

• System load (e.g. other programs running)

• Variance in hardware performance (e.g. different CPUs on different machines, CPU frequency scaling)

To make reasonably ‘fair’ run-time comparisons it is important to isolate the change as much as possible from other
factors. This involves keeping as much of the experimental environment identical as possible including:

1. Target benchmarks

2. Target architecture

3. Code base (e.g. VTR revision)

4. CAD parameters

5. Computer system (e.g. CPU model, CPU frequency/power scaling, OS version)

6. Compiler version

10.6.2 Collecting QoR Measurements

The first step is to collect QoR metrics on your selected benchmark set.

You need at least two sets of QoR measurements:

1. The baseline QoR (i.e. unmodified VTR).

2. The modified QoR (i.e. VTR with your changes).

The following tests can be run locally by running the given commands on the local machine. In addition, since CI tests
are run whenever changes are pushed to the remote repository, one can use the CI test results to measure the impact of
his/her changes. The instructions to gather CI tests’ results are here.

Note that it is important to generate both sets of QoR measurements on the same computing infrastructure to ensure a
fair run-time comparison.

The following examples show how a single set of QoR measurements can be produced using the VTR flow infrastruc-
ture.

342 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

Example: VTR Benchmarks QoR Measurement

The VTR benchmarks are a group of benchmark circuits distributed with the VTR project. The are provided as synthe-
sizable verilog and can be re-mapped to VTR supported architectures. They consist mostly of small to medium sized
circuits from a mix of application domains. They are used primarily to evaluate the VTR’s optimization quality in an
architecture exploration/evaluation setting (e.g. determining minimum channel widths).

A typical approach to evaluating an algorithm change would be to run vtr_reg_qor_chain task from the nightly
regression test:

#From the VTR root
$ cd vtr_flow/tasks

#Run the VTR benchmarks
$../scripts/run_vtr_task.py regression_tests/vtr_reg_nightly_test3/vtr_reg_qor_chain

#Several hours later... they complete

#Parse the results
$../scripts/python_libs/vtr/parse_vtr_task.py regression_tests/vtr_reg_nightly_test3/
→˓vtr_reg_qor_chain

#The run directory should now contain a summary parse_results.txt file
$ head -5 vtr_reg_nightly_test3/vtr_reg_qor_chain/latest/parse_results.txt
arch circuit script_
→˓params vpr_revision vpr_status error num_pre_packed_
→˓nets num_pre_packed_blocks num_post_packed_nets num_post_packed_
→˓blocks device_width device_height num_clb num_
→˓io num_outputs num_memoriesnum_mult placed_wirelength_
→˓est placed_CPD_est placed_setup_TNS_est placed_setup_WNS_
→˓est min_chan_width routed_wirelength min_chan_width_route_success_
→˓iteration crit_path_routed_wirelength crit_path_route_success_
→˓iteration critical_path_delay setup_TNS setup_WNS hold_
→˓TNS hold_WNS logic_block_area_total logic_block_area_
→˓used min_chan_width_routing_area_total min_chan_width_routing_area_per_
→˓tile crit_path_routing_area_total crit_path_routing_area_per_
→˓tile odin_synth_time abc_synth_time abc_cec_time abc_sec_
→˓time ace_time pack_time place_time min_chan_width_route_
→˓time crit_path_route_time vtr_flow_elapsed_time max_vpr_
→˓mem max_odin_mem max_abc_mem
k6_frac_N10_frac_chain_mem32K_40nm.xml bgm.v common ␣
→˓ 9f591f6-dirty success 26431 ␣
→˓ 24575 14738 2258 ␣
→˓ 53 53 1958 257 32 ␣
→˓ 0 11 871090 18.5121 ␣
→˓ -13652.6 -18.5121 84 ␣
→˓ 328781 32 297718 ␣
→˓ 18 20.4406 ␣
→˓ -15027.8 -20.4406 0 0 1.70873e+08 ␣
→˓ 1.09883e+08 1.63166e+07 ␣
→˓ 5595.54 2.07456e+07 ␣
→˓ 7114.41 11.16 1.03 ␣
→˓ -1 -1 -1 141.53 108.
→˓26 142.42 15.63 652.17 ␣

(continues on next page)

10.6. Evaluating Quality of Result (QoR) Changes 343

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓ 1329712 528868 146796
k6_frac_N10_frac_chain_mem32K_40nm.xml blob_merge.v common ␣
→˓ 9f591f6-dirty success 14163 ␣
→˓ 11407 3445 700 ␣
→˓ 30 30 564 36 100 ␣
→˓ 0 0 113369 13.4111 ␣
→˓ -2338.12 -13.4111 64 ␣
→˓ 80075 18 75615 ␣
→˓ 23 15.3479 ␣
→˓ -2659.17 -15.3479 0 0 4.8774e+07 ␣
→˓ 3.03962e+07 3.87092e+06 ␣
→˓ 4301.02 4.83441e+06 ␣
→˓ 5371.56 0.46 0.17 ␣
→˓ -1 -1 -1 67.89 11.30␣
→˓ 47.60 3.48 198.58 ␣
→˓ 307756 48148 58104
k6_frac_N10_frac_chain_mem32K_40nm.xml boundtop.v common ␣
→˓ 9f591f6-dirty success 1071 ␣
→˓ 1141 595 389 ␣
→˓ 13 13 55 142 192 ␣
→˓ 0 0 5360 3.2524 ␣
→˓ -466.039 -3.2524 34 ␣
→˓ 4534 15 3767 ␣
→˓ 12 3.96224 ␣
→˓ -559.389 -3.96224 0 0 6.63067e+06 ␣
→˓ 2.96417e+06 353000. ␣
→˓ 2088.76 434699. ␣
→˓ 2572.18 0.29 0.11 ␣
→˓ -1 -1 -1 2.55 0.82 ␣
→˓ 2.10 0.15 7.24 ␣
→˓ 87552 38484 37384
k6_frac_N10_frac_chain_mem32K_40nm.xml ch_intrinsics.v common ␣
→˓ 9f591f6-dirty success 363 ␣
→˓ 493 270 247 ␣
→˓ 10 10 17 99 130 ␣
→˓ 1 0 1792 1.86527 ␣
→˓ -194.602 -1.86527 46 ␣
→˓ 1562 13 1438 ␣
→˓ 20 2.4542 ␣
→˓ -226.033 -2.4542 0 0 3.92691e+06 ␣
→˓ 1.4642e+06 259806. ␣
→˓ 2598.06 333135. ␣
→˓ 3331.35 0.03 0.01 ␣
→˓ -1 -1 -1 0.46 0.31 ␣
→˓ 0.94 0.09 2.59 ␣
→˓ 62684 8672 32940

344 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

Example: Titan Benchmarks QoR Measurement

The Titan benchmarks are a group of large benchmark circuits from a wide range of applications, which are compatible
with the VTR project. The are typically used as post-technology mapped netlists which have been pre-synthesized with
Quartus. They are substantially larger and more realistic than the VTR benchmarks, but can only target specifically
compatible architectures. They are used primarily to evaluate the optimization quality and scalability of VTR’s CAD
algorithms while targeting a fixed architecture (e.g. at a fixed channel width).

A typical approach to evaluating an algorithm change would be to run titan_quick_qor task from the nightly re-
gression test:

Running and Integrating the Titan Benchmarks with VTR

#From the VTR root

#Download and integrate the Titan benchmarks into the VTR source tree
$ make get_titan_benchmarks

#Move to the task directory
$ cd vtr_flow/tasks

#Run the Titan benchmarks
$../scripts/run_vtr_task.py regression_tests/vtr_reg_nightly_test2/titan_quick_qor

#Several days later... they complete

#Parse the results
$../scripts/python_libs/vtr/parse_vtr_task.py regression_tests/vtr_reg_nightly_test2/
→˓titan_quick_qor

#The run directory should now contain a summary parse_results.txt file
$ head -5 vtr_reg_nightly_test2/titan_quick_qor/latest/parse_results.txt
arch circuit vpr_
→˓revision vpr_status error num_pre_packed_nets num_pre_
→˓packed_blocks num_post_packed_nets num_post_packed_blocks device_
→˓width device_height num_clb num_io num_outputs num_
→˓memoriesnum_mult placed_wirelength_est placed_CPD_est placed_
→˓setup_TNS_est placed_setup_WNS_est routed_wirelength crit_path_
→˓route_success_iteration logic_block_area_total logic_block_area_
→˓used routing_area_total routing_area_per_tile critical_path_
→˓delay setup_TNS setup_WNS hold_TNS hold_WNS pack_
→˓time place_time crit_path_route_time max_vpr_mem max_odin_
→˓mem max_abc_mem
stratixiv_arch.timing.xml neuron_stratixiv_arch_timing.blif 0208312␣
→˓ success 119888 86875 ␣
→˓ 51408 3370 128 ␣
→˓ 95 -1 42 35 -1 ␣
→˓ -1 3985635 8.70971 -234032 ␣
→˓ -8.70971 1086419 20 ␣
→˓ 0 0 2.
→˓66512e+08 21917.1 9.64877 -
→˓262034 -9.64877 0 0 127.92 218.48 ␣

(continues on next page)

10.6. Evaluating Quality of Result (QoR) Changes 345

https://docs.verilogtorouting.org/en/latest/vtr/benchmarks/#titan-benchmarks

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓ 259.96 5133800 -1 -1
stratixiv_arch.timing.xml sparcT1_core_stratixiv_arch_timing.blif 0208312␣
→˓ success 92813 91974 ␣
→˓ 54564 4170 77 ␣
→˓ 57 -1 173 137 -1 ␣
→˓ -1 3213593 7.87734 -534295 ␣
→˓ -7.87734 1527941 43 ␣
→˓ 0 0 9.
→˓64428e+07 21973.8 9.06977 -
→˓625483 -9.06977 0 0 327.38 338.65 ␣
→˓ 364.46 3690032 -1 -1
stratixiv_arch.timing.xml stereo_vision_stratixiv_arch_timing.blif 0208312␣
→˓ success 127088 94088 ␣
→˓ 62912 3776 128 ␣
→˓ 95 -1 326 681 -1 ␣
→˓ -1 4875541 8.77339 -166097 ␣
→˓ -8.77339 998408 16 ␣
→˓ 0 0 2.
→˓66512e+08 21917.1 9.36528 -
→˓187552 -9.36528 0 0 110.03 214.16 ␣
→˓ 189.83 5048580 -1 -1
stratixiv_arch.timing.xml cholesky_mc_stratixiv_arch_timing.blif 0208312␣
→˓ success 140214 108592 ␣
→˓ 67410 5444 121 ␣
→˓ 90 -1 111 151 -1 ␣
→˓ -1 5221059 8.16972 -454610 ␣
→˓ -8.16972 1518597 15 ␣
→˓ 0 0 2.
→˓38657e+08 21915.3 9.34704 -
→˓531231 -9.34704 0 0 211.12 364.32 ␣
→˓ 490.24 6356252 -1 -1

Example: NoC Benchmarks QoR Measurements

NoC benchmarks currently include synthetic and MLP benchmarks. Synthetic benchmarks have various NoC traffic
patters, bandwidth utilization, and latency requirements. High-quality NoC router placement solutions for these bench-
marks are known. By comparing the known solutions with NoC router placement results, the developer can evaluate
the sanity of the NoC router placement algorithm. MLP benchmarks are the only realistic netlists included in this
benchmark set.

Based on the number of NoC routers in a synthetic benchmark, it is run on one of two different architectures. All MLP
benchmarks are run on an FPGA architecture with 16 NoC routers. Post-technology mapped netlists (blif files) for
synthetic benchmarks are added to the VTR project. However, MLP blif files are very large and should be downloaded
separately.

Since NoC benchmarks target different FPGA architectures, they are run as different circuits. A typical way to run all
NoC benchmarks is to run a task list and gather QoR data form different tasks:

346 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

Running and Integrating the NoC Benchmarks with VTR

#From the VTR root

#Download and integrate NoC MLP benchmarks into the VTR source tree
$ make get_noc_mlp_benchmarks

#Move to the task directory
$ cd vtr_flow

#Run the VTR benchmarks
$ scripts/run_vtr_task.py -l tasks/noc_qor/task_list.txt

#Several days later... they complete

#NoC benchmarks are run as several different tasks. Therefore, QoR results should be␣
→˓gathered from multiple directories,
#one for each task.
$ head -5 tasks/noc_qor/large_complex_synthetic/latest/parse_results.txt
$ head -5 tasks/noc_qor/large_simple_synthetic/latest/parse_results.txt
$ head -5 tasks/noc_qor/small_complex_synthetic/latest/parse_results.txt
$ head -5 tasks/noc_qor/small_simple_synthetic/latest/parse_results.txt
$ head -5 tasks/noc_qor/MLP/latest/parse_results.txt

Example: Koios Benchmarks QoR Measurement

The Koios benchmarks are a group of Deep Learning benchmark circuits distributed with the VTR project. The are pro-
vided as synthesizable verilog and can be re-mapped to VTR supported architectures. They consist mostly of medium
to large sized circuits from Deep Learning (DL). They can be used for FPGA architecture exploration for DL and also
for tuning CAD tools.

A typical approach to evaluating an algorithm change would be to run koios_medium (or koios_medium_no_hb)
tasks from the nightly regression test (vtr_reg_nightly_test4), the koios_large (or koios_large_no_hb) and the
koios_proxy (or koios_proxy_no_hb) tasks from the weekly regression test (vtr_reg_weekly). The nightly test
contains smaller benchmarks, whereas the large designs are in the weekly regression test. To measure QoR for the
entire benchmark suite, both nightly and weekly tests should be run and the results should be concatenated.

For evaluating an algorithm change in the Odin frontend, run koios_medium (or koios_medium_no_hb) tasks from
the nightly regression test (vtr_reg_nightly_test4_odin) and the koios_large_odin (or koios_large_no_hb_odin)
tasks from the weekly regression test (vtr_reg_weekly).

The koios_medium, koios_large, and koios_proxy regression tasks run these benchmarks with complex_dsp
functionality enabled, whereas koios_medium_no_hb, koios_large_no_hb and koios_proxy_no_hb regression
tasks run these benchmarks without complex_dsp functionality. Normally, only the koios_medium, koios_large,
and koios_proxy tasks should be enough for QoR.

The koios_sv and koios_sv_no_hb tasks utilize the System-Verilog parser in the Parmys frontend.

The following table provides details on available Koios settings in VTR flow:

10.6. Evaluating Quality of Result (QoR) Changes 347

https://github.com/verilog-to-routing/vtr-verilog-to-routing/tree/master/vtr_flow/benchmarks/verilog/koios

Verilog-to-Routing Documentation, Release 8.1.0-dev

Suite Test De-
scription

Target Complex
DSP Fea-
tures

Config file Fron-
tend

Parser

NightlyMedium
designs

k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml✓ vtr_reg_nightly_test4/koios_mediumParmys

NightlyMedium
designs

k6FracN10LB_mem20K_complexDSP_customSB_22nm.xmlvtr_reg_nightly_test4/koios_medium_no_hbParmys

NightlyMedium
designs

k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml✓ vtr_reg_nightly_test4_odin/koios_mediumOdin

NightlyMedium
designs

k6FracN10LB_mem20K_complexDSP_customSB_22nm.xmlvtr_reg_nightly_test4_odin/koios_medium_no_hbOdin

WeeklyLarge de-
signs

k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml✓ vtr_reg_weekly/koios_large Parmys

WeeklyLarge de-
signs

k6FracN10LB_mem20K_complexDSP_customSB_22nm.xmlvtr_reg_weekly/koios_large_no_hbParmys

WeeklyLarge de-
signs

k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml✓ vtr_reg_weekly/koios_large_odinOdin

WeeklyLarge de-
signs

k6FracN10LB_mem20K_complexDSP_customSB_22nm.xmlvtr_reg_weekly/koios_large_no_hb_odinOdin

WeeklyProxy de-
signs

k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml✓ vtr_reg_weekly/koios_proxyParmys

WeeklyProxy de-
signs

k6FracN10LB_mem20K_complexDSP_customSB_22nm.xmlvtr_reg_weekly/koios_proxy_no_hbParmys

Weeklydeep-
freeze
designs

k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml✓ vtr_reg_weekly/koios_sv Parmys System-
Verilog

Weeklydeep-
freeze
designs

k6FracN10LB_mem20K_complexDSP_customSB_22nm.xmlvtr_reg_weekly/koios_sv_no_hbParmys System-
Verilog

For more information refer to the Koios benchmark home page.

The following steps show a sequence of commands to run the koios tasks on the Koios benchmarks:

#From the VTR root
$ cd vtr_flow/tasks

#Choose any config file from the table above and run the Koios benchmarks, for example:
$../scripts/run_vtr_task.py regression_tests/vtr_reg_nightly_test4/koios_medium &
$../scripts/run_vtr_task.py regression_tests/vtr_reg_weekly/koios_large &
$../scripts/run_vtr_task.py regression_tests/vtr_reg_weekly/koios_proxy &
$../scripts/run_vtr_task.py regression_tests/vtr_reg_weekly/koios_sv &

#Disable hard blocks (hard_mem and complex_dsp macros) to verify memory and generic hard␣
→˓blocks inference:
$../scripts/run_vtr_task.py regression_tests/vtr_reg_nightly_test4/koios_medium_no_hb &
$../scripts/run_vtr_task.py regression_tests/vtr_reg_weekly/koios_large_no_hb &
$../scripts/run_vtr_task.py regression_tests/vtr_reg_weekly/koios_proxy_no_hb &
$../scripts/run_vtr_task.py regression_tests/vtr_reg_weekly/koios_sv_no_hb &

#Several hours later... they complete

(continues on next page)

348 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

#Parse the results
$../scripts/python_libs/vtr/parse_vtr_task.py regression_tests/vtr_reg_nightly_test4/
→˓koios_medium
$../scripts/python_libs/vtr/parse_vtr_task.py regression_tests/vtr_reg_weekly/koios_
→˓large
$../scripts/python_libs/vtr/parse_vtr_task.py regression_tests/vtr_reg_weekly/koios_
→˓proxy
$../scripts/python_libs/vtr/parse_vtr_task.py regression_tests/vtr_reg_weekly/koios_sv

$../scripts/python_libs/vtr/parse_vtr_task.py regression_tests/vtr_reg_nightly_test4/
→˓koios_medium_no_hb
$../scripts/python_libs/vtr/parse_vtr_task.py regression_tests/vtr_reg_weekly/koios_
→˓large_no_hb
$../scripts/python_libs/vtr/parse_vtr_task.py regression_tests/vtr_reg_weekly/koios_
→˓proxy_no_hb
$../scripts/python_libs/vtr/parse_vtr_task.py regression_tests/vtr_reg_weekly/koios_sv_
→˓no_hb

#The run directory should now contain a summary parse_results.txt file
$ head -5 vtr_reg_nightly_test4/koios_medium/<latest_run_dir>/parse_results.txt
arch circuit script_params vtr_flow_elapsed_time vtr_
→˓max_mem_stage vtr_max_mem error odin_synth_time ␣
→˓max_odin_mem parmys_synth_time max_parmys_mem abc_
→˓depth abc_synth_time abc_cec_time abc_sec_time max_
→˓abc_mem ace_time max_ace_mem num_clb num_
→˓io num_memories num_mult vpr_status vpr_
→˓revision vpr_build_info vpr_compiler vpr_compiled ␣
→˓hostname rundir max_vpr_mem num_primary_inputs num_
→˓primary_outputs num_pre_packed_nets num_pre_packed_blocks ␣
→˓num_netlist_clocks num_post_packed_nets num_post_packed_
→˓blocks device_width device_height device_grid_tiles ␣
→˓ device_limiting_resources device_name pack_mem pack_
→˓time placed_wirelength_est place_mem place_time ␣
→˓place_quench_time placed_CPD_est placed_setup_TNS_est ␣
→˓placed_setup_WNS_est placed_geomean_nonvirtual_intradomain_critical_path_
→˓delay_est place_delay_matrix_lookup_time place_quench_timing_
→˓analysis_time place_quench_sta_time place_total_timing_analysis_
→˓time place_total_sta_time min_chan_width routed_
→˓wirelength min_chan_width_route_success_iteration logic_block_area_
→˓total logic_block_area_used min_chan_width_routing_area_
→˓total min_chan_width_routing_area_per_tile min_chan_width_route_
→˓time min_chan_width_total_timing_analysis_time min_chan_width_total_
→˓sta_time crit_path_routed_wirelength crit_path_route_success_
→˓iteration crit_path_total_nets_routed crit_path_total_connections_
→˓routed crit_path_total_heap_pushes crit_path_total_heap_pops ␣
→˓ critical_path_delay geomean_nonvirtual_intradomain_critical_path_
→˓delay setup_TNS setup_WNS hold_TNS hold_
→˓WNS crit_path_routing_area_total crit_path_routing_area_per_
→˓tile router_lookahead_computation_time crit_path_route_time ␣
→˓crit_path_total_timing_analysis_time crit_path_total_sta_time
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml tpu_like.small.os.v ␣
→˓common 677.72 vpr 2.29 GiB -1 -

(continues on next page)

10.6. Evaluating Quality of Result (QoR) Changes 349

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓1 19.40 195276 5 99.61 -1 -
→˓1 109760 -1 -1 492 355 ␣
→˓32 -1 success 327aa1d-dirty release IPO VTR_ASSERT_
→˓LEVEL=2 GNU 9.4.0 on Linux-5.10.35-v8 x86_64 2023-02-
→˓09T16:01:10 gh-actions-runner-vtr-auto-spawned87 /root/vtr-verilog-
→˓to-routing/vtr-verilog-to-routing 2400616 355 289 ␣
→˓25429 18444 2 12313 1433 136 ␣
→˓136 18496 dsp_top auto 208.3 MiB 14.
→˓61 359754 2344.4 MiB 16.75 0.18 5.
→˓12303 -82671.4 -5.12303 2.1842 6.09 0.
→˓0412666 0.0368158 6.35102 5.65512 -1 ␣
→˓394367 16 5.92627e+08 8.53857e+07 4.
→˓08527e+08 22087.3 4.50 8.69097 7.85207 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml tpu_like.small.ws.v ␣
→˓common 722.22 vpr 2.30 GiB -1 -
→˓1 23.09 242848 5 72.60 -1 -
→˓1 117236 -1 -1 686 357 ␣
→˓58 -1 success 327aa1d-dirty release IPO VTR_ASSERT_
→˓LEVEL=2 GNU 9.4.0 on Linux-5.10.35-v8 x86_64 2023-02-
→˓09T16:01:10 gh-actions-runner-vtr-auto-spawned87 /root/vtr-verilog-
→˓to-routing/vtr-verilog-to-routing 2415672 357 289 ␣
→˓25686 20353 2 12799 1656 136 ␣
→˓136 18496 dsp_top auto 233.3 MiB 98.
→˓40 226648 2359.1 MiB 20.07 0.17 8.
→˓31923 -74283.8 -8.31923 2.78336 6.05 0.
→˓0420585 0.0356747 6.53862 5.54952 -1 ␣
→˓293644 13 5.92627e+08 9.4632e+07 4.
→˓08527e+08 22087.3 4.58 8.69976 7.55132 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml dla_like.small.v ␣
→˓common 2800.18 vpr 1.75 GiB -1 -
→˓1 94.38 736748 6 754.09 -1 -
→˓1 389988 -1 -1 3895 206 ␣
→˓132 -1 success 327aa1d-dirty release IPO VTR_
→˓ASSERT_LEVEL=2 GNU 9.4.0 on Linux-5.10.35-v8 x86_64 2023-02-
→˓09T16:01:10 gh-actions-runner-vtr-auto-spawned87 /root/vtr-verilog-
→˓to-routing/vtr-verilog-to-routing 1840088 206 13 ␣
→˓165036 139551 1 69732 4358 88 ␣
→˓88 7744 dsp_top auto 1052.4 MiB 1692.
→˓76 601396 1606.1 MiB 88.48 0.64 5.
→˓30279 -150931 -5.30279 5.30279 1.96 0.
→˓131322 0.104184 16.7561 13.7761 -1 ␣
→˓876475 15 2.4541e+08 1.55281e+08 1.
→˓69370e+08 21871.2 14.42 24.7943 21.0377 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1

(continues on next page)

350 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml bnn.v common ␣
→˓797.74 vpr 2.01 GiB -1 -1 84.
→˓28 729308 3 56.57 -1 -1 ␣
→˓411036 -1 -1 6190 260 0 -
→˓1 success 327aa1d-dirty release IPO VTR_ASSERT_
→˓LEVEL=2 GNU 9.4.0 on Linux-5.10.35-v8 x86_64 2023-02-
→˓09T16:01:10 gh-actions-runner-vtr-auto-spawned87 /root/vtr-verilog-
→˓to-routing/vtr-verilog-to-routing 2106860 260 122 ␣
→˓206251 154342 1 87361 6635 87 ␣
→˓87 7569 clb auto 1300.8 MiB 202.
→˓79 910701 1723.3 MiB 174.17 1.12 6.
→˓77966 -140235 -6.77966 6.77966 1.97 0.
→˓198989 0.175034 29.926 24.7241 -1 ␣
→˓1199797 17 2.37162e+08 1.88714e+08 1.
→˓65965e+08 21927.0 20.72 41.872 35.326 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1

$ head -5 vtr_reg_weekly/koios_large/<latest_run_dir>/parse_results.txt
arch circuit script_params vtr_flow_elapsed_time vtr_
→˓max_mem_stage vtr_max_mem error odin_synth_time ␣
→˓max_odin_mem parmys_synth_time max_parmys_mem abc_
→˓depth abc_synth_time abc_cec_time abc_sec_time max_
→˓abc_mem ace_time max_ace_mem num_clb num_
→˓io num_memories num_mult vpr_status vpr_
→˓revision vpr_build_info vpr_compiler vpr_compiled ␣
→˓hostname rundir max_vpr_mem num_primary_inputs num_
→˓primary_outputs num_pre_packed_nets num_pre_packed_blocks ␣
→˓num_netlist_clocks num_post_packed_nets num_post_packed_
→˓blocks device_width device_height device_grid_tiles ␣
→˓ device_limiting_resources device_name pack_mem pack_
→˓time placed_wirelength_est total_swap accepted_swap ␣
→˓ rejected_swap aborted_swap place_mem place_time ␣
→˓place_quench_time placed_CPD_est placed_setup_TNS_est ␣
→˓placed_setup_WNS_est placed_geomean_nonvirtual_intradomain_critical_path_
→˓delay_est place_delay_matrix_lookup_time place_quench_timing_
→˓analysis_time place_quench_sta_time place_total_timing_analysis_
→˓time place_total_sta_time min_chan_width routed_
→˓wirelength min_chan_width_route_success_iteration logic_block_area_
→˓total logic_block_area_used min_chan_width_routing_area_
→˓total min_chan_width_routing_area_per_tile min_chan_width_route_
→˓time min_chan_width_total_timing_analysis_time min_chan_width_total_
→˓sta_time crit_path_num_rr_graph_nodes crit_path_num_rr_graph_
→˓edges crit_path_collapsed_nodes crit_path_routed_wirelength ␣
→˓crit_path_route_success_iteration crit_path_total_nets_routed crit_
→˓path_total_connections_routed crit_path_total_heap_pushes crit_path_
→˓total_heap_pops critical_path_delay geomean_nonvirtual_intradomain_
→˓critical_path_delay setup_TNS setup_WNS hold_TNS ␣
→˓hold_WNS crit_path_routing_area_total crit_path_routing_area_per_
→˓tile router_lookahead_computation_time crit_path_route_time ␣
→˓crit_path_create_rr_graph_time crit_path_create_intra_cluster_rr_graph_

(continues on next page)

10.6. Evaluating Quality of Result (QoR) Changes 351

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓time crit_path_tile_lookahead_computation_time crit_path_router_
→˓lookahead_computation_time crit_path_total_timing_analysis_time crit_
→˓path_total_sta_time
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml lenet.v common ␣
→˓ 6320.39 parmys 6.81 GiB -1 -1 ␣
→˓2279.37 7141128 8 3659.89 -1 -1 ␣
→˓229600 -1 -1 1215 3 0 -1 ␣
→˓ success 9c0df2e-dirty release IPO VTR_ASSERT_LEVEL=2 GNU 9.
→˓4.0 on Linux-5.4.0-148-generic x86_64 2023-12-03T14:49:57 ␣
→˓mustang /homes/vtr-verilog-to-routing 406996 3 ␣
→˓73 29130 23346 1 13644 1292 ␣
→˓40 40 1600 clb auto 246.6 MiB 64.
→˓06 136280 627318 185500 408250 ␣
→˓33568 357.7 MiB 81.14 0.66 8.27929 -16089.
→˓3 -8.27929 8.27929 1.10 0.16804 0.
→˓146992 16.9432 13.6451 -1 224227 ␣
→˓19 4.87982e+07 3.41577e+07 3.42310e+07 21394.
→˓3 19.75 26.6756 21.8374 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml clstm_like.small.v ␣
→˓common 11605.17 vpr 3.24 GiB -1 ␣
→˓-1 669.16 1080564 4 7868.39 -1 -
→˓1 606244 -1 -1 7733 652 ␣
→˓237 -1 success 9c0df2e-dirty release IPO VTR_
→˓ASSERT_LEVEL=2 GNU 9.4.0 on Linux-5.4.0-148-generic x86_64 2023-12-
→˓03T14:49:57 mustang /homes/vtr-verilog-to-routing ␣
→˓3400468 652 290 299247 274102 1 ␣
→˓72966 9121 120 120 14400 dsp_top ␣
→˓auto 1946.1 MiB 741.62 1061263 13535473 ␣
→˓5677109 7516142 342222 3001.0 MiB 915.91 ␣
→˓6.25 6.0577 -397722 -6.0577 6.0577 16.
→˓74 1.09797 0.908781 169.318 135.356 -
→˓1 1289121 17 4.60155e+08 3.01448e+08 3.
→˓17281e+08 22033.4 108.23 234.326 190.185 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml clstm_like.medium.v ␣
→˓common 42560.88 vpr 6.35 GiB -1 ␣
→˓-1 1060.82 2104648 4 35779.24 -1 ␣
→˓-1 1168924 -1 -1 15289 652 ␣
→˓458 -1 success 9c0df2e-dirty release IPO VTR_
→˓ASSERT_LEVEL=2 GNU 9.4.0 on Linux-5.4.0-148-generic x86_64 2023-12-
→˓03T14:49:57 mustang /homes/vtr-verilog-to-routing ␣
→˓6658128 652 578 587833 538751 1 ␣
→˓142046 17388 168 168 28224 dsp_
→˓top auto 3792.2 MiB 1334.50 2402446 ␣
→˓32440572 13681743 17973716 785113 5856.8␣

(continues on next page)

352 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓MiB 1927.66 10.89 6.9964 -921673 -6.
→˓9964 6.9964 34.97 2.51671 1.97649 373.
→˓17 302.896 -1 2735850 16 9.
→˓07771e+08 5.93977e+08 6.21411e+08 22017.1 228.
→˓75 493.742 407.089 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml clstm_like.large.v ␣
→˓common 79534.09 vpr 9.24 GiB -1 ␣
→˓-1 1581.99 3213072 4 69583.96 -1 ␣
→˓-1 1763048 -1 -1 22846 652 ␣
→˓679 -1 success 9c0df2e-dirty release IPO VTR_
→˓ASSERT_LEVEL=2 GNU 9.4.0 on Linux-5.4.0-148-generic x86_64 2023-12-
→˓03T14:49:57 mustang /homes/vtr-verilog-to-routing ␣
→˓9688232 652 866 876458 803425 1 ␣
→˓211260 25656 200 200 40000 dsp_
→˓top auto 5580.4 MiB 2073.77 4237568 ␣
→˓55245338 23267923 30805131 1172284 8437.3␣
→˓MiB 2868.84 15.36 8.07111 -1.60215e+06 -8.
→˓07111 8.07111 54.87 2.67554 2.06921 438.
→˓894 351.141 -1 4656710 14 1.
→˓28987e+09 8.86534e+08 8.79343e+08 21983.6 469.
→˓61 576.631 470.505 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1

$ head -5 vtr_reg_weekly/koios_proxy/<latest_run_dir>/parse_results.txt
arch circuit script_params vtr_flow_elapsed_time vtr_max_mem_
→˓stage vtr_max_mem error odin_synth_time max_odin_
→˓mem parmys_synth_time max_parmys_mem abc_depth abc_synth_
→˓time abc_cec_time abc_sec_time max_abc_mem ace_
→˓time max_ace_mem num_clb num_io num_memories num_
→˓mult vpr_status vpr_revision vpr_build_info vpr_
→˓compiler vpr_compiled hostname rundir max_vpr_
→˓mem num_primary_inputs num_primary_outputs num_pre_packed_
→˓nets num_pre_packed_blocks num_netlist_clocks num_post_packed_
→˓nets num_post_packed_blocks device_width device_
→˓height device_grid_tiles device_limiting_resources device_
→˓name pack_mem pack_time placed_wirelength_est total_
→˓swap accepted_swap rejected_swap aborted_swap place_
→˓mem place_time place_quench_time placed_CPD_est placed_
→˓setup_TNS_est placed_setup_WNS_est placed_geomean_nonvirtual_intradomain_
→˓critical_path_delay_est place_delay_matrix_lookup_time place_quench_
→˓timing_analysis_time place_quench_sta_time place_total_timing_analysis_
→˓time place_total_sta_time min_chan_width routed_
→˓wirelength min_chan_width_route_success_iteration logic_block_area_
→˓total logic_block_area_used min_chan_width_routing_area_total min_
→˓chan_width_routing_area_per_tile min_chan_width_route_time min_chan_

(continues on next page)

10.6. Evaluating Quality of Result (QoR) Changes 353

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓width_total_timing_analysis_time min_chan_width_total_sta_time crit_path_
→˓num_rr_graph_nodes crit_path_num_rr_graph_edges crit_path_collapsed_
→˓nodes crit_path_routed_wirelength crit_path_route_success_
→˓iteration crit_path_total_nets_routed crit_path_total_connections_
→˓routed crit_path_total_heap_pushes crit_path_total_heap_
→˓pops critical_path_delay geomean_nonvirtual_intradomain_critical_path_
→˓delay setup_TNS setup_WNS hold_TNS hold_WNS crit_
→˓path_routing_area_total crit_path_routing_area_per_tile router_lookahead_
→˓computation_time crit_path_route_time crit_path_create_rr_graph_
→˓time crit_path_create_intra_cluster_rr_graph_time crit_path_tile_
→˓lookahead_computation_time crit_path_router_lookahead_computation_
→˓time crit_path_total_timing_analysis_time crit_path_total_sta_
→˓time
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml proxy.1.
→˓v common 30535.22 vpr 9.48 GiB -1 -
→˓1 1652.38 3799616 7 2393.26 -1 -
→˓1 771680 -1 -1 5817 938 845 -
→˓1 success 909f29c-dirty release IPO VTR_ASSERT_LEVEL=2 GNU␣
→˓9.4.0 on Linux-5.4.0-148-generic x86_64 2023-12-
→˓08T17:55:38 mustang /homes/vtr-verilog-to-
→˓routing 9940848 938 175 262404 208705 1 137273 8816 264 264 69696 dsp_
→˓top auto 1962.1 MiB 17465.
→˓99 3242084 14209964 6064078 7558347 587539 9707.
→˓9 MiB 2269.49 11.20 8.49902 -576590 -8.
→˓49902 8.49902 120.99 1.65144 1.34401 319.
→˓238 263.953 -1 4269357 15 2.25492e+09 5.
→˓42827e+08 1.53035e+09 21957.6 291.49 414.451 348.
→˓422 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml proxy.2.
→˓v common 49383.26 parmys 7.46 GiB -
→˓1 -1 6711.91 7820216 8 22879.15 -1 -
→˓1 1478720 -1 -1 8948 318 1105 -
→˓1 success 909f29c-dirty release IPO VTR_ASSERT_LEVEL=2 GNU␣
→˓9.4.0 on Linux-5.4.0-148-generic x86_64 2023-12-
→˓08T17:55:38 mustang /homes/vtr-verilog-to-
→˓routing 6046424 318 256 373725 328044 1 148054 10957 188 188 35344 memory auto 2466.
→˓3 MiB 15021.
→˓62 2653372 16311253 6713874 9344147 253232 5904.
→˓7 MiB 1439.25 8.76 7.35195 -768561 -7.
→˓35195 7.35195 47.97 1.45054 1.22978 225.
→˓237 181.257 -1 3431386 18 1.1352e+09 4.
→˓85551e+08 7.77871e+08 22008.6 262.44 314.625 258.
→˓401 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml proxy.3.
→˓v common 19852.09 vpr 4.44 GiB -1 -
→˓1 2415.20 2344724 9 11508.95 -1 -

(continues on next page)

354 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓1 604164 -1 -1 9318 732 846 -
→˓1 success 909f29c-dirty release IPO VTR_ASSERT_LEVEL=2 GNU␣
→˓9.4.0 on Linux-5.4.0-148-generic x86_64 2023-12-
→˓08T17:55:38 mustang /homes/vtr-verilog-to-
→˓routing 4650536 732 304 284977 256401 1 127990 11307 164 164 26896 memory auto 2050.
→˓2 MiB 1517.
→˓07 1834702 15487251 6133696 9051915 301640 4541.
→˓5 MiB 1750.28 13.38 9.89252 -499927 -9.
→˓89252 9.89252 33.45 1.83357 1.60237 215.
→˓923 175.904 -1 2500777 18 8.6211e+08 4.
→˓03628e+08 5.92859e+08 22042.6 191.91 301.651 247.
→˓975 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1

$ head -5 vtr_reg_weekly/koios_sv/<latest_run_dir>/parse_results.txt
arch circuit script_params vtr_flow_elapsed_time vtr_
→˓max_mem_stage vtr_max_mem error odin_synth_time ␣
→˓max_odin_mem parmys_synth_time max_parmys_mem abc_
→˓depth abc_synth_time abc_cec_time abc_sec_time max_
→˓abc_mem ace_time max_ace_mem num_clb num_
→˓io num_memories num_mult vpr_status vpr_
→˓revision vpr_build_info vpr_compiler vpr_compiled ␣
→˓hostname rundir max_vpr_mem num_primary_inputs num_
→˓primary_outputs num_pre_packed_nets num_pre_packed_blocks ␣
→˓num_netlist_clocks num_post_packed_nets num_post_packed_
→˓blocks device_width device_height device_grid_tiles ␣
→˓ device_limiting_resources device_name pack_mem pack_
→˓time placed_wirelength_est total_swap accepted_swap ␣
→˓ rejected_swap aborted_swap place_mem place_time ␣
→˓place_quench_time placed_CPD_est placed_setup_TNS_est ␣
→˓placed_setup_WNS_est placed_geomean_nonvirtual_intradomain_critical_path_
→˓delay_est place_delay_matrix_lookup_time place_quench_timing_
→˓analysis_time place_quench_sta_time place_total_timing_analysis_
→˓time place_total_sta_time min_chan_width routed_
→˓wirelength min_chan_width_route_success_iteration logic_block_area_
→˓total logic_block_area_used min_chan_width_routing_area_
→˓total min_chan_width_routing_area_per_tile min_chan_width_route_
→˓time min_chan_width_total_timing_analysis_time min_chan_width_total_
→˓sta_time crit_path_num_rr_graph_nodes crit_path_num_rr_graph_
→˓edges crit_path_collapsed_nodes crit_path_routed_wirelength ␣
→˓crit_path_route_success_iteration crit_path_total_nets_routed crit_
→˓path_total_connections_routed crit_path_total_heap_pushes crit_path_
→˓total_heap_pops critical_path_delay geomean_nonvirtual_intradomain_
→˓critical_path_delay setup_TNS setup_WNS hold_TNS ␣
→˓hold_WNS crit_path_routing_area_total crit_path_routing_area_per_
→˓tile router_lookahead_computation_time crit_path_route_time ␣
→˓crit_path_create_rr_graph_time crit_path_create_intra_cluster_rr_graph_
→˓time crit_path_tile_lookahead_computation_time crit_path_router_
→˓lookahead_computation_time crit_path_total_timing_analysis_time crit_
→˓path_total_sta_time

(continues on next page)

10.6. Evaluating Quality of Result (QoR) Changes 355

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml deepfreeze.style1.sv ␣
→˓common 22714.73 vpr 4.09 GiB -1 ␣
→˓-1 949.56 2651192 3 16835.50 -1 -
→˓1 1290132 -1 -1 12293 27 ␣
→˓396 -1 success 377bca3-dirty release IPO VTR_
→˓ASSERT_LEVEL=2 GNU 9.4.0 on Linux-5.4.0-148-generic x86_64 2023-12-
→˓13T17:58:15 mustang /homes/sv-deep 4288252 ␣
→˓27 513 420409 319910 1 173122 ␣
→˓13274 122 122 14884 clb auto ␣
→˓2706.3 MiB 2229.92 358719 32218159 ␣
→˓15492330 11108513 5617316 3575.6 MiB 1036.
→˓24 4.96 4.77742 -203483 -4.77742 4.
→˓77742 16.43 1.44734 1.24291 322.276 265.
→˓06 -1 525106 18 4.7523e+08 4.
→˓08959e+08 3.28149e+08 22047.1 89.42 403.
→˓175 333.904 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml deepfreeze.style2.sv ␣
→˓common 24680.43 vpr 14.80 GiB -1 ␣
→˓ -1 827.06 2325884 3 11919.13 -1 ␣
→˓-1 1064952 -1 -1 8475 6 ␣
→˓140 -1 success 377bca3-dirty release IPO VTR_
→˓ASSERT_LEVEL=2 GNU 9.4.0 on Linux-5.4.0-148-generic x86_64 2023-12-
→˓13T17:58:15 mustang /homes/sv-deep 15515036 ␣
→˓6 513 281129 194945 1 142714 ␣
→˓10896 338 338 114244 dsp_top auto ␣
→˓ 2163.1 MiB 2308.76 1873008 23434650 ␣
→˓9090338 12891091 1453221 15151.4 MiB 1246.
→˓22 10.86 11.0869 -410426 -11.0869 11.
→˓0869 189.96 1.47102 1.33008 298.642 263.
→˓028 -1 2267430 14 3.68993e+09 7.
→˓02925e+08 2.50989e+09 21969.6 104.21 368.
→˓851 326.754 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml deepfreeze.style3.sv ␣
→˓common 9459.64 parmys 2.59 GiB -
→˓1 -1 1046.45 2716236 3 5554.19 -
→˓1 -1 1151548 -1 -1 4951 ␣
→˓27 115 -1 success 377bca3-dirty release␣
→˓IPO VTR_ASSERT_LEVEL=2 GNU 9.4.0 on Linux-5.4.0-148-generic x86_64 ␣
→˓2023-12-13T17:58:15 mustang /homes/sv-deep 2669896 ␣
→˓27 513 162561 120322 1 71039 ␣
→˓5820 120 120 14400 dsp_top auto ␣
→˓1254.2 MiB 874.69 253375 9948140 4723336 ␣
→˓3618748 1606056 2607.3 MiB 379.75 1.99 5.
→˓71612 -91795.4 -5.71612 5.71612 14.90 0.
→˓558622 0.482091 114.978 97.3208 -1 ␣
→˓365131 15 4.60155e+08 2.08293e+08 3.

(continues on next page)

356 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓17281e+08 22033.4 34.50 143.778 122.884 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1

$ head -5 vtr_reg_nightly_test4/koios_medium_no_hb/<latest_run_dir>/parse_results.txt
arch circuit script_params vtr_flow_elapsed_time vtr_max_mem_
→˓stage vtr_max_mem error odin_synth_time max_odin_
→˓mem parmys_synth_time max_parmys_mem abc_depth abc_synth_
→˓time abc_cec_time abc_sec_time max_abc_mem ace_
→˓time max_ace_mem num_clb num_io num_memories num_
→˓mult vpr_status vpr_revision vpr_build_info vpr_
→˓compiler vpr_compiled hostname rundir max_vpr_
→˓mem num_primary_inputs num_primary_outputs num_pre_packed_
→˓nets num_pre_packed_blocks num_netlist_clocks num_post_packed_
→˓nets num_post_packed_blocks device_width device_
→˓height device_grid_tiles device_limiting_resources device_
→˓name pack_mem pack_time placed_wirelength_est total_
→˓swap accepted_swap rejected_swap aborted_swap place_
→˓mem place_time place_quench_time placed_CPD_est placed_
→˓setup_TNS_est placed_setup_WNS_est placed_geomean_nonvirtual_intradomain_
→˓critical_path_delay_est place_delay_matrix_lookup_time place_quench_
→˓timing_analysis_time place_quench_sta_time place_total_timing_analysis_
→˓time place_total_sta_time min_chan_width routed_
→˓wirelength min_chan_width_route_success_iteration logic_block_area_
→˓total logic_block_area_used min_chan_width_routing_area_total min_
→˓chan_width_routing_area_per_tile min_chan_width_route_time min_chan_
→˓width_total_timing_analysis_time min_chan_width_total_sta_time crit_path_
→˓num_rr_graph_nodes crit_path_num_rr_graph_edges crit_path_collapsed_
→˓nodes crit_path_routed_wirelength crit_path_route_success_
→˓iteration crit_path_total_nets_routed crit_path_total_connections_
→˓routed crit_path_total_heap_pushes crit_path_total_heap_
→˓pops critical_path_delay geomean_nonvirtual_intradomain_critical_path_
→˓delay setup_TNS setup_WNS hold_TNS hold_WNS crit_
→˓path_routing_area_total crit_path_routing_area_per_tile router_lookahead_
→˓computation_time crit_path_route_time crit_path_create_rr_graph_
→˓time crit_path_create_intra_cluster_rr_graph_time crit_path_tile_
→˓lookahead_computation_time crit_path_router_lookahead_computation_
→˓time crit_path_total_timing_analysis_time crit_path_total_sta_
→˓time
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml tpu_like.small.os.
→˓v common 2297.73 vpr 2.39 GiB -1 -
→˓1 67.66 248916 5 386.57 -1 -
→˓1 139588 -1 -1 1092 355 32 -
→˓1 success 9550a0d release IPO VTR_ASSERT_LEVEL=2 GNU 9.4.0␣
→˓on Linux-5.4.0-148-generic x86_64 2023-12-12T17:44:41 mustang /
→˓homes/
→˓koios 2505488 355 289 47792 39479 2 22463 2033 136 136 18496 dsp_
→˓top auto 315.6 MiB 829.
→˓80 417547 2035967 800879 1110613 124475 2446.
→˓8 MiB 59.61 0.36 7.56032 -98878.8 -7.56032 2.

(continues on next page)

10.6. Evaluating Quality of Result (QoR) Changes 357

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓65337 18.45 0.123782 0.101211 21.3991 17.
→˓4955 -1 526122 14 5.92627e+08 1.02128e+08 4.
→˓08527e+08 22087.3 15.74 27.6882 23.1868 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml tpu_like.small.ws.
→˓v common 2034.94 vpr 2.43 GiB -1 -
→˓1 56.02 302204 5 517.89 -1 -
→˓1 139816 -1 -1 1447 357 58 -
→˓1 success 9550a0d release IPO VTR_ASSERT_LEVEL=2 GNU 9.4.0␣
→˓on Linux-5.4.0-148-generic x86_64 2023-12-12T17:44:41 mustang /
→˓homes/
→˓koios 2549132 357 289 56236 49095 2 21896 2417 136 136 18496 dsp_
→˓top auto 393.4 MiB 344.
→˓10 429105 2548015 930606 1466225 151184 2489.
→˓4 MiB 85.48 0.50 7.79199 -137248 -7.79199 2.
→˓69372 18.37 0.163784 0.137256 28.7844 22.
→˓9255 -1 558155 17 5.92627e+08 1.15867e+08 4.
→˓08527e+08 22087.3 23.93 38.6761 31.6913 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml dla_like.small.
→˓v common 8355.37 vpr 1.83 GiB -1 -
→˓1 172.77 753612 6 2243.64 -1 -
→˓1 412976 -1 -1 4119 206 132 -
→˓1 success 9550a0d release IPO VTR_ASSERT_LEVEL=2 GNU 9.4.0␣
→˓on Linux-5.4.0-148-generic x86_64 2023-12-12T17:44:41 mustang /
→˓homes/
→˓koios 1920604 206 13 177171 148374 1 74857 4582 88 88 7744 dsp_
→˓top auto 1112.1 MiB 5121.
→˓00 676743 4607543 1735144 2771118 101281 1657.
→˓7 MiB 309.31 2.26 6.5785 -161896 -6.5785 6.
→˓5785 6.26 0.492287 0.382534 63.1824 50.6687 -
→˓1 975264 23 2.4541e+08 1.61532e+08 1.
→˓69370e+08 21871.2 57.11 95.977 78.7754 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml bnn.v common 1618.
→˓20 vpr 2.03 GiB -1 -1 148.
→˓99 734288 3 121.88 -1 -1 410764 -
→˓1 -1 6192 260 0 -
→˓1 success 9550a0d release IPO VTR_ASSERT_LEVEL=2 GNU 9.4.0␣
→˓on Linux-5.4.0-148-generic x86_64 2023-12-12T17:44:41 mustang /
→˓homes/
→˓koios 2131528 260 122 206267 154358 1 87325 6637 87 87 7569 clb auto 1304.
→˓8 MiB 399.
→˓50 897507 7862107 3019050 4332770 510287 1741.
→˓6 MiB 424.98 3.12 6.46586 -141256 -6.46586 6.
→˓46586 5.97 0.627132 0.490712 79.1961 63.

(continues on next page)

358 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓5977 -1 1180668 18 2.37162e+08 1.8877e+08 1.
→˓65965e+08 21927.0 60.49 113.428 92.6149 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1

$ head -5 vtr_reg_weekly/koios_large_no_hb/<latest_run_dir>/parse_results.txt
arch circuit script_params vtr_flow_elapsed_time vtr_
→˓max_mem_stage vtr_max_mem error odin_synth_time ␣
→˓max_odin_mem parmys_synth_time max_parmys_mem abc_
→˓depth abc_synth_time abc_cec_time abc_sec_time max_
→˓abc_mem ace_time max_ace_mem num_clb num_
→˓io num_memories num_mult vpr_status vpr_
→˓revision vpr_build_info vpr_compiler vpr_compiled ␣
→˓hostname rundir max_vpr_mem num_primary_inputs num_
→˓primary_outputs num_pre_packed_nets num_pre_packed_blocks ␣
→˓num_netlist_clocks num_post_packed_nets num_post_packed_
→˓blocks device_width device_height device_grid_tiles ␣
→˓ device_limiting_resources device_name pack_mem pack_
→˓time placed_wirelength_est total_swap accepted_swap ␣
→˓ rejected_swap aborted_swap place_mem place_time ␣
→˓place_quench_time placed_CPD_est placed_setup_TNS_est ␣
→˓placed_setup_WNS_est placed_geomean_nonvirtual_intradomain_critical_path_
→˓delay_est place_delay_matrix_lookup_time place_quench_timing_
→˓analysis_time place_quench_sta_time place_total_timing_analysis_
→˓time place_total_sta_time min_chan_width routed_
→˓wirelength min_chan_width_route_success_iteration logic_block_area_
→˓total logic_block_area_used min_chan_width_routing_area_
→˓total min_chan_width_routing_area_per_tile min_chan_width_route_
→˓time min_chan_width_total_timing_analysis_time min_chan_width_total_
→˓sta_time crit_path_num_rr_graph_nodes crit_path_num_rr_graph_
→˓edges crit_path_collapsed_nodes crit_path_routed_wirelength ␣
→˓crit_path_route_success_iteration crit_path_total_nets_routed crit_
→˓path_total_connections_routed crit_path_total_heap_pushes crit_path_
→˓total_heap_pops critical_path_delay geomean_nonvirtual_intradomain_
→˓critical_path_delay setup_TNS setup_WNS hold_TNS ␣
→˓hold_WNS crit_path_routing_area_total crit_path_routing_area_per_
→˓tile router_lookahead_computation_time crit_path_route_time ␣
→˓crit_path_create_rr_graph_time crit_path_create_intra_cluster_rr_graph_
→˓time crit_path_tile_lookahead_computation_time crit_path_router_
→˓lookahead_computation_time crit_path_total_timing_analysis_time crit_
→˓path_total_sta_time
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml lenet.v common ␣
→˓ 6512.03 parmys 6.81 GiB -1 -1 ␣
→˓2803.15 7141204 8 3272.22 -1 -1 ␣
→˓229632 -1 -1 1215 3 0 -1 ␣
→˓ success 9c0df2e-dirty release IPO VTR_ASSERT_LEVEL=2 GNU 9.
→˓4.0 on Linux-5.4.0-148-generic x86_64 2023-12-03T14:49:57 ␣
→˓mustang /homes/vtr-verilog-to-routing 406888 3 ␣
→˓73 29130 23346 1 13644 1292 ␣
→˓40 40 1600 clb auto 246.5 MiB 63.
→˓14 136280 627318 185500 408250 ␣

(continues on next page)

10.6. Evaluating Quality of Result (QoR) Changes 359

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓33568 357.6 MiB 85.00 0.86 8.27929 -16089.
→˓3 -8.27929 8.27929 1.13 0.12917 0.
→˓113598 13.8302 11.3301 -1 224227 ␣
→˓19 4.87982e+07 3.41577e+07 3.42310e+07 21394.
→˓3 19.69 22.8327 18.7232 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml clstm_like.small.v ␣
→˓common 17199.48 vpr 3.24 GiB -1 ␣
→˓-1 583.78 1084852 4 13572.40 -1 -
→˓1 606412 -1 -1 7731 652 ␣
→˓237 -1 success 9c0df2e-dirty release IPO VTR_
→˓ASSERT_LEVEL=2 GNU 9.4.0 on Linux-5.4.0-148-generic x86_64 2023-12-
→˓03T14:49:57 mustang /homes/vtr-verilog-to-routing ␣
→˓3400564 652 290 299239 274094 1 ␣
→˓72874 9119 120 120 14400 dsp_top ␣
→˓auto 1946.4 MiB 725.17 1086525 13721951 ␣
→˓5750436 7628104 343411 3000.6 MiB 920.88 ␣
→˓5.92 6.3706 -404576 -6.3706 6.3706 16.
→˓00 1.30631 1.07494 208.425 167.37 -
→˓1 1308179 19 4.60155e+08 3.01393e+08 3.
→˓17281e+08 22033.4 125.07 285.633 232.404 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml clstm_like.medium.v ␣
→˓common 44836.58 vpr 6.35 GiB -1 ␣
→˓-1 1206.67 2108616 4 37270.70 -1 ␣
→˓-1 1168924 -1 -1 15290 652 ␣
→˓460 -1 success 9c0df2e-dirty release IPO VTR_
→˓ASSERT_LEVEL=2 GNU 9.4.0 on Linux-5.4.0-148-generic x86_64 2023-12-
→˓03T14:49:57 mustang /homes/vtr-verilog-to-routing ␣
→˓6654212 652 578 587830 538748 1 ␣
→˓142127 17391 168 168 28224 dsp_
→˓top auto 3784.4 MiB 1272.33 2541145 ␣
→˓33348915 14048448 18476269 824198 5852.2␣
→˓MiB 2378.39 15.56 6.83162 -1.04508e+06 -6.
→˓83162 6.83162 36.38 2.58887 2.22298 379.
→˓541 301.913 -1 2865108 16 9.
→˓07771e+08 5.9428e+08 6.21411e+08 22017.1 283.
→˓80 506.773 410.065 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml clstm_like.large.v ␣
→˓common 79425.36 vpr 9.26 GiB -1 ␣
→˓-1 1997.66 3183680 4 68911.59 -1 ␣
→˓-1 1763240 -1 -1 22848 652 ␣

(continues on next page)

360 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓682 -1 success 9c0df2e-dirty release IPO VTR_
→˓ASSERT_LEVEL=2 GNU 9.4.0 on Linux-5.4.0-148-generic x86_64 2023-12-
→˓03T14:49:57 mustang /homes/vtr-verilog-to-routing ␣
→˓9708760 652 866 876471 803438 1 ␣
→˓211268 25661 200 200 40000 dsp_
→˓top auto 5596.5 MiB 2037.93 4249390 ␣
→˓55259651 23005638 31099607 1154406 8453.4␣
→˓MiB 2762.94 28.11 7.65321 -1.56393e+06 -7.
→˓65321 7.65321 50.04 2.65623 2.07346 405.
→˓053 322.505 -1 4619796 15 1.
→˓28987e+09 8.87003e+08 8.79343e+08 21983.6 963.
→˓02 568.098 461.604 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1

$ head -5 vtr_reg_weekly/koios_proxy_no_hb/<latest_run_dir>/parse_results.txt
arch circuit script_params vtr_flow_elapsed_time vtr_max_mem_
→˓stage vtr_max_mem error odin_synth_time max_odin_
→˓mem parmys_synth_time max_parmys_mem abc_depth abc_synth_
→˓time abc_cec_time abc_sec_time max_abc_mem ace_
→˓time max_ace_mem num_clb num_io num_memories num_
→˓mult vpr_status vpr_revision vpr_build_info vpr_
→˓compiler vpr_compiled hostname rundir max_vpr_
→˓mem num_primary_inputs num_primary_outputs num_pre_packed_
→˓nets num_pre_packed_blocks num_netlist_clocks num_post_packed_
→˓nets num_post_packed_blocks device_width device_
→˓height device_grid_tiles device_limiting_resources device_
→˓name pack_mem pack_time placed_wirelength_est total_
→˓swap accepted_swap rejected_swap aborted_swap place_
→˓mem place_time place_quench_time placed_CPD_est placed_
→˓setup_TNS_est placed_setup_WNS_est placed_geomean_nonvirtual_intradomain_
→˓critical_path_delay_est place_delay_matrix_lookup_time place_quench_
→˓timing_analysis_time place_quench_sta_time place_total_timing_analysis_
→˓time place_total_sta_time min_chan_width routed_
→˓wirelength min_chan_width_route_success_iteration logic_block_area_
→˓total logic_block_area_used min_chan_width_routing_area_total min_
→˓chan_width_routing_area_per_tile min_chan_width_route_time min_chan_
→˓width_total_timing_analysis_time min_chan_width_total_sta_time crit_path_
→˓num_rr_graph_nodes crit_path_num_rr_graph_edges crit_path_collapsed_
→˓nodes crit_path_routed_wirelength crit_path_route_success_
→˓iteration crit_path_total_nets_routed crit_path_total_connections_
→˓routed crit_path_total_heap_pushes crit_path_total_heap_
→˓pops critical_path_delay geomean_nonvirtual_intradomain_critical_path_
→˓delay setup_TNS setup_WNS hold_TNS hold_WNS crit_
→˓path_routing_area_total crit_path_routing_area_per_tile router_lookahead_
→˓computation_time crit_path_route_time crit_path_create_rr_graph_
→˓time crit_path_create_intra_cluster_rr_graph_time crit_path_tile_
→˓lookahead_computation_time crit_path_router_lookahead_computation_
→˓time crit_path_total_timing_analysis_time crit_path_total_sta_
→˓time

(continues on next page)

10.6. Evaluating Quality of Result (QoR) Changes 361

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml proxy.1.
→˓v common 30535.22 vpr 9.48 GiB -1 -
→˓1 1652.38 3799616 7 2393.26 -1 -
→˓1 771680 -1 -1 5817 938 845 -
→˓1 success 909f29c-dirty release IPO VTR_ASSERT_LEVEL=2 GNU␣
→˓9.4.0 on Linux-5.4.0-148-generic x86_64 2023-12-
→˓08T17:55:38 mustang /homes/vtr-verilog-to-
→˓routing 9940848 938 175 262404 208705 1 137273 8816 264 264 69696 dsp_
→˓top auto 1962.1 MiB 17465.
→˓99 3242084 14209964 6064078 7558347 587539 9707.
→˓9 MiB 2269.49 11.20 8.49902 -576590 -8.
→˓49902 8.49902 120.99 1.65144 1.34401 319.
→˓238 263.953 -1 4269357 15 2.25492e+09 5.
→˓42827e+08 1.53035e+09 21957.6 291.49 414.451 348.
→˓422 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml proxy.2.
→˓v common 49383.26 parmys 7.46 GiB -
→˓1 -1 6711.91 7820216 8 22879.15 -1 -
→˓1 1478720 -1 -1 8948 318 1105 -
→˓1 success 909f29c-dirty release IPO VTR_ASSERT_LEVEL=2 GNU␣
→˓9.4.0 on Linux-5.4.0-148-generic x86_64 2023-12-
→˓08T17:55:38 mustang /homes/vtr-verilog-to-
→˓routing 6046424 318 256 373725 328044 1 148054 10957 188 188 35344 memory auto 2466.
→˓3 MiB 15021.
→˓62 2653372 16311253 6713874 9344147 253232 5904.
→˓7 MiB 1439.25 8.76 7.35195 -768561 -7.
→˓35195 7.35195 47.97 1.45054 1.22978 225.
→˓237 181.257 -1 3431386 18 1.1352e+09 4.
→˓85551e+08 7.77871e+08 22008.6 262.44 314.625 258.
→˓401 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml proxy.3.
→˓v common 19852.09 vpr 4.44 GiB -1 -
→˓1 2415.20 2344724 9 11508.95 -1 -
→˓1 604164 -1 -1 9318 732 846 -
→˓1 success 909f29c-dirty release IPO VTR_ASSERT_LEVEL=2 GNU␣
→˓9.4.0 on Linux-5.4.0-148-generic x86_64 2023-12-
→˓08T17:55:38 mustang /homes/vtr-verilog-to-
→˓routing 4650536 732 304 284977 256401 1 127990 11307 164 164 26896 memory auto 2050.
→˓2 MiB 1517.
→˓07 1834702 15487251 6133696 9051915 301640 4541.
→˓5 MiB 1750.28 13.38 9.89252 -499927 -9.
→˓89252 9.89252 33.45 1.83357 1.60237 215.
→˓923 175.904 -1 2500777 18 8.6211e+08 4.
→˓03628e+08 5.92859e+08 22042.6 191.91 301.651 247.
→˓975 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -

(continues on next page)

362 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml proxy.4.
→˓v common 54152.82 parmys 8.16 GiB -
→˓1 -1 5711.77 8560300 7 7695.81 -1 -
→˓1 1228588 -1 -1 7685 546 1085 -
→˓1 success 909f29c-dirty release IPO VTR_ASSERT_LEVEL=2 GNU␣
→˓9.4.0 on Linux-5.4.0-148-generic x86_64 2023-12-
→˓08T17:55:38 mustang /homes/vtr-verilog-to-
→˓routing 7638244 546 1846 328200 285098 1 145315 11924 222 222 49284 dsp_
→˓top auto 2318.8 MiB 34102.
→˓96 3359643 20028032 8510897 11052028 465107 7459.
→˓2 MiB 2454.78 12.61 9.3047 -839575 -9.3047 9.
→˓3047 72.17 2.37032 2.07569 353.073 294.754 -
→˓1 4470327 15 1.58612e+09 5.57186e+08 1.
→˓08358e+09 21986.5 321.00 457.912 387.485 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -1

$ head -5 vtr_reg_weekly/koios_sv_no_hb/<latest_run_dir>/parse_results.txt
arch circuit script_params vtr_flow_elapsed_time vtr_
→˓max_mem_stage vtr_max_mem error odin_synth_time ␣
→˓max_odin_mem parmys_synth_time max_parmys_mem abc_
→˓depth abc_synth_time abc_cec_time abc_sec_time max_
→˓abc_mem ace_time max_ace_mem num_clb num_
→˓io num_memories num_mult vpr_status vpr_
→˓revision vpr_build_info vpr_compiler vpr_compiled ␣
→˓hostname rundir max_vpr_mem num_primary_inputs num_
→˓primary_outputs num_pre_packed_nets num_pre_packed_blocks ␣
→˓num_netlist_clocks num_post_packed_nets num_post_packed_
→˓blocks device_width device_height device_grid_tiles ␣
→˓ device_limiting_resources device_name pack_mem pack_
→˓time placed_wirelength_est total_swap accepted_swap ␣
→˓ rejected_swap aborted_swap place_mem place_time ␣
→˓place_quench_time placed_CPD_est placed_setup_TNS_est ␣
→˓placed_setup_WNS_est placed_geomean_nonvirtual_intradomain_critical_path_
→˓delay_est place_delay_matrix_lookup_time place_quench_timing_
→˓analysis_time place_quench_sta_time place_total_timing_analysis_
→˓time place_total_sta_time min_chan_width routed_
→˓wirelength min_chan_width_route_success_iteration logic_block_area_
→˓total logic_block_area_used min_chan_width_routing_area_
→˓total min_chan_width_routing_area_per_tile min_chan_width_route_
→˓time min_chan_width_total_timing_analysis_time min_chan_width_total_
→˓sta_time crit_path_num_rr_graph_nodes crit_path_num_rr_graph_
→˓edges crit_path_collapsed_nodes crit_path_routed_wirelength ␣
→˓crit_path_route_success_iteration crit_path_total_nets_routed crit_
→˓path_total_connections_routed crit_path_total_heap_pushes crit_path_
→˓total_heap_pops critical_path_delay geomean_nonvirtual_intradomain_
→˓critical_path_delay setup_TNS setup_WNS hold_TNS ␣
→˓hold_WNS crit_path_routing_area_total crit_path_routing_area_per_
→˓tile router_lookahead_computation_time crit_path_route_time ␣

(continues on next page)

10.6. Evaluating Quality of Result (QoR) Changes 363

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓crit_path_create_rr_graph_time crit_path_create_intra_cluster_rr_graph_
→˓time crit_path_tile_lookahead_computation_time crit_path_router_
→˓lookahead_computation_time crit_path_total_timing_analysis_time crit_
→˓path_total_sta_time
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml deepfreeze.style1.sv ␣
→˓common 47967.94 vpr 10.31 GiB -1 ␣
→˓ -1 1750.70 3477528 3 33798.52 -1 ␣
→˓ -1 1967140 -1 -1 20253 27 ␣
→˓1843 -1 success 377bca3-dirty release IPO VTR_
→˓ASSERT_LEVEL=2 GNU 9.4.0 on Linux-5.4.0-148-generic x86_64 2023-12-
→˓13T17:58:15 mustang /homes/sv-deep 10811692 ␣
→˓27 513 778797 600279 1 384107 ␣
→˓23186 244 244 59536 memory auto ␣
→˓4968.5 MiB 3724.68 4867625 48601541 ␣
→˓21188063 25604799 1808679 10366.4 MiB 3892.
→˓48 41.19 8.46401 -1.13947e+06 -8.46401 8.
→˓46401 82.35 2.83854 2.28574 443.492 355.
→˓56 -1 5791588 17 1.92066e+09 9.
→˓58441e+08 1.30834e+09 21975.7 419.89 594.
→˓451 484.887 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml deepfreeze.style2.sv ␣
→˓common 48524.73 vpr 8.29 GiB -1 ␣
→˓-1 1440.31 3118316 3 35219.69 -1 ␣
→˓-1 1725016 -1 -1 22674 27 ␣
→˓1231 -1 success 377bca3-dirty release IPO VTR_
→˓ASSERT_LEVEL=2 GNU 9.4.0 on Linux-5.4.0-148-generic x86_64 2023-12-
→˓13T17:58:15 mustang /homes/sv-deep 8696204 ␣
→˓27 513 757966 564979 1 371413 ␣
→˓24999 196 196 38416 memory auto ␣
→˓4726.6 MiB 2712.89 5184470 52271336 ␣
→˓22299033 27769653 2202650 7642.4 MiB 5209.
→˓27 55.51 9.75062 -937734 -9.75062 9.
→˓75062 50.02 2.30465 1.94566 366.253 293.
→˓69 -1 6516523 17 1.23531e+09 9.
→˓4276e+08 8.45266e+08 22003.0 925.98 493.
→˓024 402.412 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1
k6FracN10LB_mem20K_complexDSP_customSB_22nm.xml deepfreeze.style3.sv ␣
→˓common 41631.02 vpr 15.22 GiB -1 ␣
→˓ -1 1622.97 3431784 3 24896.76 -1 ␣
→˓ -1 1856148 -1 -1 20779 27 ␣
→˓3333 -1 success 377bca3-dirty release IPO VTR_
→˓ASSERT_LEVEL=2 GNU 9.4.0 on Linux-5.4.0-148-generic x86_64 2023-12-
→˓13T17:58:15 mustang /homes/sv-deep 15958564 ␣
→˓27 513 703297 547641 1 350325 ␣
→˓24854 324 324 104976 memory auto ␣
→˓4656.9 MiB 3861.23 5201129 61655974 ␣

(continues on next page)

364 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

→˓26414908 31818866 3422200 15584.5 MiB 3575.
→˓85 19.40 9.71561 -1.53645e+06 -9.71561 9.
→˓71561 179.24 2.62795 2.23108 484.893 395.
→˓834 -1 6173057 19 3.39753e+09 1.
→˓08992e+09 2.30538e+09 21961.0 377.21 640.
→˓096 530.51 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1 -
→˓1 -1 -1 -1 -1 -1 -1

Example: Extracting QoR Data from CI Runs

Instead of running tests/designs locally to generate QoR data, you can also extract the QoR data from any of the standard
test runs performed automatically by CI on a pull request. To get the QoR results of the above tests, go to the “Action”
tab. On the menu on the left, choose “Test” and select your workflow. If running the tests is done, scroll down and
click on “artifact”. This would download the results for all CI tests.

1. Go to “Action” tab

2. Select “Test” and choose your workflow

10.6. Evaluating Quality of Result (QoR) Changes 365

Verilog-to-Routing Documentation, Release 8.1.0-dev

3. Scroll down and download “artifact”

Assume that we want to get the QoR results for “vtr_reg_nightly_test3”. In the artifact, there is a file named
“qor_results_vtr_reg_nightly_test3.tar.gz.” Unzip this file, and a new directory named “vtr_flow” is created. Go to
“vtr_flow/tasks/regression_tests/vtr_reg_nightly_test3.” In this directory, you can find a directory for each benchmark
contained in this test suite (vtr_reg_nightly_test3.) In the directory for each sub-test, there is another directory named
run001. Two files are here: qor_results.txt, and parse_results.txt. QoR results for all circuits tested in this benchmark
are stored in these files. Using these parsed results, you can do a detailed QoR comparison using the instructions given

here.

10.6.3 Comparing QoR Measurements

Once you have two (or more) sets of QoR measurements they now need to be compared.

A general method is as follows:

1. Normalize all metrics to the values in the baseline measurements (this makes the relative changes easy to evaluate)

2. Produce tables for each set of QoR measurements showing the per-benchmark relative values for each metric

3. Calculate the GEOMEAN over all benchmarks for each normalized metric

4. Produce a summary table showing the Metric Geomeans for each set of QoR measurements

366 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

QoR Comparison Gotchas

There are a variety of ‘gotchas’ you need to avoid to ensure fair comparisons:

• GEOMEAN’s must be over the same set of benchmarks . A common issue is that a benchmark failed to complete
for some reason, and it’s metric values are missing

• Run-times need to be collected on the same compute infrastructure at the same system load (ideally unloaded).

Example QoR Comparison

Suppose we’ve make a change to VTR, and we now want to evaluate the change. As described above we produce QoR
measurements for both the VTR baseline, and our modified version.

We then have the following (hypothetical) QoR Metrics.

Baseline QoR Metrics:

10.6. Evaluating Quality of Result (QoR) Changes 367

Verilog-to-Routing Documentation, Release 8.1.0-dev

arch cir-
cuit

num_pre_packed_blocksnum_post_packed_blocksde-
vice_grid_tiles

min_chan_widthcrit_path_routed_wirelengthcrit-
i-
cal_path_delay

vtr_flow_elapsed_timepack_timeplace_timemin_chan_width_route_timecrit_path_route_timemax_vpr_mem

k6_frac_N10_frac_chain_mem32K_40nm.xmlbgm.v 24575 2258 2809 84 297718 20.4406652.17 141.53108.26142.42 15.63 1329712
k6_frac_N10_frac_chain_mem32K_40nm.xmlblob_merge.v11407 700 900 64 75615 15.3479198.58 67.89 11.3 47.6 3.48 307756
k6_frac_N10_frac_chain_mem32K_40nm.xmlbound-

top.v
1141 389 169 34 3767 3.962247.24 2.55 0.82 2.1 0.15 87552

k6_frac_N10_frac_chain_mem32K_40nm.xmlch_intrinsics.v493 247 100 46 1438 2.4542 2.59 0.46 0.31 0.94 0.09 62684
k6_frac_N10_frac_chain_mem32K_40nm.xmldif-

feq1.v
886 313 256 60 9624 17.964815.59 2.45 1.36 9.93 0.93 86524

k6_frac_N10_frac_chain_mem32K_40nm.xmldif-
feq2.v

599 201 256 52 8928 13.708313.14 1.41 0.87 9.14 0.94 85760

k6_frac_N10_frac_chain_mem32K_40nm.xmlLU8PEEng.v31396 2286 2916 100 348085 79.45121514.51175.67153.011009.08 45.47 1410872
k6_frac_N10_frac_chain_mem32K_40nm.xmlLU32PEEng.v101542 7251 9216 158 1554942 80.062 28051.68625.03930.5825050.73 251.87 4647936
k6_frac_N10_frac_chain_mem32K_40nm.xmlmcml.v 165809 6767 8649 128 1311825 51.19059088.1 524.8 742.854001.03 127.42 4999124
k6_frac_N10_frac_chain_mem32K_40nm.xmlmkDe-

lay-
Worker32B.v

4145 1327 2500 38 30086 8.3990265.54 7.73 15.39 26.19 3.23 804720

k6_frac_N10_frac_chain_mem32K_40nm.xmlmkP-
kt-
Merge.v

1160 516 784 44 13370 4.4408 21.75 2.45 2.14 13.95 1.96 122872

k6_frac_N10_frac_chain_mem32K_40nm.xmlmkS-
MAdapter4B.v

2852 548 400 48 19274 5.2676547.64 16.22 4.16 19.95 1.14 116012

k6_frac_N10_frac_chain_mem32K_40nm.xmlor1200.v4530 1321 729 62 51633 9.67406105.62 33.37 12.93 44.95 3.33 219376
k6_frac_N10_frac_chain_mem32K_40nm.xmlray-

gen-
top.v

2934 710 361 58 22045 5.1471339.72 9.54 4.06 19.8 2.34 126056

k6_frac_N10_frac_chain_mem32K_40nm.xmlsha.v 3024 236 289 62 16653 10.0144390.89 11.47 2.7 6.18 0.75 117612
k6_frac_N10_frac_chain_mem32K_40nm.xmlstere-

ovi-
sion0.v

21801 1122 1156 58 64935 3.6317782.74 20.45 15.49 24.5 2.6 411884

k6_frac_N10_frac_chain_mem32K_40nm.xmlstere-
ovi-
sion1.v

19538 1096 1600 100 143517 5.61925272.41 26.99 18.15 149.46 15.49 676844

k6_frac_N10_frac_chain_mem32K_40nm.xmlstere-
ovi-
sion2.v

42078 2534 7396 134 650583 15.31513664.9866.72 119.263388.7 62.6 3114880

k6_frac_N10_frac_chain_mem32K_40nm.xmlstere-
ovi-
sion3.v

324 55 49 30 768 2.664292.25 0.75 0.2 0.57 0.05 61148

Modified QoR Metrics:

368 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

arch cir-
cuit

num_pre_packed_blocksnum_post_packed_blocksde-
vice_grid_tiles

min_chan_widthcrit_path_routed_wirelengthcrit-
i-
cal_path_delay

vtr_flow_elapsed_timepack_timeplace_timemin_chan_width_route_timecrit_path_route_timemax_vpr_mem

k6_frac_N10_frac_chain_mem32K_40nm.xmlbgm.v 24575 2193 2809 82 303891 20.414 642.01 70.09 113.58198.09 16.27 1222072
k6_frac_N10_frac_chain_mem32K_40nm.xmlblob_merge.v11407 684 900 72 77261 14.6676178.16 34.31 13.38 57.89 3.35 281468
k6_frac_N10_frac_chain_mem32K_40nm.xmlbound-

top.v
1141 369 169 40 3465 3.5255 4.48 1.13 0.7 0.9 0.17 82912

k6_frac_N10_frac_chain_mem32K_40nm.xmlch_intrinsics.v493 241 100 54 1424 2.506011.75 0.19 0.27 0.43 0.09 60796
k6_frac_N10_frac_chain_mem32K_40nm.xmldif-

feq1.v
886 293 256 50 9972 17.312415.24 0.69 0.97 11.27 1.44 72204

k6_frac_N10_frac_chain_mem32K_40nm.xmldif-
feq2.v

599 187 256 50 7621 13.171414.14 0.63 1.04 10.93 0.78 68900

k6_frac_N10_frac_chain_mem32K_40nm.xmlLU8PEEng.v31396 2236 2916 98 349074 77.86111269.2688.44 153.25843.31 49.13 1319276
k6_frac_N10_frac_chain_mem32K_40nm.xmlLU32PEEng.v101542 6933 9216 176 1700697 80.136828290.01306.21897.9525668.4 278.74 4224048
k6_frac_N10_frac_chain_mem32K_40nm.xmlmcml.v 165809 6435 8649 124 1240060 45.66939384.4 296.99686.274782.43 99.4 4370788
k6_frac_N10_frac_chain_mem32K_40nm.xmlmkDe-

lay-
Worker32B.v

4145 1207 2500 36 33354 8.3986 53.94 3.85 14.75 19.53 2.95 785316

k6_frac_N10_frac_chain_mem32K_40nm.xmlmkP-
kt-
Merge.v

1160 494 784 36 13881 4.5718920.75 0.82 1.97 15.01 1.88 117636

k6_frac_N10_frac_chain_mem32K_40nm.xmlmkS-
MAdapter4B.v

2852 529 400 56 19817 5.2134927.58 5.05 2.66 14.65 1.11 103060

k6_frac_N10_frac_chain_mem32K_40nm.xmlor1200.v4530 1008 729 76 48034 8.70797202.25 10.1 8.31 171.96 2.86 178712
k6_frac_N10_frac_chain_mem32K_40nm.xmlray-

gen-
top.v

2934 634 361 58 20799 5.0457122.58 2.75 2.42 12.86 1.64 108116

k6_frac_N10_frac_chain_mem32K_40nm.xmlsha.v 3024 236 289 62 16052 10.5007337.19 5.32 2.25 4.52 0.69 105948
k6_frac_N10_frac_chain_mem32K_40nm.xmlstere-

ovi-
sion0.v

21801 1121 1156 58 70046 3.6168486.5 9.5 15.02 41.81 2.59 376100

k6_frac_N10_frac_chain_mem32K_40nm.xmlstere-
ovi-
sion1.v

19538 1080 1600 92 142805 6.02319343.83 10.68 16.21 247.99 11.66 480352

k6_frac_N10_frac_chain_mem32K_40nm.xmlstere-
ovi-
sion2.v

42078 2416 7396 124 646793 14.66065614.7934.81 107.665383.58 62.27 2682976

k6_frac_N10_frac_chain_mem32K_40nm.xmlstere-
ovi-
sion3.v

324 54 49 34 920 2.5281 1.55 0.31 0.14 0.43 0.05 63444

Based on these metrics we then calculate the following ratios and summary.

QoR Metric Ratio (Modified QoR / Baseline QoR):

10.6. Evaluating Quality of Result (QoR) Changes 369

Verilog-to-Routing Documentation, Release 8.1.0-dev

arch cir-
cuit

num_pre_packed_blocksnum_post_packed_blocksde-
vice_grid_tiles

min_chan_widthcrit_path_routed_wirelengthcrit-
i-
cal_path_delay

vtr_flow_elapsed_timepack_timeplace_timemin_chan_width_route_timecrit_path_route_timemax_vpr_mem

k6_frac_N10_frac_chain_mem32K_40nm.xmlbgm.v 1.00 0.97 1.00 0.98 1.02 1.00 0.98 0.50 1.05 1.39 1.04 0.92
k6_frac_N10_frac_chain_mem32K_40nm.xmlblob_merge.v1.00 0.98 1.00 1.13 1.02 0.96 0.90 0.51 1.18 1.22 0.96 0.91
k6_frac_N10_frac_chain_mem32K_40nm.xmlbound-

top.v
1.00 0.95 1.00 1.18 0.92 0.89 0.62 0.44 0.85 0.43 1.13 0.95

k6_frac_N10_frac_chain_mem32K_40nm.xmlch_intrinsics.v1.00 0.98 1.00 1.17 0.99 1.02 0.68 0.41 0.87 0.46 1.00 0.97
k6_frac_N10_frac_chain_mem32K_40nm.xmldif-

feq1.v
1.00 0.94 1.00 0.83 1.04 0.96 0.98 0.28 0.71 1.13 1.55 0.83

k6_frac_N10_frac_chain_mem32K_40nm.xmldif-
feq2.v

1.00 0.93 1.00 0.96 0.85 0.96 1.08 0.45 1.20 1.20 0.83 0.80

k6_frac_N10_frac_chain_mem32K_40nm.xmlLU8PEEng.v1.00 0.98 1.00 0.98 1.00 0.98 0.84 0.50 1.00 0.84 1.08 0.94
k6_frac_N10_frac_chain_mem32K_40nm.xmlLU32PEEng.v1.00 0.96 1.00 1.11 1.09 1.00 1.01 0.49 0.96 1.02 1.11 0.91
k6_frac_N10_frac_chain_mem32K_40nm.xmlmcml.v 1.00 0.95 1.00 0.97 0.95 0.89 1.03 0.57 0.92 1.20 0.78 0.87
k6_frac_N10_frac_chain_mem32K_40nm.xmlmkDe-

lay-
Worker32B.v

1.00 0.91 1.00 0.95 1.11 1.00 0.82 0.50 0.96 0.75 0.91 0.98

k6_frac_N10_frac_chain_mem32K_40nm.xmlmkP-
kt-
Merge.v

1.00 0.96 1.00 0.82 1.04 1.03 0.95 0.33 0.92 1.08 0.96 0.96

k6_frac_N10_frac_chain_mem32K_40nm.xmlmkS-
MAdapter4B.v

1.00 0.97 1.00 1.17 1.03 0.99 0.58 0.31 0.64 0.73 0.97 0.89

k6_frac_N10_frac_chain_mem32K_40nm.xmlor1200.v1.00 0.76 1.00 1.23 0.93 0.90 1.91 0.30 0.64 3.83 0.86 0.81
k6_frac_N10_frac_chain_mem32K_40nm.xmlray-

gen-
top.v

1.00 0.89 1.00 1.00 0.94 0.98 0.57 0.29 0.60 0.65 0.70 0.86

k6_frac_N10_frac_chain_mem32K_40nm.xmlsha.v 1.00 1.00 1.00 1.00 0.96 1.05 0.86 0.46 0.83 0.73 0.92 0.90
k6_frac_N10_frac_chain_mem32K_40nm.xmlstere-

ovi-
sion0.v

1.00 1.00 1.00 1.00 1.08 1.00 1.05 0.46 0.97 1.71 1.00 0.91

k6_frac_N10_frac_chain_mem32K_40nm.xmlstere-
ovi-
sion1.v

1.00 0.99 1.00 0.92 1.00 1.07 1.26 0.40 0.89 1.66 0.75 0.71

k6_frac_N10_frac_chain_mem32K_40nm.xmlstere-
ovi-
sion2.v

1.00 0.95 1.00 0.93 0.99 0.96 1.53 0.52 0.90 1.59 0.99 0.86

k6_frac_N10_frac_chain_mem32K_40nm.xmlstere-
ovi-
sion3.v

1.00 0.98 1.00 1.13 1.20 0.95 0.69 0.41 0.70 0.75 1.00 1.04

GE-
OMEAN

1.00 0.95 1.00 1.02 1.01 0.98 0.92 0.42 0.87 1.03 0.96 0.89

QoR Summary:

370 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

baseline modified

num_pre_packed_blocks 1.00 1.00
num_post_packed_blocks 1.00 0.95
device_grid_tiles 1.00 1.00
min_chan_width 1.00 1.02
crit_path_routed_wirelength 1.00 1.01
critical_path_delay 1.00 0.98
vtr_flow_elapsed_time 1.00 0.92
pack_time 1.00 0.42
place_time 1.00 0.87
min_chan_width_route_time 1.00 1.03
crit_path_route_time 1.00 0.96
max_vpr_mem 1.00 0.89

From the results we can see that our change, on average, achieved a small reduction in the number of logic blocks
(0.95) in return for a 2% increase in minimum channel width and 1% increase in routed wirelength. From a run-time
perspective the packer is substantially faster (0.42).

Automated QoR Comparison Script

To automate some of the QoR comparison VTR includes a script to compare parse_results.txt files and generate
a spreadsheet including the ratio and summary tables.

For example:

#From the VTR Root
$./vtr_flow/scripts/qor_compare.py parse_results1.txt parse_results2.txt parse_results3.
→˓txt -o comparison.xlsx

will produce ratio tables and a summary table for the files parse_results1.txt, parse_results2.txt and parse_results3.txt,
where the first file (parse_results1.txt) is assumed to be the baseline used to produce normalized ratios.

Generating New QoR Golden Result

There may be times when a regression test fails its QoR test because its golden_result needs to be changed due to known
changes in code behaviour. In this case, a new golden result needs to be generated so that the test can be passed. To
generate a new golden result, follow the steps outlined below.

1. Move to the vtr_flow/tasks directory from the VTR root, and run the failing test. For example, if a test called
vtr_ex_test in vtr_reg_nightly_test3 was failing:

#From the VTR root
$ cd vtr_flow/tasks
$../scripts/run_vtr_task.py regression_tests/vtr_reg_nightly_test3/vtr_ex_test

2. Next, generate new golden reference results using parse_vtr_task.py and the -create_golden option.

$../scripts/python_libs/vtr/parse_vtr_task.py regression_tests/vtr_reg_nightly_
→˓test3/vtr_ex_test -create_golden

3. Lastly, check that the results match with the -check_golden option

10.6. Evaluating Quality of Result (QoR) Changes 371

Verilog-to-Routing Documentation, Release 8.1.0-dev

$../scripts/python_libs/vtr/parse_vtr_task.py regression_tests/vtr_reg_nightly_
→˓test3/vtr_ex_test -check_golden

Once the -check_golden command passes, the changes to the golden result can be committed so that the reg test will
pass in future runs of vtr_reg_nightly_test3.

Attention Even though the parsed files are located in different locations, the names of the parsed files should be dif-
ferent.

10.7 Adding Tests

Any time you add a feature to VTR you must add a test which exercises the feature. This ensures that regression tests
will detect if the feature breaks in the future.

Consider which regression test suite your test should be added to (see Running Tests descriptions).

Typically, test which exercise new features should be added to vtr_reg_strong. These tests should use small bench-
marks to ensure they:

• run quickly (so they get run often!), and

• are easier to debug. If your test will take more than ~1 minute it should probably go in a longer running regression
test (but see first if you can create a smaller testcase first).

10.7.1 Adding a test to vtr_reg_strong

This describes adding a test to vtr_reg_strong, but the process is similar for the other regression tests.

1. Create a configuration file

First move to the vtr_reg_strong directory:

#From the VTR root directory
$ cd vtr_flow/tasks/regression_tests/vtr_reg_strong
$ ls
qor_geomean.txt strong_flyover_wires strong_pack_and_place
strong_analysis_only strong_fpu_hard_block_arch strong_power
strong_bounding_box strong_fracturable_luts strong_route_only
strong_breadth_first strong_func_formal_flow strong_scale_delay_budgets
strong_constant_outputs strong_func_formal_vpr strong_sweep_constant_
→˓outputs
strong_custom_grid strong_global_routing strong_timing
strong_custom_pin_locs strong_manual_annealing strong_titan
strong_custom_switch_block strong_mcnc strong_valgrind
strong_echo_files strong_minimax_budgets strong_verify_rr_graph
strong_fc_abs strong_multiclock task_list.txt
strong_fix_pins_pad_file strong_no_timing task_summary
strong_fix_pins_random strong_pack

Each folder (prefixed with strong_ in this case) defines a task (sub-test).

Let’s make a new task named strong_mytest. An easy way is to copy an existing configuration file such as
strong_timing/config/config.txt

372 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

$ mkdir -p strong_mytest/config
$ cp strong_timing/config/config.txt strong_mytest/config/.

You can now edit strong_mytest/config/config.txt to customize your test.

2. Generate golden reference results

Now we need to test our new test and generate ‘golden’ reference results. These will be used to compare future
runs of our test to detect any changes in behaviour (e.g. bugs).

From the VTR root, we move to the vtr_flow/tasks directory, and then run our new test:

#From the VTR root
$ cd vtr_flow/tasks
$../scripts/run_vtr_task.py regression_tests/vtr_reg_strong/strong_mytest

regression_tests/vtr_reg_strong/strong_mytest

Current time: Jan-25 06:51 PM. Expected runtime of next benchmark: Unknown
k6_frac_N10_mem32K_40nm/ch_intrinsics...OK

Next we can generate the golden reference results using parse_vtr_task.pywith the -create_golden option:

$../scripts/python_libs/vtr/parse_vtr_task.py regression_tests/vtr_reg_strong/
→˓strong_mytest -create_golden

And check that everything matches with -check_golden:

$../scripts/python_libs/vtr/parse_vtr_task.py regression_tests/vtr_reg_strong/
→˓strong_mytest -check_golden
regression_tests/vtr_reg_strong/strong_mytest...[Pass]

3. Add it to the task list

We now need to add our new strong_mytest task to the task list, so it is run whenever vtr_reg_strong
is run. We do this by adding the line regression_tests/vtr_reg_strong/strong_mytest to the end of
vtr_reg_strong’s task_list.txt:

#From the VTR root directory
$ vim vtr_flow/tasks/regression_tests/vtr_reg_strong/task_list.txt
Add a new line 'regression_tests/vtr_reg_strong/strong_mytest' to the end of the␣
→˓file

Now, when we run vtr_reg_strong:

#From the VTR root directory
$./run_reg_test.py vtr_reg_strong
#Output trimmed...
regression_tests/vtr_reg_strong/strong_mytest

#Output trimmed...

we see our test is run.

4. Commit the new test

Finally you need to commit your test:

10.7. Adding Tests 373

Verilog-to-Routing Documentation, Release 8.1.0-dev

#Add the config.txt and golden_results.txt for the test
$ git add vtr_flow/tasks/regression_tests/vtr_reg_strong/strong_mytest/
#Add the change to the task_list.txt
$ git add vtr_flow/tasks/regression_tests/vtr_reg_strong/task_list.txt
#Commit the changes, when pushed the test will automatically be picked up by␣
→˓BuildBot
$ git commit

10.8 Debugging Aids

VTR has support for several additional tools/features to aid debugging.

10.8.1 Sanitizers

VTR can be compiled using sanitizers which will detect invalid memory accesses, memory leaks and undefined be-
haviour (supported by both GCC and LLVM):

#From the VTR root directory
$ cmake -D VTR_ENABLE_SANITIZE=ON build
$ make

You can suppress reporting of known memory leaks in libraries used by vpr by setting the environment variable below:

LSAN_OPTIONS=suppressions=$VTR_ROOT/vpr/lsan.supp

where $VTR_ROOT is the root directory of your vtr source code tree.

Note that some of the continuous integration (CI) regtests (run automatically on pull requests) turn on sanitizers (cur-
rently S: Basic and R: Odin-II Basic Tests)

10.8.2 Valgrind

An alternative way to run vtr programs to check for invalid memory accesses and memory leaks is to use the valgrind
tool. valgrind can be run on any build except the sanitized build, without recompilation. For example, to run on vpr
use

#From the VTR root directory
valgrind --leak-check=full --suppressions=./vpr/valgrind.supp ./vpr/vpr [... usual vpr␣
→˓options here ...]

The suppression file included in the command above will suppress reporting of known memory leaks in libraries in-
cluded by vpr.

Note that valgrind is run on some flows by the continuous integration (CI) tests.

374 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

10.8.3 Assertion Levels

VTR supports configurable assertion levels.

The default level (2) which turns on most assertions which don’t cause significant run-time penalties.

This level can be increased:

#From the VTR root directory
$ cmake -D VTR_ASSERT_LEVEL=3 build
$ make

this turns on more extensive assertion checking and re-builds VTR.

10.8.4 GDB Pretty Printers

To make it easier to debug some of VTR’s data structures with GDB.

STL Pretty Printers

It is helpful to enable STL pretty printers, which make it much easier to debug data structures using STL.

For example printing a std::vector<int> by default prints:

(gdb) p/r x_locs
$2 = {<std::_Vector_base<int, std::allocator<int> >> = {

_M_impl = {<std::allocator<int>> = {<__gnu_cxx::new_allocator<int>> = {<No data␣
→˓fields>}, <No data fields>}, _M_start = 0x555556f063b0,

_M_finish = 0x555556f063dc, _M_end_of_storage = 0x555556f064b0}}, <No data fields>}

which is not very helpful.

But with STL pretty printers it prints:

(gdb) p x_locs
$2 = std::vector of length 11, capacity 64 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

which is much more helpful for debugging!

If STL pretty printers aren’t already enabled on your system, add the following to your .gdbinit file:

python
import sys
sys.path.insert(0, '$STL_PRINTER_ROOT')
from libstdcxx.v6.printers import register_libstdcxx_printers
register_libstdcxx_printers(None)

end

where $STL_PRINTER_ROOT should be replaced with the appropriate path to the STL pretty printers. For example
recent versions of GCC include these under /usr/share/gcc-*/python (e.g. /usr/share/gcc-9/python)

10.8. Debugging Aids 375

https://www.sourceware.org/gdb/
https://sourceware.org/gdb/wiki/STLSupport
https://sourceware.org/gdb/current/onlinedocs/gdb/gdbinit-man.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

VTR Pretty Printers

VTR includes some pretty printers for some VPR/VTR specific types.

For example, without the pretty printers you would see the following when printing a VPR AtomBlockId:

(gdb) p blk_id
$1 = {
id_ = 71

}

But with the VTR pretty printers enabled you would see:

(gdb) p blk_id
$1 = AtomBlockId(71)

To enable the VTR pretty printers in GDB add the following to your .gdbinit file:

python
import sys

sys.path.insert(0, "$VTR_ROOT/dev")
import vtr_gdb_pretty_printers
gdb.pretty_printers.append(vtr_gdb_pretty_printers.vtr_type_lookup)

end

where $VTR_ROOT should be replaced with the root of the VTR source tree on your system.

10.8.5 RR (Record Replay) Debugger

RR extends GDB with the ability to to record a run of a tool and then re-run it to reproduce any observed issues. RR
also enables efficient reverse execution (!) which can be extremely helpful when tracking down the source of a bug.

10.9 Speeding up the edit-compile-test cycle

Rapid iteration through the edit-compile-test/debug cycle is very helpful when making code changes to VTR.

The following is some guidance on techniques to reduce the time required.

10.10 Speeding Compilation

1. Parallel compilation

For instance when building VTR using make, you can specify the -j N option to compile the code base with N
parallel jobs:

$ make -j N

A reasonable value for N is equal to the number of threads you system can run. For instance, if your system has
4 cores with HyperThreading (i.e. 2-way SMT) you could run:

376 Chapter 10. Developer Guide

https://sourceware.org/gdb/current/onlinedocs/gdb/gdbinit-man.html
https://rr-project.org/

Verilog-to-Routing Documentation, Release 8.1.0-dev

$ make -j8

2. Building only a subset of VTR

If you know your changes only effect a specific tool in VTR, you can request that only that tool is rebuilt. For
instance, if you only wanted to re-compile VPR you could run:

$ make vpr

which would avoid re-building other tools (e.g. ODIN, ABC).

3. Use ccache

ccache is a program which caches previous compilation results. This can save significant time, for instance, when
switching back and forth between release and debug builds.

VTR’s cmake configuration should automatically detect and make use of ccache once it is installed.

For instance on Ubuntu/Debian systems you can install ccache with:

$ sudo apt install ccache

This only needs to be done once on your development system.

4. Disable Interprocedural Optimizatiaons (IPO)

IPO re-optimizes an entire executable at link time, and is automatically enabled by VTR if a supporting compiler
is found. This can notably improve performance (e.g. ~10-20% faster), but can significantly increase compilation
time (e.g. >2x in some cases). When frequently re-compiling and debugging the extra execution speed may not be
worth the longer compilation times. In such cases you can manually disable IPO by setting the cmake parameter
VTR_IPO_BUILD=off.

For instance using the wrapper Makefile:

$ make CMAKE_PARAMS="-DVTR_IPO_BUILD=off"

Note that this option is sticky, so subsequent calls to make don’t need to keep specifying VTR_IPO_BUILD,
until you want to re-enable it.

This setting can also be changed with the ccmake tool (i.e. ccmake build).

All of these option can be used in combination. For example, the following will re-build only VPR using 8 parallel
jobs with IPO disabled:

make CMAKE_PARAMS="-DVTR_IPO_BUILD=off" -j8 vpr

10.11 Profiling VTR

1. Install gprof, gprof2dot, and xdot. Specifically, the previous two packages require python3, and you should
install the last one with sudo apt install for all the dependencies you will need for visualizing your profile
results.

pip3 install gprof
pip3 install gprof2dot
sudo apt install xdot

Contact your administrator if you do not have the sudo rights.

10.11. Profiling VTR 377

https://ccache.dev/

Verilog-to-Routing Documentation, Release 8.1.0-dev

2. Use the CMake option below to enable VPR profiler build.

make CMAKE_PARAMS="-DVTR_ENABLE_PROFILING=ON" vpr

3. With the profiler build, each time you run the VTR flow script, it will produce an extra file gmon.out that
contains the raw profile information. Run gprof to parse this file. You will need to specify the path to the VPR
executable.

gprof $VTR_ROOT/vpr/vpr gmon.out > gprof.txt

4. Next, use gprof2dot to transform the parsed results to a .dot file, which describes the graph of your final profile
results. If you encounter long function names, specify the -s option for a cleaner graph.

gprof2dot -s gprof.txt > vpr.dot

5. You can chain the above commands to directly produce the .dot file:

gprof $VTR_ROOT/vpr/vpr gmon.out | gprof2dot -s > vpr.dot

6. Use xdot to view your results:

xdot vpr.dot

7. To save your results as a png file:

dot -Tpng -Gdpi=300 vpr.dot > vpr.png

Note that you can use the -Gdpi option to make your picture clearer if you find the default dpi settings not clear
enough.

10.12 External Subtrees

VTR includes some code which is developed in external repositories, and is integrated into the VTR source tree using
git subtrees.

To simplify the process of working with subtrees we use the dev/external_subtrees.py script.

For instance, running ./dev/external_subtrees.py --list from the VTR root it shows the subtrees:

Component: abc Path: abc URL: https://github.com/
→˓berkeley-abc/abc.git URL_Ref: master
Component: libargparse Path: libs/EXTERNAL/libargparse URL: https://github.com/
→˓kmurray/libargparse.git URL_Ref: master
Component: libblifparse Path: libs/EXTERNAL/libblifparse URL: https://github.com/
→˓kmurray/libblifparse.git URL_Ref: master
Component: libsdcparse Path: libs/EXTERNAL/libsdcparse URL: https://github.com/
→˓kmurray/libsdcparse.git URL_Ref: master
Component: libtatum Path: libs/EXTERNAL/libtatum URL: https://github.com/
→˓kmurray/tatum.git URL_Ref: master

Code included in VTR by subtrees should not be modified within the VTR source tree. Instead changes should be made
in the relevant up-stream repository, and then synced into the VTR tree.

378 Chapter 10. Developer Guide

https://www.atlassian.com/blog/git/alternatives-to-git-submodule-git-subtree
https://github.com/verilog-to-routing/vtr-verilog-to-routing/blob/master/dev/external_subtrees.py

Verilog-to-Routing Documentation, Release 8.1.0-dev

10.12.1 Updating an existing Subtree

1. From the VTR root run: ./dev/external_subtrees.py $SUBTREE_NAME, where $SUBTREE_NAME is the
name of an existing subtree.

For example to update the libtatum subtree:

./dev/external_subtrees.py --update libtatum

10.12.2 Adding a new Subtree

To add a new external subtree to VTR do the following:

1. Add the subtree specification to dev/subtree_config.xml.

For example to add a subtree name libfoo from the master branch of https://github.com/kmurray/
libfoo.git to libs/EXTERNAL/libfoo you would add:

<subtree
name="libfoo"
internal_path="libs/EXTERNAL/libfoo"
external_url="https://github.com/kmurray/libfoo.git"
default_external_ref="master"/>

within the existing <subtrees> tag.

Note that the internal_path directory should not already exist.

You can confirm it works by running: dev/external_subtrees.py --list:

Component: abc Path: abc URL: https://github.
→˓com/berkeley-abc/abc.git URL_Ref: master
Component: libargparse Path: libs/EXTERNAL/libargparse URL: https://github.
→˓com/kmurray/libargparse.git URL_Ref: master
Component: libblifparse Path: libs/EXTERNAL/libblifparse URL: https://github.
→˓com/kmurray/libblifparse.git URL_Ref: master
Component: libsdcparse Path: libs/EXTERNAL/libsdcparse URL: https://github.
→˓com/kmurray/libsdcparse.git URL_Ref: master
Component: libtatum Path: libs/EXTERNAL/libtatum URL: https://github.
→˓com/kmurray/tatum.git URL_Ref: master
Component: libfoo Path: libs/EXTERNAL/libfoo URL: https://github.
→˓com/kmurray/libfoo.git URL_Ref: master

which shows libfoo is now recognized.

2. Run ./dev/external_subtrees.py --update $SUBTREE_NAME to add the subtree.

For the libfoo example above this would be:

./dev/external_subtrees.py --update libfoo

This will create two commits to the repository. The first will squash all the upstream changes, the second will
merge those changes into the current branch.

10.12. External Subtrees 379

Verilog-to-Routing Documentation, Release 8.1.0-dev

10.12.3 Subtree Rational

VTR uses subtrees to allow easy tracking of upstream dependencies.

Their main advantages included:

• Works out-of-the-box: no actions needed post checkout to pull in dependencies (e.g. no git submodule
update --init --recursive)

• Simplified upstream version tracking

• Potential for local changes (although in VTR we do not use this to make keeping in sync easier)

See here for a more detailed discussion.

10.13 Finding Bugs with Coverity

Coverity Scan is a static code analysis service which can be used to detect bugs.

10.13.1 Browsing Defects

To view defects detected do the following:

1. Get a coverity scan account

Contact a project maintainer for an invitation.

2. Browse the existing defects through the coverity web interface

10.13.2 Submitting a build

To submit a build to coverity do the following:

1. Download the coverity build tool

2. Configure VTR to perform a debug build. This ensures that all assertions are enabled, without assertions coverity
may report bugs that are guarded against by assertions. We also set VTR asserts to the highest level.

#From the VTR root
mkdir -p build
cd build
CC=gcc CXX=g++ cmake -DCMAKE_BUILD_TYPE=debug -DVTR_ASSERT_LEVEL=3 ..

Note that we explicitly asked for gcc and g++, the coverity build tool defaults to these compilers, and may not like the
default ‘cc’ or ‘c++’ (even if they are linked to gcc/g++).

3. Run the coverity build tool

#From the build directory where we ran cmake
cov-build --dir cov-int make -j8

4. Archive the output directory

tar -czvf vtr_coverity.tar.gz cov-int

5. Submit the archive through the coverity web interface

380 Chapter 10. Developer Guide

https://blogs.atlassian.com/2013/05/alternatives-to-git-submodule-git-subtree/
https://scan.coverity.com
https://scan.coverity.com/download

Verilog-to-Routing Documentation, Release 8.1.0-dev

Once the build has been analyzed you can browse the latest results through the coverity web interface

10.13.3 No files emitted

If you get the following warning from cov-build:

[WARNING] No files were emitted.

You may need to configure coverity to ‘know’ about your compiler. For example:

```shell
cov-configure --compiler `which gcc-7`
```

On unix-like systems run scan-build make from the root VTR directory. to output the html analysis to a specific
folder, run scan-build make -o /some/folder

10.14 Release Procedures

10.14.1 General Principles

We periodically make ‘official’ VTR releases. While we aim to keep the VTR master branch stable through-out de-
velopment some users prefer to work of off an official release. Historically this has coincided with the publishing of
a paper detailing and carefully evaluating the changes from the previous VTR release. This is particularly helpful for
giving academics a named baseline version of VTR to which they can compare which has a known quality.

In preparation for a release it may make sense to produce ‘release candidates’ which when fully tested and evaluated
(and after any bug fixes) become the official release.

10.14.2 Checklist

The following outlines the procedure to following when making an official VTR release:

• Check the code compiles on the list of supported compilers

• Check that all regression tests pass functionality

• Update regression test golden results to match the released version

• Check that all regression tests pass QoR

• Create a new entry in the CHANGELOG.md for the release, summarizing at a high-level user-facing changes

• Increment the version number (set in root CMakeLists.txt)

• Create a git annotated tag (e.g. v8.0.0) and push it to github

• GitHub will automatically create a release based on the tag

• Add the new change log entry to the GitHub release description

• Update the ReadTheDocs configuration to build and serve documentation for the relevant tag (e.g. v8.0.0)

• Send a release announcement email to the vtr-announce mailing list (make sure to thank all contributors!)

10.14. Release Procedures 381

https://github.com/verilog-to-routing/vtr-verilog-to-routing/releases
https://readthedocs.org/projects/vtr/versions/
mailto:vtr-announce@googlegroups.com

Verilog-to-Routing Documentation, Release 8.1.0-dev

10.15 Sphinx API Documentation for C/C++ Projects

The Sphinx API documentation for VTR C/C++ projects is created using Doxygen and Breathe plugin. Doxygen is a
standard tool for generating documentation from annotated code. It is used to generate XML output that can then be
parsed by the Breathe plugin, which provides the RST directives used to embed the code comments into the Sphinx
documentation.

Every VPR C/C++ project requires a few steps that have to be completed, to generate the Sphinx documentation:

• Create doxyfile for the project

• Update the Breathe config

• Create RST files with the API description using Breathe directives

• Generate the project documentation

10.15.1 Create Doxyfile

A doxyfile a Doxygen configuration file that provides all the necessary information about the documented project. It is
used to generate Doxygen output in the chosen format.

The configuration includes the specification of input files, output directory, generated documentation formats, and
much more. The config for a particular VPR project should be saved in the <vtr-verilog-to-routing>/doc/
_doxygen directory. The doxyfile should be named as <key>.dox, where <key> is a breathe_projects dictionary
key associated with the VPR project.

The minimal doxyfile should contain only the configuration values that are not set by default. As mentioned before,
the Breathe plugin expects the XML input. Therefore the GENERATE_XML option should be turned on. Below there is
a content of vpr.dox file content, which contains the VPR Doxygen configuration:

PROJECT_NAME = "Verilog to Routing - VPR"
OUTPUT_DIRECTORY = ../_build/doxygen/vpr
FULL_PATH_NAMES = NO
OPTIMIZE_OUTPUT_FOR_C = YES
EXTRACT_ALL = YES
EXTRACT_PRIVATE = YES
EXTRACT_STATIC = YES
WARN_IF_UNDOCUMENTED = NO
INPUT = ../../vpr
RECURSIVE = YES
GENERATE_HTML = NO
GENERATE_LATEX = NO
GENERATE_XML = YES

The general Doxyfile template can be generated using:

doxygen -g template.dox

382 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

10.15.2 Breathe Configuration

Breathe plugin is responsible for parsing the XML file generated by the Doxygen. It provides the convenient RST
directives that allow to embed the read documentation into the Sphinx documentation.

To add the new project to the Sphinx API generation mechanism, you have to update the breathe_projects dictionary
in the Sphinx conf.py file. The dictionary consist of key-value pairs which describe the project. The key is related
to the project name that will be used in the Breathe plugin directives. The value associated with the key points to the
directory where the XML Doxygen output is generated.

Example of this configuration structure is presented below:

breathe_projects = {
"vpr" : "../_build/doxygen/vpr/xml",
"abc" : "../_build/doxygen/abc/xml",
"ace2" : "../_build/doxygen/ace2/xml",
"odin_ii" : "../_build/doxygen/odin_ii/xml",
"blifexplorer" : "../_build/doxygen/blifexplorer/xml",

}

More information about the Breathe plugin can be found in the Breathe Documentation.

10.15.3 Create RST with API Documentation

To generate the Sphinx API documentation, you should use the directives provided by the Breathe plugin. A complete
list of Breathe directives can be found in the Directives & Config Variables section of the Breathe Documentation.

Example of doxygenclass directive used for the VPR project is presented below:

.. doxygenclass:: VprContext
:project: vpr
:members:

10.15.4 Generate the Documentation

Currently, the Doxygen is set up to run automatically whenever the documentation is regenerated. The Doxygen XML
generation is skipped when the Doxygen is not installed on your machine or when the SKIP_DOXYGEN=True environ-
ment variable is set.

The Doxygen is being run for every project described in the breathe_projects dictionary. Therefore it is essential
to keep the same name of the project name key and the doxyfile name.

10.16 Documenting VTR Code with Doxygen

VTR uses Doxygen and Sphinx for generating code documentation. Doxygen is used to parse a codebase, extract code
comments, and save them into an XML file. The XML is then read by the Sphinx Breathe plugin, which converts it to
an HTML available publicly in the project documentation. The documentation generated with Sphinx can be found in
the API Reference section.

This note presents how to document source code in the VTR project and check whether Doxygen can parse the cre-
ated description. Code conventions presented below were chosen arbitrarily for the project, from many more options
available in Doxygen. To read more about the tool, visit the official Doxygen documentation.

10.16. Documenting VTR Code with Doxygen 383

https://breathe.readthedocs.io/en/latest/
https://breathe.readthedocs.io/en/latest/directives.html
https://breathe.readthedocs.io/en/latest/
https://www.doxygen.nl/index.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

10.16.1 Documenting Code

There are three basic types of Doxygen code comments used in the VTR documentation:

• block comments

• one-line comments before a code element

• one-line comments after an element member

In most cases, a piece of documentation should be placed before a code element. Comments after an element should
be used only for documenting members of enumeration types, structures, and unions.

Block Comments

You should use Doxygen block comments with both brief and detailed descriptions to document code by default. As the
name suggests, a brief description should be a one-liner with general information about the code element. A detailed
description provides more specific information about the element, its usage, or implementation details. In the case of
functions and methods, information about parameters and returned value comes after the detailed description. Note
that brief and detailed descriptions have to be separated with at least one empty line.

Here is an example of a Doxygen block comment:

/**
* @brief This is a brief function description
*
* This is a detailed description. It should be separated from
* the brief description with one blank line.
*
* @param a A description of a
* @param b A description of b
*
* @return A return value description
*/
int my_func(int a, int b) {

return a + b;
}

General guidelines for using Doxygen block comments:

1. A block-comment block has to start with the /**, otherwise Doxygen will not recognize it. All the comment
lines have to be preceded by an asterisk. All the asterisks have to create a straight vertical line.

2. Brief and detailed descriptions have to be separated with one empty line.

3. A detailed description and a parameter list should be separated with one empty line.

4. A parameter list should be indented one level. All the parameter descriptions should be aligned together.

5. A returned value description should be separated with one empty line from either a detailed or a parameter
description.

384 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

One-line Comments Before an Element

One-line comments can be used instead of the block comments described above, only if a brief description is sufficient
for documenting the particular code element. Usually, this is the case with global variables and defines.

Here is an example of a one-line Doxygen comment (before a code element):

/// @brief This is one-line documentation comment
int var = 0;

General guidelines for using Doxygen one-line comments (before a code element):

1. A one-line comment before an element has to start with ///, otherwise Doxygen will not recognize it.

2. Since this style of code comments should be used only for brief descriptions, it should contain a @brief tag.

3. One-line comments should not be overused. They are acceptable for single variables and defines, but more
complicated elements like classes and structures should be documented more carefully with Doxygen block
comments.

One-line Comments After an Element Member

There is another type of one-line code comments used to document members of enumeration types, structures, and
unions. In those situations, the whole element should be documented in a standard way using a Doxygen block com-
ment. However, the particular element members should be described after they appear in the code with the one-line
comments.

Here is an example of a one-line Doxygen comment (after an element member):

/**
* @brief This is a brief enum description
*
* This is a detailed description. It should be separated from
* the brief description with one blank line
*/
enum seasons {

spring = 3, ///< Describes spring enum value
summer, ///< Describes summer enum value
autumn = 7, ///< Describes autumn enum value
winter ///< Describes winter enum value

};

General guidelines for using Doxygen one-line comments (after an element member):

1. One-line code comment after an element member has to start with ///<, otherwise Doxygen will not recognize
it.

2. This comment style should be used together with a Doxygen block comment for describing the whole element,
before the members’ description.

10.16. Documenting VTR Code with Doxygen 385

Verilog-to-Routing Documentation, Release 8.1.0-dev

10.16.2 Documenting Files

All files that contain the source code should be documented with a Doxygen-style header. The file description in
Doxygen is similar to code element description, and should be placed at the beginning of the file. The comment should
contain information about an author, date of the document creation, and a description of functionalities introduced in
the file.

Here is an example of file documentation:

/**
* @file
* @author John Doe
* @date 2020-09-03
* @brief This is a brief document description
*
* This is a detailed description. It should be separated from
* the brief description with one blank line
*/

General suggestions about a Doxygen file comments:

1. A file comment has to start with the @file tag, otherwise it will not be recognized by Doxygen.

2. The @file, @author, @date, and @brief tags should form a single group of elements. A detailed description
(if available) has to be placed one empty line after the brief description.

3. A file comment should consist of at least the @file and @brief tags.

10.16.3 Validation of Doxygen Comments (Updating API Reference)

Validation of Doxygen code comments might be time-consuming since it requires setting the whole Doxygen project
using Doxygen configuration files (doxyfiles). One solution to that problem is to use the configuration created for
generating the official VTR documentation. The following steps will show you how to add new code comments to the
Sphinx API Reference, available in the VTR documentation:

1. Ensure that the documented project has a doxyfile, and it is added to breathe configuration. All the doxyfiles
used by the Sphinx documentation are placed in <vtr_root>/doc/_doxygen (For details, check Sphinx API
Documentation for C/C++ Projects) This will ensure that Doxygen XMLs will be created for that project during
the Sphinx documentation building process.

2. Check that the <vtr_root>/doc/src/api/<project_name> directory with a index.rst file exists. If not,
create both the directory and the index file. Here is an example of the index.rst file for the VPR project.

VPR API
=======

.. toctree::
:maxdepth: 1

contexts
netlist

Note: Do not forget about adding the index file title. The ==== marks should be of the same length as the title.

386 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

3. Create a RST file, which will contain the references to the Doxygen code comments. Sphinx uses the Breathe
plugin for extracting Doxygen comments from the generated XML files. The simplest check can be done by
dumping all the Doxygen comments from the single file with a ..doxygenfile :: directive.

Assuming that your RST file name is myrst.rst, and you created it to check the Doxygen comments in the
mycode.cpp file within the vpr project, the contents of the file might be the following:

=====
MyRST
=====

.. doxygenfile:: mycode.cpp
:project: vpr

Note: A complete list of Breathe directives can be found in the Breathe documentation

4. Add the newly created RST file to the index.rst. In this example, that will lead to the following change in the
index.rst:

VPR API
=======

.. toctree::
:maxdepth: 1

contexts
netlist
myrst

5. Generate the Sphinx documentation by using make html command inside the <vtr_root>/doc/ directory.

6. The new section should be available in the API Reference. To verify that open the <vtr_root>/doc/_build/
html/index.html with your browser and check the API Reference section. If the introduced code comments
are unavailable, you can analyze the Sphinx build log.

10.16.4 Additional Resources

• Doxygen documentation

• Breathe documentation

10.17 Developer Tutorials

10.17.1 New Developer Tutorial

Overview

Welcome to the Verilog-to-Routing (VTR) Project. This project is an open-source, international, collaboration towards
a comprehensive FPGA architecture exploration system that includes CAD tools, benchmarks, transistor-optimized
architecture files, and documentation, along with support to make this all fit together and work. The purpose of this

10.17. Developer Tutorials 387

https://breathe.readthedocs.io/en/latest/
https://www.doxygen.nl/index.html
https://breathe.readthedocs.io/en/latest/

Verilog-to-Routing Documentation, Release 8.1.0-dev

tutorial is to equip you, the new developer, with the tools and understanding that you need to begin making a useful
contribution to this project.

While you are going through this tutorial, please record down things that should be changed. Whether it is the tutorial
itself, documentation, or other parts of the VTR project. Your thoughts are valuable and welcome because fresh eyes
help evaluate whether or not our work is clearly presented.

Environment Setup

Log into your workstation/personal computer. Check your account for general features such as internet, printing, git,
etc. If there are problems at this stage, talk to your advisor to get this setup.

If you are not familiar with development on Linux, this is the time to get up to speed. Look up online tutorials on
general commands, basic development using Makefiles, etc.

Background Reading

Read the first two chapters of “Architecture and CAD for deep-submicron FPGAs” by Vaughn Betz, et al. This is a
great introduction to the topic of FPGA CAD and architecture. Note though that this book is old so it only covers a
small core of what the VTR project is currently capable of.

Read chapters 1 to 5 of “FPGA Architecture: Survey and Challenges” by Ian Kuon et al.

Review material learned with fellow colleagues.

Setup VTR

Use git to clone a copy of VTR from the GitHub repository:

https://github.com/verilog-to-routing/vtr-verilog-to-routing

Build the project by running the make command

Run ./run_quick_test.pl to check that the build worked

Follow the Quick Start Guilde, and Basic Design Flow Tutorial found in the VTR Documentation
(docs.verilogtorouting.org). These tutorials will allow you to run a circuit through the entire flow and read the
statistics gathered from that run.

Use VTR

Create your own custom Verilog file. Create your own custom architecture file using one of the existing architecture
files as a template. Use VTR to map that circuit that you created to that architecture that you created. The VTR
documentation, to be found at the https:///docs.verilogtorouting.org will prove useful. You may also wish to look at the
following links for descriptions of the language used inside the architecture files:

• Architecture Description and Packing: http://www.eecg.utoronto.ca/~jluu/publications/luu_vpr_fpga2011.pdf

• Classical Soft Logic Block Example: http://www.eecg.utoronto.ca/vpr/utfal_ex1.html

Perform a simple architecture experiment. Run an experiment that varies Fc_in from 0.01 to 1.00 on the benchmarks
ch_intrinsics, or1200, and sha. Use tasks/timing as your template. Graph the geometric average of minimum channel
width and critical path delay for these three benchmarks across your different values of Fc_in. Review the results with
your colleagues and/or advisor.

388 Chapter 10. Developer Guide

https://github.com/verilog-to-routing/vtr-verilog-to-routing
https:///docs.verilogtorouting.org
http://www.eecg.utoronto.ca/~jluu/publications/luu_vpr_fpga2011.pdf
http://www.eecg.utoronto.ca/vpr/utfal_ex1.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

Open the Black Box

At this stage, you have gotten a taste of how an FPGA architect would go about using VTR. As a developer though,
you need a much deeper understanding of how this tool works. The purpose of this section is to have you to learn the
details of the VTR CAD flow by having you manually do what the scripts do.

Using the custom Verilog circuit and architecture created in the previous step, directly run Odin II on it to generate a
blif netlist. You may need to skim the odin_ii/README.rst and the vtr_flow/scripts/run_vtr_flow.py.

Using the output netlist of Odin II, run ABC to generate a technology-mapped blif file. You may need to skim the ABC
homepage (http://www.eecs.berkeley.edu/~alanmi/abc/).

Run the ABC program from regular terminal (bash shell)
$VTR_ROOT/abc abc

Using the ABC shell to read and write blif file
abc 01> read_blif Odin_II_output.blif
abc 01> write_blif abc_output.blif

Using the output of ABC and your architecture file, run VPR to complete the mapping of a user circuit to a target
architecture. You may need to consult the VPR User Manual.

Run the VPR program
$VTR_ROOT/vpr vpr architecture.xml abc_output.blif

Read the VPR section of the online documentation.

Submitting Changes and Regression Testing

Read README.developers.md in the base directory of VTR. Code changes rapidly so please help keep this up to date
if you see something that is out of date.

Make your first change to git by modifying README.md and pushing it. I recommend adding your name to the list of
contributors. If you have nothing to modify, just add/remove a line of whitespace at the bottom of the file.

Now that you have completed the tutorial, you should have a general sense of what the VTR project is about and how
the different parts work together. It’s time to talk to your advisor to get your first assignment.

10.17.2 Timing Graph Debugging Tutorial

When developing VPR or creating/calibrating the timing characteristics of a new architectural model it can be helpful
to look ‘inside’ at VPR’s timing graph and analysis results.

Warning: This is a very low-level tutorial suitable for power-users and VTR developers

10.17. Developer Tutorials 389

http://www.eecs.berkeley.edu/~alanmi/abc/

Verilog-to-Routing Documentation, Release 8.1.0-dev

Generating a GraphViz DOT file of the Entire Timing Graph

One approach is to have VPR generate a GraphViz DOT file, which visualizes the structure of the timing graph, and
the analysis results. This is enabled by running VPR with vpr --echo_file set to on. This will generate a set of
.dot files in the current directory representing the timing graph, delays, and results of Static Timing Analysis (STA).

$ vpr $VTR_ROOT/vtr_flow/arch/timing/EArch.xml $VTR_ROOT/vtr_flow/benchmarks/blif/
→˓multiclock/multiclock.blif --echo_file on

$ ls *.dot
timing_graph.place_final.echo.dot timing_graph.place_initial.echo.dot timing_graph.pre_
→˓pack.echo.dot

The .dot files can then be visualized using a tool like xdot which draws an interactive version of the timing graph.

$ xdot timing_graph.place_final.echo.dot

Warning: On all but the smallest designs the full timing graph .dot file is too large to visualize with xdot. See the
next section for how to show only a subset of the timing graph.

Which will bring up an interactive visualization of the graph:

Where each node in the timing graph is labeled

Node(X) (TYPE)

Where Node(X) (e.g. Node(3)) represents the ID of the timing graph node, and (TYPE) (e.g. OPIN) is the type of
node in the graph.

Each node is also annotated with timing information (produced by STA) like

DATA_ARRIVAL
Domain(1) to * from Node(16)
time: 5.2143e-10

DATA_ARRIVAL
Domain(2) to * from Node(20)
time: 6.9184e-10

DATA_REQUIRED
Domain(1) to Domain(1) for Node(24)
time: -2.357e-10

SLACK
Domain(1) to Domain(1) for Node(24)
time: -5.45e-10

where the first line of each entry is the type of timing information (e.g. data arrival time, data required time, slack),
the second line indicates the related launching and capture clocks (with * acting as a wildcard) and the relevant timing
graph node which originated the value, and the third line is the actual time value (in seconds).

The edges in the timing graph are also annoated with their Edge IDs and delays. Special edges related to setup/hold
(tsu, thld) and clock-to-q delays (tcq) of sequential elements (e.g. Flip-Flops) are also labeled and drawn with
different colors.

390 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 10.1: Full timing graph visualized with xdot on a very small multi-clock circuit.

10.17. Developer Tutorials 391

Verilog-to-Routing Documentation, Release 8.1.0-dev

Generating a GraphViz DOT file of a subset of the Timing Graph

For most non-trivial designs the entire timing graph is too large and difficult to visualize.

To assist this you can generate a DOT file for a subset of the timing graph with vpr
--echo_dot_timing_graph_node

$ vpr $VTR_ROOT/vtr_flow/arch/timing/EArch.xml $VTR_ROOT/vtr_flow/benchmarks/blif/
→˓multiclock/multiclock.blif --echo_file on --echo_dot_timing_graph_node 23

Running xdot timing_graph.place_final.echo.dot now shows the only the subset of the timing graph which
fans-in or fans-out of the specified node (in this case node 23).

Cross-referencing Node IDs with VPR Timing Reports

The DOT files only label timing graph nodes with their node IDs. When debugging it is often helpful to correlate these
with what are seen in timing reports.

To do this, we need to have VPR generate more detailed timing reports which have additional debug information. This
can be done with vpr --timing_report_detail set to debug:

$ vpr $VTR_ROOT/vtr_flow/arch/timing/EArch.xml $VTR_ROOT/vtr_flow/benchmarks/blif/
→˓multiclock/multiclock.blif --timing_report_detail debug

$ ls report_timing*
report_timing.hold.rpt report_timing.setup.rpt

Viewing report_timing.setup.rpt:

#Path 6
Startpoint: FFB.Q[0] (.latch at (1,1) tnode(15) clocked by clk2)
Endpoint : FFD.D[0] (.latch at (1,1) tnode(25) clocked by clk2)
Path Type : setup

Point Incr Path
--
clock clk2 (rise edge) 0.000 0.000
clock source latency 0.000 0.000
clk2.inpad[0] (.input at (3,2) tnode(4)) 0.000 0.000
| (intra 'io' routing) 0.042 0.042
| (inter-block routing:global net) 0.000 0.042
| (intra 'clb' routing) 0.000 0.042
FFB.clk[0] (.latch at (1,1) tnode(9)) 0.000 0.042
| (primitive '.latch' Tcq_max) 0.124 0.166
FFB.Q[0] (.latch at (1,1) tnode(15)) [clock-to-output] 0.000 0.166
| (intra 'clb' routing) 0.120 0.286
to_FFD.in[1] (.names at (1,1) tnode(21)) 0.000 0.286
| (primitive '.names' combinational delay) 0.235 0.521
to_FFD.out[0] (.names at (1,1) tnode(23)) 0.000 0.521
| (intra 'clb' routing) 0.000 0.521
FFD.D[0] (.latch at (1,1) tnode(25)) 0.000 0.521
data arrival time 0.521

clock clk2 (rise edge) 0.000 0.000
(continues on next page)

392 Chapter 10. Developer Guide

Verilog-to-Routing Documentation, Release 8.1.0-dev

Fig. 10.2: Subset of the timing graph which fans in and out of node 23.
10.17. Developer Tutorials 393

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

clock source latency 0.000 0.000
clk2.inpad[0] (.input at (3,2) tnode(4)) 0.000 0.000
| (intra 'io' routing) 0.042 0.042
| (inter-block routing:global net) 0.000 0.042
| (intra 'clb' routing) 0.000 0.042
FFD.clk[0] (.latch at (1,1) tnode(8)) 0.000 0.042
clock uncertainty 0.000 0.042
cell setup time -0.066 -0.024
data required time -0.024
--
data required time -0.024
data arrival time -0.521
--
slack (VIOLATED) -0.545

We can see that the elements corresponding to specific timing graph nodes are labeled with tnode(X). For instance:

to_FFD.out[0] (.names at (1,1) tnode(23)) 0.000 0.521

shows the netlist pin named to_FFD.out[0] is tnode(23), which corresponds to Node(23) in the DOT file.

10.17.3 VPR UI and Graphics

VPR’s UI is created with GTK, and actively maintained/edited through the use of Glade and a main.ui file. We prefer
to not use code initializations of Gtk Buttons/UI objects, and instead make them with Glade. This allows for better
organized menus and visual editing of the UI. Please consult the attached guide for Glade: <Link Glade/Gtk quickstart>
(WIP as of August 24th, 2022).

When connecting a button to its function, place it in an appropriate function depending on the drop down menu it will
go in. Button setups are done in ui_setup.cpp/h and callback functions are in draw_toggle_functions.cpp/h.

VPR Graphics are drawn using the EZGL graphics library, which is a wrapper around the GTK graphics library (which
is used for the UI). EZGL Documentation is found here: http://ug251.eecg.utoronto.ca/ece297s/ezgl_doc/index.html
and GTK documentation is found here: https://docs.gtk.org/gtk3/

Make sure to test the UI when you edit it. Ensure that the graphics window opens (using the –disp on command) and
click around the UI to ensure the buttons still work. Test all phases (Placement -> Routing) as the UI changes between
them.

10.18 VTR Support Resources

For support using VPR please use these resources:

1. Check the VTR Documentation: https://docs.verilogtorouting.org

The VTR documentation includes:

• Overviews of what VTR is, and how the flow fits together

• Tutorials on using VTR

• Detailed descriptions of tools and their command-line options

• Descriptions of the file-formats used by VTR

394 Chapter 10. Developer Guide

http://ug251.eecg.utoronto.ca/ece297s/ezgl_doc/index.html
https://docs.gtk.org/gtk3/

Verilog-to-Routing Documentation, Release 8.1.0-dev

2. Contact the VTR users mailing list: vtr-users@googlegroups.com

The mailing list includes developers and users of VTR. If you have a specific usage case not covered by the
documentation, someone on the mailing list may be able to help.

3. If you’ve found a bug or have an idea for an enhancement consider filing an issue. See here for more details.

10.19 VTR License

The software package “VTR” includes the software tools ODIN II, ABC, and VPR as well as additional benchmarks,
documentation, libraries and scripts. The authors of the various components of VTR retain their ownership of their
tools.

• Unless otherwise noted (in particular ABC, the benchmark circuits and some libraries), all software, documents,
and scripts in VTR, follows the standard MIT license described here copied below for your convenience:

The MIT License (MIT)

Copyright 2012 VTR Developers

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associ-
ated documentation files (the “Software”), to deal in the Software without restriction, including without
limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

• Terms and conditions for ABC is found here copied below for your convenience:

Copyright (c) The Regents of the University of California. All rights reserved.

Permission is hereby granted, without written agreement and without license or royalty fees, to use, copy,
modify, and distribute this software and its documentation for any purpose, provided that the above copy-
right notice and the following two paragraphs appear in all copies of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUD-
ING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN
“AS IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

The benchmark circuits are all open source but each have their own individual terms and conditions which are listed in
the source code of each benchmark.

Subject to these conditions, the software is provided free of charge to all interested parties.

10.19. VTR License 395

http://www.opensource.org/licenses/mit-license.php
http://www.eecs.berkeley.edu/~alanmi/abc/copyright.htm

Verilog-to-Routing Documentation, Release 8.1.0-dev

If you do decide to use this tool, please reference our work as references are important in academia.

Donations in the form of research grants to promote further research and development on the tools will be gladly
accepted, either anonymously or with attribution on our future publications.

396 Chapter 10. Developer Guide

CHAPTER

ELEVEN

VTR CHANGE LOG

Note that changes from release candidates (e.g. v8.0.0-rc1, v8.0.0-rc2) are included/repeated in the final release (e.g.
v8.0.0) change log.

11.1 Unreleased

The following are changes which have been implemented in the VTR master branch but have not yet been included in
an official release.

11.1.1 Added

11.1.2 Changed

11.1.3 Fixed

11.1.4 Deprecated

11.1.5 Removed

11.2 v8.0.0 - 2020-03-24

11.2.1 Added

• Support for arbitrary FPGA device grids/floorplans

• Support for clustered blocks with width > 1

• Customizable connection-block and switch-blocks patterns (controlled from FPGA architecture file)

• Fan-out dependent routing mux delays

• VPR can generate/load a routing architecture (routing resource graph) in XML format

• VPR can load routing from a .route file

• VPR can performing analysis (STA/Power/Area) independently from optimization (via vpr --analysis)

• VPR supports netlist primitives with multiple clocks

• VPR can perform hold-time (minimum delay) timing analysis

• Minimum delays can be annotated in the FPGA architecture file

397

Verilog-to-Routing Documentation, Release 8.1.0-dev

• Flow supports formal verification of circuit implementation against input netlist

• Support for generating FASM to drive bitstream generators

• Routing predictor which predicts and aborts impossible routings early (saves significant run-time during mini-
mum channel width search)

• Support for minimum routable channel width ‘hints’ (reduces minimum channel width search run-time if accu-
rate)

• Improved VPR debugging/verbosity controls

• VPR can perform basic netlist cleaning (e.g. sweeping dangling logic)

• VPR graphics visualizations:

– Critical path during placement/routing

– Cluster pin utilization heatmap

– Routing utilization heatmap

– Routing resource cost heatmaps

– Placement macros

• VPR can route constant nets

• VPR can route clock nets

• VPR can load netlists in extended BLIF (eBLIF) format

• Support for generating post-placement timing reports

• Improved router ‘map’ lookahead which adapts to routing architecture structure

• Script to upgrade legacy architecture files (vtr_flow/scripts/upgrade_arch.py)

• Support for Fc overrides which depend on both pin and target wire segment type

• Support for non-configurable switches (shorts, inline-buffers) used to model structures like clock-trees and non-
linear wires (e.g. ‘L’ or ‘T’ shapes)

• Various other features since VTR 7

11.2.2 Changed

• VPR will exit with code 1 on errors (something went wrong), and code 2 when unable to implement a circuit
(e.g. unroutable)

• VPR now gives more complete help about command-line options (vpr -h)

• Improved a wide variety of error messages

• Improved STA timing reports (more details, clearer format)

• VPR now uses Tatum as its STA engine

• VPR now detects missmatched architecture (.xml) and implementation (.net/.place/.route) files more robustly

• Improved router run-time and quality through incremental re-routing and improved handling of high-fanout nets

• The timing edges within each netlist primitive must now be specified in the section of the architecture file

• All interconnect tags must have unique names in the architecture file

• Connection block input pin switch must now be specified in section of the architecture file

398 Chapter 11. VTR Change Log

Verilog-to-Routing Documentation, Release 8.1.0-dev

• Renamed switch types buffered/pass_trans to more descriptive tristate/pass_gate in architecture file

• Require longline segment types to have no switchblock/connectionblock specification

• Improve naming (true/false -> none/full/instance) and give more control over block pin equivalnce specifications

• VPR will produce a .route file even if the routing is illegal (aids debugging), however analysis results will not be
produced unless vpr --analsysis is specified

• VPR long arguments are now always prefixed by two dashes (e.g. --route) while short single-letter arguments
are prefixed by a single dash (e.g. -h)

• Improved logic optimization through using a recent 2018 version of ABC and new synthesis script

• Significantly improved implementation quality (~14% smaller minimum routable channel widths, 32-42% re-
duced wirelength, 7-10% lower critical path delay)

• Significantly reduced run-time (~5.5-6.3x faster) and memory usage (~3.3-5x lower)

• Support for non-contiguous track numbers in externally loaded RR graphs

• Improved placer quality (reduced cost round-off)

• Various other changes since VTR 7

11.2.3 Fixed

• FPGA Architecture file tags can be in arbitary orders

• SDC command arguments can be in arbitary orders

• Numerous other fixes since VTR 7

11.2.4 Removed

• Classic VPR timing analyzer

• IO channel distribution section of architecture file

11.2.5 Deprecated

• VPR’s breadth-first router (use the timing-driven router, which provides supperiour QoR and Run-time)

11.2.6 Docker Image

• A docker image is available for VTR 8.0 release on mohamedelgammal/vtr8:latest. You can run it using the
following commands:

$ sudo docker pull mohamedelgammal/vtr8:latest
$ sudo docker run -it mohamedelgammal/vtr8:latest

11.2. v8.0.0 - 2020-03-24 399

Verilog-to-Routing Documentation, Release 8.1.0-dev

11.3 v8.0.0-rc2 - 2019-08-01

11.3.1 Changed

• Support for non-contiguous track numbers in externally loaded RR graphs

• Improved placer quality (reduced cost round-off)

11.4 v8.0.0-rc1 - 2019-06-13

11.4.1 Added

• Support for arbitrary FPGA device grids/floorplans

• Support for clustered blocks with width > 1

• Customizable connection-block and switch-blocks patterns (controlled from FPGA architecture file)

• Fan-out dependent routing mux delays

• VPR can generate/load a routing architecture (routing resource graph) in XML format

• VPR can load routing from a .route file

• VPR can performing analysis (STA/Power/Area) independently from optimization (via vpr --analysis)

• VPR supports netlist primitives with multiple clocks

• VPR can perform hold-time (minimum delay) timing analysis

• Minimum delays can be annotated in the FPGA architecture file

• Flow supports formal verification of circuit implementation against input netlist

• Support for generating FASM to drive bitstream generators

• Routing predictor which predicts and aborts impossible routings early (saves significant run-time during mini-
mum channel width search)

• Support for minimum routable channel width ‘hints’ (reduces minimum channel width search run-time if accu-
rate)

• Improved VPR debugging/verbosity controls

• VPR can perform basic netlist cleaning (e.g. sweeping dangling logic)

• VPR graphics visualizations:

– Critical path during placement/routing

– Cluster pin utilization heatmap

– Routing utilization heatmap

– Routing resource cost heatmaps

– Placement macros

• VPR can route constant nets

• VPR can route clock nets

• VPR can load netlists in extended BLIF (eBLIF) format

400 Chapter 11. VTR Change Log

Verilog-to-Routing Documentation, Release 8.1.0-dev

• Support for generating post-placement timing reports

• Improved router ‘map’ lookahead which adapts to routing architecture structure

• Script to upgrade legacy architecture files (vtr_flow/scripts/upgrade_arch.py)

• Support for Fc overrides which depend on both pin and target wire segment type

• Support for non-configurable switches (shorts, inline-buffers) used to model structures like clock-trees and non-
linear wires (e.g. ‘L’ or ‘T’ shapes)

• Various other features since VTR 7

11.4.2 Changed

• VPR will exit with code 1 on errors (something went wrong), and code 2 when unable to implement a circuit
(e.g. unroutable)

• VPR now gives more complete help about command-line options (vpr -h)

• Improved a wide variety of error messages

• Improved STA timing reports (more details, clearer format)

• VPR now uses Tatum as its STA engine

• VPR now detects missmatched architecture (.xml) and implementation (.net/.place/.route) files more robustly

• Improved router run-time and quality through incremental re-routing and improved handling of high-fanout nets

• The timing edges within each netlist primitive must now be specified in the section of the architecture file

• All interconnect tags must have unique names in the architecture file

• Connection block input pin switch must now be specified in section of the architecture file

• Renamed switch types buffered/pass_trans to more descriptive tristate/pass_gate in architecture file

• Require longline segment types to have no switchblock/connectionblock specification

• Improve naming (true/false -> none/full/instance) and give more control over block pin equivalnce specifications

• VPR will produce a .route file even if the routing is illegal (aids debugging), however analysis results will not be
produced unless vpr --analsysis is specified

• VPR long arguments are now always prefixed by two dashes (e.g. --route) while short single-letter arguments
are prefixed by a single dash (e.g. -h)

• Improved logic optimization through using a recent 2018 version of ABC and new synthesis script

• Significantly improved implementation quality (~14% smaller minimum routable channel widths, 32-42% re-
duced wirelength, 7-10% lower critical path delay)

• Significantly reduced run-time (~5.5-6.3x faster) and memory usage (~3.3-5x lower)

• Various other changes since VTR 7

11.4. v8.0.0-rc1 - 2019-06-13 401

Verilog-to-Routing Documentation, Release 8.1.0-dev

11.4.3 Fixed

• FPGA Architecture file tags can be in arbitary orders

• SDC command arguments can be in arbitary orders

• Numerous other fixes since VTR 7

11.4.4 Deprecated

11.4.5 Removed

• Classic VPR timing analyzer

• IO channel distribution section of architecture file

402 Chapter 11. VTR Change Log

CHAPTER

TWELVE

CONTACT

12.1 Mailing Lists

VTR maintains several mailing lists. Most users will be interested in VTR Users and VTR Announce.

• VTR Announce

VTR release announcements (low traffic)

• VTR Users: vtr-users@googlegroups.com

Discussions about using the VTR project.

• VTR Devel: vtr-devel@googlegroups.com

Discussions about VTR development.

• VTR Commits:

Revision Control Commits to the VTR project.

12.2 Issue Tracker

Please file bugs on our issue tracker.

Pull Requests are welcome!

403

https://groups.google.com/forum/#!forum/vtr-announce
https://groups.google.com/forum/#!forum/vtr-users
https://groups.google.com/forum/#!forum/vtr-devel
https://groups.google.com/forum/#!forum/vtr-commits
https://github.com/verilog-to-routing/vtr-verilog-to-routing/issues

Verilog-to-Routing Documentation, Release 8.1.0-dev

404 Chapter 12. Contact

CHAPTER

THIRTEEN

GLOSSARY

$VTR_ROOT
The directory containing the root of the VTR source tree.

For instance, if you extracted/cloned the VTR source into /home/myusername/vtr, your $VTR_ROOT would be
/home/myusername/vtr.

MWTA
Minimum Width Transitor Area (MWTA) is a simple process technology independent unit for measuring circuit
area. It corresponds to the size the smallest (minimum width) transistor area.

For example, a 1x (unit-sized) CMOS inverter consists of two minimum width transistors (a PMOS pull-up, and
NMOS pull-down).

For more details see [BRM99] (the original presentation of the MWTA model), and [CB13] (an updated MWTA
model).

405

Verilog-to-Routing Documentation, Release 8.1.0-dev

406 Chapter 13. Glossary

CHAPTER

FOURTEEN

PUBLICATIONS & REFERENCES

407

Verilog-to-Routing Documentation, Release 8.1.0-dev

408 Chapter 14. Publications & References

CHAPTER

FIFTEEN

VPR API

15.1 Contexts

15.1.1 Classes

class VprContext : public Context
This object encapsulates VPR’s state.

There is typically a single instance which is accessed via the global variable g_vpr_ctx (see globals.h/.cpp).

It is divided up into separate sub-contexts of logically related data structures.

Each sub-context can be accessed via member functions which return a reference to the sub-context:
• The default the member function (e.g. device()) return an const (immutable) reference providing read-only

access to the context. This should be the preferred form, as the compiler will detect unintentional state
changes.

• The ‘mutable’ member function (e.g. mutable_device()) will return a non-const (mutable) reference al-
lowing modification of the context. This should only be used on an as-needed basis.

Typical usage in VPR would be to call the appropriate accessor to get a reference to the context of interest, and
then operate on it.

For example if we were performing an action which required access to the current placement, we would do:

void my_analysis_algorithm() {
//Get read-only access to the placement
auto& place_ctx = g_vpr_ctx.placement();

//Do something that depends on (but does not change)
//the current placement...

}

If we needed to modify the placement (e.g. we were implementing another placement algorithm) we would do:

void my_placement_algorithm() {
//Get read-write access to the placement
auto& place_ctx = g_vpr_ctx.mutable_placement();

//Do something that modifies the placement
//...

}

409

Verilog-to-Routing Documentation, Release 8.1.0-dev

Note: The returned contexts are not copyable, so they must be taken by reference.

15.1.2 Structures

struct AtomContext : public Context
State relating to the atom-level netlist.

This should contain only data structures related to user specified netlist being implemented by VPR onto the
target device.

Public Functions

inline AtomContext()
constructor

In the constructor initialize the list of pack molecules to nullptr and defines a custom deletor for it

Public Members

AtomNetlist nlist
Atom netlist.

AtomLookup lookup
Mappings to/from the Atom Netlist to physically described .blif models.

std::multimap<AtomBlockId, t_pack_molecule*> atom_molecules
The molecules associated with each atom block.

This map is loaded in the pre-packing stage and freed at the very end of vpr flow run. The pointers in this
multimap is shared with list_of_pack_molecules.

std::unique_ptr<t_pack_molecule, decltype(&free_pack_molecules)> list_of_pack_molecules
A linked list of all the packing molecules that are loaded in pre-packing stage.

Is is useful in freeing the pack molecules at the destructor of the Atom context using free_pack_molecules.

struct ClusteringContext : public Context
State relating to clustering.

This should contain only data structures that describe the current clustering/packing, or related clusterer/packer
algorithmic state.

410 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Members

ClusteredNetlist clb_nlist
New netlist class derived from Netlist.

struct Context
A Context is collection of state relating to a particular part of VPR.

This is a base class who’s only purpose is to disable copying of contexts. This ensures that attempting to use a
context by value (instead of by reference) will result in a compilation error.

No data or member functions should be defined in this class!

Subclassed by AtomContext, ClusteringContext, ClusteringHelperContext, DeviceContext, FloorplanningCon-
text, NocContext, PackingMultithreadingContext, PlacementContext, PlacerContext, PlacerMoveContext, Plac-
erRuntimeContext, PlacerTimingContext, PowerContext, RoutingContext, TimingContext, VprContext

struct DeviceContext : public Context
State relating the device.

This should contain only data structures describing the targeted device.

Public Members

DeviceGrid grid
The device grid.

This represents the physical layout of the device. To get the physical tile at each location (layer_num, x, y)
the helper functions in this data structure should be used.

bool has_multiple_equivalent_tiles
Boolean that indicates whether the architecture implements an N:M physical tiles to logical blocks map-
ping.

t_chan_width chan_width
chan_width is for x|y-directed channels; i.e. between rows

std::vector<t_rr_rc_data> rr_rc_data
Fly-weighted Resistance/Capacitance data for RR Nodes.

std::vector<std::vector<RRNodeId>> rr_non_config_node_sets
Sets of non-configurably connected nodes.

std::unordered_map<RRNodeId, int> rr_node_to_non_config_node_set
Reverse look-up from RR node to non-configurably connected node set (index into
rr_non_config_node_sets)

15.1. Contexts 411

Verilog-to-Routing Documentation, Release 8.1.0-dev

int virtual_clock_network_root_idx
rr_node idx that connects to the input of all clock network wires

Useful for two stage clock routing XXX: currently only one place to source the clock networks so only
storing a single value

std::vector<std::map<int, int>> switch_fanin_remap
switch_fanin_remap is only used for printing out switch fanin stats (the -switch_stats option)

array index: [0..(num_arch_switches-1)]; map key: num of all possible fanin of that type of switch on chip
map value: remapped switch index (index in rr_switch_inf)

std::string read_rr_graph_filename
Name of rrgraph file read (if any).

Used to determine when reading rrgraph if file is already loaded.

struct PlacementContext : public Context
State relating to placement.

This should contain only data structures that describe the current placement, or related placer algorithm state.

Public Members

vtr::vector_map<ClusterBlockId, t_block_loc> block_locs
Clustered block placement locations.

vtr::vector_map<ClusterPinId, int> physical_pins
Clustered pin placement mapping with physical pin.

GridBlock grid_blocks
Clustered block associated with each grid location (i.e. inverse of block_locs)

std::vector<t_pl_macro> pl_macros
The pl_macros array stores all the placement macros (usually carry chains).

t_compressed_block_grids compressed_block_grids
Compressed grid space for each block type.

Used to efficiently find logically ‘adjacent’ blocks of the same block type even though the may be phys-
ically far apart Indexed with logical block type index: [0. . . num_logical_block_types-1] -> logical block
compressed grid

std::string placement_id
SHA256 digest of the .place file.

Used for unique identification and consistency checking

412 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

bool f_placer_debug = false
Use during placement to print extra debug information. It is set to true based on the number assigned to
placer_debug_net or placer_debug_block parameters in the command line.

bool cube_bb = false
Set this variable to ture if the type of the bounding box used in placement is of the type cube. If it is false,
it would mean that per-layer bounding box is used. For the 2D architecture, the cube bounding box would
be used.

struct PowerContext : public Context
State relating to power analysis.

This should contain only data structures related to power analysis, or related power analysis algorithmic state.

Public Members

std::unordered_map<AtomNetId, t_net_power> atom_net_power
Atom net power info.

struct RoutingContext : public Context
State relating to routing.

This should contain only data structures that describe the current routing implementation, or related router algo-
rithmic state.

Public Members

vtr::dynamic_bitset<RRNodeId> non_configurable_bitset
Information about whether a node is part of a non-configurable set.

(i.e. connected to others with non-configurable edges like metal shorts that can’t be disabled) Stored in
a single bit per rr_node for efficiency bit value 0: node is not part of a non-configurable set bit value 1:
node is part of a non-configurable set Initialized once when RoutingContext is initialized, static throughout
invocation of router

t_net_routing_status net_status
Information about current routing status of each net.

vtr::vector<ParentNetId, t_bb> route_bb
Limits area within which each net must be routed.

std::string routing_id
SHA256 digest of the .route file.

Used for unique identification and consistency checking

15.1. Contexts 413

Verilog-to-Routing Documentation, Release 8.1.0-dev

vtr::Cache<std::tuple<e_router_lookahead, std::string, std::vector<t_segment_inf>>, RouterLookahead>
cached_router_lookahead_

Cache of router lookahead object.

Cache key: (lookahead type, read lookahead (if any), segment definitions).

struct TimingContext : public Context
State relating to timing.

This should contain only data structures related to timing analysis, or related timing analysis algorithmic state.

Public Members

std::shared_ptr<tatum::TimingGraph> graph
The current timing graph.

This represents the timing dependencies between pins of the atom netlist

std::shared_ptr<tatum::TimingConstraints> constraints
The current timing constraints, as loaded from an SDC file (or set by default).

These specify how timing analysis is performed (e.g. target clock periods)

15.2 Netlist mapping

As shown in the previous section, there are multiple levels of abstraction (multiple netlists) in VPR which are the
ClusteredNetlist and the AtomNetlist. To fully use these netlists, we provide some functions to map between them.

In this section, we will state how to map between the atom and clustered netlists.

15.2.1 Block Id

Atom block Id to Cluster block Id

To get the block Id of a cluster in the ClusteredNetlist from the block Id of one of its atoms in the AtomNetlist:

• Using AtomLookUp class

ClusterBlockId clb_index = g_vpr_ctx.atom().lookup.atom_clb(atom_blk_id);

• Using re_cluster_util.h helper functions

ClusterBlockId clb_index = atom_to_cluster(atom_blk_id);

414 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

Cluster block Id to Atom block Id

To get the block Ids of all the atoms in the AtomNetlist that are packed in one cluster block in ClusteredNetlist:

• Using ClusterAtomLookup class

ClusterAtomsLookup cluster_lookup;
std::vector<AtomBlockId> atom_ids = cluster_lookup.atoms_in_cluster(clb_index);

• Using re_cluster_util.h helper functions

std::vector<AtomBlockId> atom_ids = cluster_to_atoms(clb_index);

15.2.2 Net Id

Atom net Id to Cluster net Id

To get the net Id in the ClusteredNetlist from its Id in the AtomNetlist, use AtomLookup class as follows

ClusterNetId clb_net = g_vpr_ctx.atom().lookup.clb_net(atom_net);

Cluster net Id to Atom net Id

To get the net Id in the AtomNetlist from its Id in the ClusteredNetlist, use AtomLookup class as follows

ClusterNetId atom_net = g_vpr_ctx.atom().lookup.atom_net(clb_net);

15.3 Netlists

15.3.1 Netlist

Overview

The netlist logically consists of several different components: Blocks, Ports, Pins and Nets Each component in the
netlist has a unique template identifier (BlockId, PortId, PinId, NetId) used to retrieve information about it. In this
implementation these ID’s are unique throughout the netlist (i.e. every port in the netlist has a unique ID, even if the
ports share a common type).

Block

A Block is the primitive netlist element (a node in the netlist hyper-graph). Blocks have various attributes (a name, a
type etc.) and are associated with sets of input/output/clock ports.

Block related information can be retrieved using the block_*() member functions.

15.3. Netlists 415

Verilog-to-Routing Documentation, Release 8.1.0-dev

Pins

Pins define single-bit connections between a block and a net.

Pin related information can be retrieved using the pin_*() member functions.

Nets

Nets represent the connections between blocks (the edges of the netlist hyper-graph). Each net has a single driver pin,
and a set of sink pins.

Net related information can be retrieved using the net_*() member functions.

Ports

A Port is a (potentially multi-bit) group of pins.

For example, the two operands and output of an N-bit adder would logically be grouped as three ports. Ports have a
specified bit-width which defines how many pins form the port.

Port related information can be retrieved using the port_*() member functions.

Usage

The following provides usage examples for common use-cases.

Walking the netlist

To iterate over the whole netlist use the blocks() and/or nets() member functions:

Netlist netlist;

//... initialize the netlist

//Iterate over all the blocks
for(BlockId blk_id : netlist.blocks()) {

//Do something with each block
}

//Iterate over all the nets
for(NetId net_id : netlist.nets()) {

//Do something with each net
}

To retrieve information about a netlist component call one of the associated member functions:

//Print out each block's name
for(BlockId blk_id : netlist.blocks()) {

//Get the block name
const std::string& block_name = netlist.block_name(blk_id);

(continues on next page)

416 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

//Print it
printf("Block: %s\n", block_name.c_str());

}

Note that the member functions are associated with the type of component (e.g. block_name() yields the name of a
block, net_name() yields the name of a net).

Tracing cross-references

It is common to need to trace the netlist connectivity. The Netlist allows this to be done efficiently by maintaining
cross-references between the various netlist components.

The following diagram shows the main methods and relationships between netlist components:

+---------+ pin_block()
| |<--------------------------+
| Block | |
| |-----------------------+ |
+---------+ block_pins() | |

| ^ v |
| | +---------+ net_pins() +---------+
| | | |<-------------| |

block_ports() | | port_block() | Pin | | Net |
| | | |------------->| |
| | +---------+ pin_net() +---------+
v | ^ |

+---------+ port_pins() | |
| |-----------------------+ |
| Port | |
| |<--------------------------+
+---------+ pin_port()

Note that methods which are plurals (e.g. net_pins()) return multiple components.

As an example consider the case where we wish to find all the blocks associated with a particular net:

NetId net_id;

//... Initialize net_id with the net of interest

//Iterate through each pin on the net to get the associated port
for(PinId pin_id : netlist.net_pins(net_id)) {

//Get the port associated with the pin
PortId port_id = netlist.pin_port(pin_id);

//Get the block associated with the port
BlockId blk_id = netlist.port_block(port_id);

//Print out the block name
const std::string& block_name = netlist.block_name(blk_id);

(continues on next page)

15.3. Netlists 417

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

printf("Associated block: %s\n", block_name.c_str());
}

Netlist also defines some convenience functions for common operations to avoid tracking the intermediate IDs if they
are not needed. The following produces the same result as above:

NetId net_id;

//... Initialize net_id with the net of interest

//Iterate through each pin on the net to get the associated port
for(PinId pin_id : netlist.net_pins(net_id)) {

//Get the block associated with the pin (bypassing the port)
BlockId blk_id = netlist.pin_block(pin_id);

//Print out the block name
const std::string& block_name = netlist.block_name(blk_id);
printf("Associated block: %s\n", block_name.c_str());

}

As another example, consider the inverse problem of identifying the nets connected as inputs to a particular block:

BlkId blk_id;

//... Initialize blk_id with the block of interest

//Iterate through the ports
for(PortId port_id : netlist.block_input_ports(blk_id)) {

//Iterate through the pins
for(PinId pin_id : netlist.port_pins(port_id)) {

//Retrieve the net
NetId net_id = netlist.pin_net(pin_id);

//Get its name
const std::string& net_name = netlist.net_name(net_id);
printf("Associated net: %s\n", net_name.c_str());

}
}

Here we used the block_input_ports() method which returned an iterable range of all the input ports associated with
blk_id. We then used the port_pins() method to get iterable ranges of all the pins associated with each port, from which
we can find the associated net.

Often port information is not relevant so this can be further simplified by iterating over a block’s pins directly (e.g. by
calling one of the block_*_pins() functions):

BlkId blk_id;

//... Initialize blk_id with the block of interest

//Iterate over the blocks ports directly
(continues on next page)

418 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

for(PinId pin_id : netlist.block_input_pins(blk_id)) {

//Retrieve the net
NetId net_id = netlist.pin_net(pin_id);

//Get its name
const std::string& net_name = netlist.net_name(net_id);
printf("Associated net: %s\n", net_name.c_str());

}

Note the use of range-based-for loops in the above examples; it could also have written (more verbosely) using a
conventional for loop and explicit iterators as follows:

BlkId blk_id;

//... Initialize blk_id with the block of interest

//Iterate over the blocks ports directly
auto pins = netlist.block_input_pins(blk_id);
for(auto pin_iter = pins.begin(); pin_iter != pins.end(); ++pin_iter) {

//Retrieve the net
NetId net_id = netlist.pin_net(*pin_iter);

//Get its name
const std::string& net_name = netlist.net_name(net_id);
printf("Associated net: %s\n", net_name.c_str());

}

Creating the netlist

The netlist can be created by using the create_*() member functions to create individual Blocks/Ports/Pins/Nets.

For instance to create the following netlist (where each block is the same type, and has an input port ‘A’ and output port
‘B’):

----------- net1 -----------
| block_1 |-------------------->| block_2 |
----------- | -----------

|
| -----------
---------->| block_3 |

We could do the following:

const t_model* blk_model = //Initialize the block model appropriately

Netlist netlist("my_netlist"); //Initialize the netlist with name 'my_netlist'

//Create the first block
BlockId blk1 = netlist.create_block("block_1", blk_model);

(continues on next page)

15.3. Netlists 419

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

//Create the first block's output port
// Note that the input/output/clock type of the port is determined
// automatically from the block model
PortId blk1_out = netlist.create_port(blk1, "B");

//Create the net
NetId net1 = netlist.create_net("net1");

//Associate the net with blk1
netlist.create_pin(blk1_out, 0, net1, PinType::DRIVER);

//Create block 2 and hook it up to net1
BlockId blk2 = netlist.create_block("block_2", blk_model);
PortId blk2_in = netlist.create_port(blk2, "A");
netlist.create_pin(blk2_in, 0, net1, PinType::SINK);

//Create block 3 and hook it up to net1
BlockId blk3 = netlist.create_block("block_3", blk_model);
PortId blk3_in = netlist.create_port(blk3, "A");
netlist.create_pin(blk3_in, 0, net1, PinType::SINK);

Modifying the netlist

The netlist can also be modified by using the remove_*() member functions. If we wanted to remove block_3 from the
netlist creation example above we could do the following:

//Mark blk3 and any references to it invalid
netlist.remove_block(blk3);

//Compress the netlist to actually remove the data associated with blk3
// NOTE: This will invalidate all client held IDs (e.g. blk1, blk1_out, net1, blk2,␣
→˓blk2_in)
netlist.compress();

The resulting netlist connectivity now looks like:

----------- net1 -----------
| block_1 |-------------------->| block_2 |
----------- -----------

Note that until compress() is called any ‘removed’ elements will have invalid IDs (e.g. BlockId::INVALID()). As a
result after calling remove_block() (which invalidates blk3) we then called compress() to remove the invalid IDs.

Also note that compress() is relatively slow. As a result avoid calling compress() after every call to a remove_*()
function, and instead batch up calls to remove_*() and call compress() only after a set of modifications have been
applied.

420 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

Verifying the netlist

Particularly after construction and/or modification it is a good idea to check that the netlist is in a valid and consistent
state. This can be done with the verify() member function:

netlist.verify()

If the netlist is not valid verify() will throw an exception, otherwise it returns true.

Invariants

The Netlist maintains stronger invariants if the netlist is in compressed form.

Netlist is compressed (‘not dirty’)

If the netlist is compressed (i.e. !is_dirty(), meaning there have been NO calls to remove_*() since the last call to
compress()) the following invariant will hold:

• Any range returned will contain only valid IDs

In practise this means the following conditions hold:

• Blocks will not contain empty ports/pins (e.g. ports with no pin/net connections)

• Ports will not contain pins with no associated net

• Nets will not contain invalid sink pins

This means that no error checking for invalid IDs is needed if simply iterating through netlist (see below for some
exceptions).

NOTE: you may still encounter invalid IDs in the following cases:

• net_driver() will return an invalid ID if the net is undriven

• port_pin()/port_net() will return an invalid ID if the bit index corresponds to an unconnected pin

Netlist is NOT compressed (‘dirty’)

If the netlist is not compressed (i.e. is_dirty(), meaning there have been calls to remove_*() with no subsequent calls
to compress()) then the invariant above does not hold.

Any range may return invalid IDs. In practise this means,

• Blocks may contain invalid ports/pins

• Ports may contain invalid pins

• Pins may not have a valid associated net

• Nets may contain invalid sink pins

15.3. Netlists 421

Verilog-to-Routing Documentation, Release 8.1.0-dev

Implementation Details

The netlist is stored in Struct-of-Arrays format rather than the more conventional Array-of-Structs. This improves cache
locality by keeping component attributes of the same type in contiguous memory. This prevents unneeded member data
from being pulled into the cache (since most code accesses only a few attributes at a time this tends to be more efficient).

Clients of this class pass nearly-opaque IDs (BlockId, PortId, PinId, NetId, StringId) to retrieve information. The ID is
internally converted to an index to retrieve the required value from it’s associated storage.

By using nearly-opaque IDs we can change the underlying data layout as need to optimize performance/memory, without
disrupting client code.

Strings

To minimize memory usage, we store each unique string only once in the netlist and give it a unique ID (StringId). Any
references to this string then make use of the StringId.

In particular this prevents the (potentially large) strings from begin duplicated multiple times in various look-ups,
instead the more space efficient StringId is duplicated.

Note that StringId is an internal implementation detail and should not be exposed as part of the public interface. Any
public functions should take and return std::string’s instead.

Block pins/Block ports data layout

The pins/ports for each block are stored in a similar manner, for brevity we describe only pins here.

The pins for each block (i.e. PinId’s) are stored in a single vector for each block (the block_pins_ member). This allows
us to iterate over all pins (i.e. block_pins()), or specific subsets of pins (e.g. only inputs with block_input_pins()).

To accomplish this all pins of the same group (input/output/clock) are located next to each other. An example is shown
below, where the block has n input pins, m output pins and k clock pins.

--
→˓---------------------------
| ipin_1 | ipin_2 | ... | ipin_n | opin_1 | opin_2 | ... | opin_m | clock_pin_1 | clock_
→˓pin_2 | ... | clock_pin_k |
--
→˓---------------------------
^ ^ ^ ␣
→˓ ^
| | | ␣
→˓ |
begin opin_begin clock_pin_begin ␣
→˓ end

Provided we know the internal dividing points (i.e. opin_begin and clock_pin_begin) we can easily build the various
ranges of interest:

all pins : [begin, end)
input pins : [begin, opin_begin)
output pins: [opin_begin, clock_pin_begin)
clock pins : [clock_pin_begin, end)

422 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

Since any reallocation would invalidate any iterators to these internal dividers, we separately store the
number of input/output/clock pins per block (i.e. in block_num_input_pins_, block_num_output_pins_ and
block_num_clock_pins_). The internal dividers can then be easily calculated (e.g. see block_output_pins()), even
if new pins are inserted (provided the counts are updated).

Adding data to the netlist

The Netlist should contain only information directly related to the netlist state (i.e. netlist connectivity). Various
mappings to/from elements (e.g. what CLB contains an atom block), and algorithmic state (e.g. if a net is routed) do
NOT constitute netlist state and should NOT be stored here.

Such implementation state should be stored in other data structures (which may reference the Netlist’s IDs).

The netlist state should be immutable (i.e. read-only) for most of the CAD flow.

Interactions with other netlists

Currently, the AtomNetlist and ClusteredNetlist are both derived from Netlist. The AtomNetlist has primitive specific
details (t_model, TruthTable), and handles all operations with the atoms. The ClusteredNetlist contains information on
the CLB (Clustered Logic Block) level, which includes the physical description of the blocks (t_logical_block_type),
as well as the internal hierarchy and wiring (t_pb/t_pb_route).

The calling-conventions of the functions in the AtomNetlist and ClusteredNetlist is as follows:

Functions where the derived class (Atom/Clustered) calls the base class (Netlist) create_*()

Functions where the base class calls the derived class (Non-Virtual Interface idiom as described https://en.wikibooks.
org/wiki/More_C%2B%2B_Idioms/Non-Virtual_Interface) remove_*() clean_*() validate_*_sizes() shrink_to_fit()
The derived functions based off of the virtual functions have suffix *_impl()

template<typename BlockId = ParentBlockId, typename PortId = ParentPortId, typename PinId = ParentPinId,
typename NetId = ParentNetId>
class Netlist

Public Functions

const std::string &netlist_name() const
Retrieve the name of the netlist.

const std::string &netlist_id() const
Retrieve the unique identifier for this netlist This is typically a secure digest of the input file.

bool verify() const
Sanity check for internal consistency (throws an exception on failure)

bool is_dirty() const
Returns true if the netlist has invalid entries due to modifications (e.g. from remove_*() calls)

bool is_compressed() const
Returns true if the netlist has no invalid entries due to modifications (e.g. from remove_*() calls)

Note: This is a convenience method which is the logical inverse of is_dirty()

15.3. Netlists 423

https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Non-Virtual_Interface
https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Non-Virtual_Interface

Verilog-to-Routing Documentation, Release 8.1.0-dev

bool net_is_ignored(const NetId id) const
Returns whether the net is ignored i.e. not routed.

bool net_is_global(const NetId id) const
Returns whether the net is global.

void print_stats() const
Item counts and container info (for debugging)

const std::string &block_name(const BlockId blk_id) const
Returns the name of the specified block.

bool block_is_combinational(const BlockId blk_id) const
Returns true if the block is purely combinational (i.e. no input clocks and not a primary input.

attr_range block_attrs(const BlockId blk_id) const
Returns a range of all attributes associated with the specified block.

param_range block_params(const BlockId blk_id) const
Returns a range of all parameters associated with the specified block.

pin_range block_pins(const BlockId blk_id) const
Returns a range of all pins associated with the specified block.

pin_range block_input_pins(const BlockId blk_id) const
Returns a range of all input pins associated with the specified block.

pin_range block_output_pins(const BlockId blk_id) const
Returns a range of all output pins associated with the specified block.

Note: This is typically only data pins, but some blocks (e.g. PLLs) can produce outputs which are clocks.

pin_range block_clock_pins(const BlockId blk_id) const
Returns a range of all clock pins associated with the specified block.

port_range block_ports(const BlockId blk_id) const
Returns a range of all ports associated with the specified block.

port_range block_input_ports(const BlockId blk_id) const
Returns a range consisting of the input ports associated with the specified block.

port_range block_output_ports(const BlockId blk_id) const
Returns a range consisting of the output ports associated with the specified block.

Note: This is typically only data ports, but some blocks (e.g. PLLs) can produce outputs which are clocks.

port_range block_clock_ports(const BlockId blk_id) const
Returns a range consisting of the input clock ports associated with the specified block.

void remove_block(const BlockId blk_id)
Removes a block from the netlist. This will also remove the associated ports and pins.

Parameters
blk_id – The block to be removed

424 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

const std::string &port_name(const PortId port_id) const
Returns the name of the specified port.

BlockId port_block(const PortId port_id) const
Returns the block associated with the specified port.

pin_range port_pins(const PortId port_id) const
Returns the set of valid pins associated with the port.

PinId port_pin(const PortId port_id, const BitIndex port_bit) const
Returns the pin (potentially invalid) associated with the specified port and port bit index.

Note: This function is a synonym for find_pin()

Parameters
• port_id – The ID of the associated port

• port_bit – The bit index of the pin in the port

NetId port_net(const PortId port_id, const BitIndex port_bit) const
Returns the net (potentially invalid) associated with the specified port and port bit index.

Parameters
• port_id – The ID of the associated port

• port_bit – The bit index of the pin in the port

BitIndex port_width(const PortId port_id) const
Returns the width (number of bits) in the specified port.

PortType port_type(const PortId port_id) const
Returns the type of the specified port.

void remove_port(const PortId port_id)
Removes a port from the netlist.

The port’s pins are also marked invalid and removed from any associated nets

Parameters
port_id – The ID of the port to be removed

std::string pin_name(const PinId pin_id) const
Returns the constructed name (derived from block and port) for the specified pin.

PinType pin_type(const PinId pin_id) const
Returns the type of the specified pin.

NetId pin_net(const PinId pin_id) const
Returns the net associated with the specified pin.

int pin_net_index(const PinId pin_id) const
Returns the index of the specified pin within it’s connected net.

PortId pin_port(const PinId pin_id) const
Returns the port associated with the specified pin.

15.3. Netlists 425

Verilog-to-Routing Documentation, Release 8.1.0-dev

BitIndex pin_port_bit(const PinId pin_id) const
Returns the port bit index associated with the specified pin.

BlockId pin_block(const PinId pin_id) const
Returns the block associated with the specified pin.

PortType pin_port_type(const PinId pin_id) const
Returns the port type associated with the specified pin.

bool pin_is_constant(const PinId pin_id) const
Returns true if the pin is a constant (i.e. its value never changes)

void remove_pin(const PinId pin_id)
Removes a pin from the netlist.

The pin is marked invalid, and removed from any assoicated nets

Parameters
pin_id – The pin_id of the pin to be removed

const std::string &net_name(const NetId net_id) const
Returns the name of the specified net.

pin_range net_pins(const NetId net_id) const
Returns a range consisting of all the pins in the net (driver and sinks)

The first element in the range is the driver (and may be invalid) The remaining elements (potentially none)
are the sinks

PinId net_pin(const NetId net_id, int net_pin_index) const
Returns the net_pin_index’th pin of the specified net.

BlockId net_pin_block(const NetId net_id, int net_pin_index) const
Returns the block associated with the net_pin_index’th pin of the specified net.

PinId net_driver(const NetId net_id) const
Returns the (potentially invalid) net driver pin.

BlockId net_driver_block(const NetId net_id) const
Returns the (potentially invalid) net driver block.

pin_range net_sinks(const NetId net_id) const
Returns a (potentially empty) range consisting of net’s sink pins.

bool net_is_constant(const NetId net_id) const
Returns true if the net is driven by a constant pin (i.e. its value never changes)

void remove_net(const NetId net_id)
Removes a net from the netlist.

This will mark the net’s pins as having no associated.

Parameters
net_id – The net to be removed

void remove_net_pin(const NetId net_id, const PinId pin_id)
Removes a connection betwen a net and pin.

The pin is removed from the net and the pin will be marked as having no associated net

Parameters

426 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

• net_id – The net from which the pin is to be removed

• pin_id – The pin to be removed from the net

block_range blocks() const
Returns a range consisting of all blocks in the netlist.

port_range ports() const
Returns a range consisting of all ports in the netlist.

net_range nets() const
Returns a range consisting of all nets in the netlist.

pin_range pins() const
Returns a range consisting of all pins in the netlist.

BlockId find_block(const std::string &name) const
Returns the BlockId of the specified block or BlockId::INVALID() if not found.

Parameters
name – The name of the block

BlockId find_block_by_name_fragment(const std::string &name_substring) const
Finds a block where the block’s name contains the provided input name as a substring. The intented use
is to find the block id of a hard block without knowing its name in the netlist. Instead the block’s module
name in the HDL design can be used as it will be a substring within its full name in the netlist.

For example, suppose a RAM block was named in the netlist as “top|alu|test_ram|out”. The user instanti-
ated the ram module in the HDL design as “test_ram”. So instead of going through the netlist and finding
the ram block’s full name, this function can be used by just providing the module name “test_ram” and
using this substring to match the blocks name in the netlist and retrieving its block id. If no blocks matched
to input pattern then an invalid block id is returned.

This function runs in linear time (O(N)) as it goes over all the cluster blocks in the netlist. Additionally,
if there are multiple blocks that contain the provided input as a substring, then the first block found is
returned.

NOTE: This function tries to find blocks by checking for substrings. The clustered netlist class defines
another version of this function that find blocks by checking for a pattern match, meaning that the input is
a pattern string and the pattern is looked for ine each block name.

Parameters
name_substring – A substring of a block name for which an ID needs

to be found.

Returns
A cluster block id representing a unique cluster block that matched to the input string
pattern.

PortId find_port(const BlockId blk_id, const std::string &name) const
Returns the PortId of the specifed port if it exists or PortId::INVALID() if not.

Note: This method is typically less efficient than searching by a t_model_port With the overloaded Atom-
Netlist method

Parameters
• blk_id – The ID of the block who’s ports will be checked

15.3. Netlists 427

Verilog-to-Routing Documentation, Release 8.1.0-dev

• name – The name of the port to look for

NetId find_net(const std::string &name) const
Returns the NetId of the specified net or NetId::INVALID() if not found.

Parameters
name – The name of the net

PinId find_pin(const PortId port_id, BitIndex port_bit) const
Returns the PinId of the specified pin or PinId::INVALID() if not found.

Parameters
• port_id – The ID of the associated port

• port_bit – The bit index of the pin in the port

PinId find_pin(const std::string name) const
Returns the PinId of the specified pin or PinId::INVALID() if not found.

Note: This method is SLOW, O(num_pins) — avoid if possible

Parameters
name – The name of the pin

void set_pin_net(const PinId pin, PinType pin_type, const NetId net)
Add the specified pin to the specified net as pin_type.

Automatically removes any previous net connection for this pin.

Parameters
• pin – The pin to add

• pin_type – The type of the pin (i.e. driver or sink)

• net – The net to add the pin to

void set_pin_is_constant(const PinId pin_id, const bool value)
Mark a pin as being a constant generator.

There are some cases where a pin can not be identified as a is constant until after the full netlist has been
built; so we expose a way to mark existing pins as constants.

Parameters
• pin_id – The pin to be marked

• value – The boolean value to set the pin_is_constant attribute

void set_block_name(const BlockId blk_id, const std::string new_name)
Re-name a block.

Parameters
• blk_id – : The block to be renamed

• new_name – : The new name for the specified block

428 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

void set_block_attr(const BlockId blk_id, const std::string &name, const std::string &value)
Set a block attribute.

Parameters
• blk_id – The block to which the attribute is attached

• name – The name of the attribute to set

• value – The new value for the specified attribute on the specified block

void set_block_param(const BlockId blk_id, const std::string &name, const std::string &value)
Set a block parameter.

Parameters
• blk_id – The block to which the parameter is attached

• name – The name of the parameter to set

• value – The new value for the specified parameter on the specified block

void set_net_is_ignored(NetId net_id, bool state)
Sets the flag in net_ignored_ = state.

Parameters
• net_id – The Net Id

• state – true(false): net should(shouldn’t) be ignored

void set_net_is_global(NetId net_id, bool state)
Sets the flag in net_is_global_ = state.

void merge_nets(const NetId driver_net, const NetId sink_net)
Merges sink_net into driver_net.

After merging driver_net will contain all the sinks of sink_net

Parameters
• driver_net – The net which includes the driver pin

• sink_net – The target net to be merged into driver_net (must have no driver pin)

IdRemapper remove_and_compress()
Wrapper for remove_unused() & compress()

This function should be used in the case where a netlist is fully modified

void remove_unused()
This should be called after completing a series of netlist modifications (e.g. removing
blocks/ports/pins/nets).

Marks netlist components which have become redundant due to other removals (e.g. ports with only invalid
pins) as invalid so they will be destroyed during compress()

IdRemapper compress()
Compresses the netlist, removing any invalid and/or unreferenced blocks/ports/pins/nets.

Note: this invalidates all existing IDs!

15.3. Netlists 429

Verilog-to-Routing Documentation, Release 8.1.0-dev

15.3.2 Clustered Netlist

Overview

The ClusteredNetlist is derived from the Netlist class, and contains some separate information on Blocks, Pins, and
Nets. It does not make use of Ports.

Blocks

The pieces of unique block information are: block_pbs_: Physical block describing the clustering and internal hierarchy
structure of each CLB. block_types_: The type of physical block the block is mapped to, e.g. logic block, RAM, DSP
(Can be user-defined types). block_nets_: Based on the block’s pins (indexed from [0. . . num_pins - 1]), lists which
pins are used/unused with the net using it. block_pin_nets_: Returns the index of a pin relative to the net, when given
a block and a pin’s index on that block (from the type descriptor). Differs from block_nets_.

Differences between block_nets_ & block_pin_nets_

+-----------+
0-->| |-->3
1-->| Block |-->4
2-->| |-->5

+-----------+

block_nets_ tracks all pins on a block, and returns the ClusterNetId to which a pin is connected to. If the pin is
unused/open, ClusterNetId::INVALID() is stored.

block_pin_nets_ tracks whether the nets connected to the block are drivers/receivers of that net. Driver/receiver nets
are determined by the pin_class of the block’s pin. A net connected to a driver pin in the block has a 0 is stored. A net
connected to a receiver has a counter (from [1. . . num_sinks - 1]).

The net is connected to multiple blocks. Each block_pin_nets_ has a unique number in that net.

E.g.

+-----------+ +-----------+
0-->| |-->3 Net A 0-->| |-->3
1-->| Block 1 |---4---------->1-->| Block 2 |-->4
2-->| |-->5 2-->| |-->5

+-----------+ | +-----------+
|
| +-----------+
| | |-->1
0-->| Block 3 |

| |-->2
+-----------+

In the example, Net A is driven by Block 1, and received by Blocks 2 & 3. For Block 1, block_pin_nets_ of pin 4
returns 0, as it is the driver. For Block 2, block_pin_nets_ of pin 1 returns 1 (or 2), non-zero as it is a receiver. For
Block 3, block_pin_nets_ of pin 0 returns 2 (or 1), non-zero as it is also a receiver.

The block_pin_nets_ data structure exists for quick indexing, rather than using a linear search with the available func-
tions from the base Netlist, into the net_delay_ structure in the PostClusterDelayCalculator of inter_cluster_delay().
net_delay_ is a 2D array, where the indexing scheme is [net_id] followed by [pin_index on net].

430 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

Pins

The only piece of unique pin information is: logical_pin_index_

Example of logical_pin_index_

Given a ClusterPinId, logical_pin_index_ will return the index of the pin within its block relative to the
t_logical_block_type (logical description of the block).

+-----------+
0-->|O X|-->3
1-->|O Block O|-->4
2-->|X O|-->5 (e.g. ClusterPinId = 92)

+-----------+

The index skips over unused pins, e.g. CLB has 6 pins (3 in, 3 out, numbered [0. . . 5]), where the first two ins, and last
two outs are used. Indices [0,1] represent the ins, and [4,5] represent the outs. Indices [2,3] are unused. Therefore,
logical_pin_index_[92] = 5.

Implementation

For all create_* functions, the ClusteredNetlist will wrap and call the Netlist’s version as it contains additional infor-
mation that the base Netlist does not know about.

All functions with suffix *_impl() follow the Non-Virtual Interface (NVI) idiom. They are called from the base Netlist
class to simplify pre/post condition checks and prevent Fragile Base Class (FBC) problems.

Refer to netlist.h for more information.

class ClusteredNetlist : public Netlist<ClusterBlockId, ClusterPortId, ClusterPinId, ClusterNetId>

Public Functions

ClusteredNetlist(std::string name = "", std::string id = "")
Constructs a netlist.

Parameters
• name – the name of the netlist (e.g. top-level module)

• id – a unique identifier for the netlist (e.g. a secure digest of the input file)

t_pb *block_pb(const ClusterBlockId id) const
Returns the physical block.

t_logical_block_type_ptr block_type(const ClusterBlockId id) const
Returns the type of CLB (Logic block, RAM, DSP, etc.)

const std::vector<ClusterBlockId> &blocks_per_type(const t_logical_block_type &blk_type) const
Returns the blocks with the specific block types in the netlist.

ClusterNetId block_net(const ClusterBlockId blk_id, const int pin_index) const
Returns the net of the block attached to the specific pin index.

15.3. Netlists 431

Verilog-to-Routing Documentation, Release 8.1.0-dev

int block_pin_net_index(const ClusterBlockId blk_id, const int pin_index) const
Returns the count on the net of the block attached.

ClusterPinId block_pin(const ClusterBlockId blk, const int logical_pin_index) const
Returns the logical pin Id associated with the specified block and logical pin index.

bool block_contains_primary_output(const ClusterBlockId blk) const
Returns true if the specified block contains a primary output (e.g. BLIF .output primitive)

int pin_logical_index(const ClusterPinId pin_id) const
Returns the logical pin index (i.e. pin index on the t_logical_block_type) of the cluster pin.

int net_pin_logical_index(const ClusterNetId net_id, int net_pin_index) const
Finds the net_index’th net pin (e.g. the 6th pin of the net) and returns the logical pin index (i.e. pin index
on the t_logical_block_type) of the block to which the pin belongs.

Parameters
• net_id – The net

• net_pin_index – The index of the pin in the net

ClusterBlockId create_block(const char *name, t_pb *pb, t_logical_block_type_ptr type)
Create or return an existing block in the netlist.

Parameters
• name – The unique name of the block

• pb – The physical representation of the block

• type – The type of the CLB

ClusterPortId create_port(const ClusterBlockId blk_id, const std::string &name, BitIndex width, PortType
type)

Create or return an existing port in the netlist.

Parameters
• blk_id – The block the port is associated with

• name – The name of the port (must match the name of a port in the block’s model)

• width – The width (number of bits) of the port

• type – The type of the port (INPUT, OUTPUT, or CLOCK)

ClusterPinId create_pin(const ClusterPortId port_id, BitIndex port_bit, const ClusterNetId net_id, const
PinType pin_type, int pin_index, bool is_const = false)

Create or return an existing pin in the netlist.

Parameters
• port_id – The port this pin is associated with

• port_bit – The bit index of the pin in the port

• net_id – The net the pin drives/sinks

• pin_type – The type of the pin (driver/sink)

• pin_index – The index of the pin relative to its block, excluding OPEN pins)

• is_const – Indicates whether the pin holds a constant value (e. g. vcc/gnd)

432 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

ClusterNetId create_net(const std::string &name)
Create an empty, or return an existing net in the netlist.

Parameters
name – The unique name of the net

ClusterBlockId find_block_by_name_fragment(const std::string &name_pattern, const
std::vector<ClusterBlockId> &cluster_block_candidates)
const

Given a name of a block and vector of possible cluster blocks that are candidates to match the block name,
go through the vector of cluster blocks and return the id of the block where the block name matches the
provided name.

Given a string pattern representing a block name and a vector of poissble cluster blocks that are candidates
to match to the block name pattern, go through the vector of cluster blocks and return the id of the block
where the block name matches to the provided input pattern.

The intented use is to find the block id of a hard block without knowing its name in the netlist. Instead a
pattern can be created that we know the block’s name will match to. Generally, we expect the pattern to
be constructed using the block’s module name in the HDL design, since we can expect the netlist name of
the block to include the module name within it.

For example, suppose a RAM block was named in the netlist as “top|alu|test_ram|out”. The user instanti-
ated the ram module in the HDL design as “test_ram”. So instead of going through the netlist and finding
the ram block’s full name, this function can be used by just providing the string pattern as “.*test_ram.*”.
We know that the module name should be somewhere within the string, so the pattern we provide says
that the netlist name of the block contains arbritary characters then the module name and then some other
arbritary characters after. This pattern will then be used to match to the block in the netlist. The matched
cluster block id is returned, and if no block matched to the input string then an invalid block id is returned.

The function here additionally requires a vector of possible cluster blocks that can match to the input
pattern. This vector can be the entire netlist or a subset. For example, if the intended use is to find hard
blocks, it is quite inefficient to go through all the blocks to find a matching one. Instead, a a filtered vector
can be passed that is a subset of the entire netlist and can only contain blocks of a certain logical block
type (blocks that can be placed on a specific hard block). The idea here is that the filtered vector should
be considereably smaller that a vector of every block in the netlist and this should help improve run time.

This function runs in linear time (O(N)) as it goes over the vector of ‘cluster_block_candidates’. ‘clus-
ter_block_candidates’ could be the whole netlist or a subset as explained above. Additionally, if there are
multiple blocks that match to the provided input pattern, then the first block found is returned.

Parameters
• name_pattern – A regex string pattern that can be used to match to

a clustered block name within the netlist.

• cluster_block_candidates – A vector of clustered block ids that represent a
subset of the clustered netlist. The blocks in this vector will be used to compare and
match to the input string pattern.

Returns
A cluster block id representing a unique cluster block that matched to the input string
pattern.

15.3. Netlists 433

Verilog-to-Routing Documentation, Release 8.1.0-dev

15.3.3 Atom Netlist

Overview

The AtomNetlist is derived from the Netlist class, and contains information on the primitives. This includes basic
components (Blocks, Ports, Pins, & Nets), and physical descriptions (t_model) of the primitives.

Most of the functionality relevant to components and their accessors/cross-accessors is implemented in the Netlist class.
Refer to netlist.(h|tpp) for more information.

Components

There are 4 components in the Netlist: Blocks, Ports, Pins, and Nets. Each component has a unique ID in the netlist,
as well as various associations to their related components (e.g. A pin knows which port it belongs to, and what net it
connects to)

Blocks

Blocks refer to the atoms (AKA primitives) that are in the the netlist. Each block contains input/output/clock ports.
Blocks have names, and various functionalities (LUTs, FFs, RAMs, . . .) Each block has an associated t_model, de-
scribing the physical properties.

Ports

Ports are composed of a set of pins that have specific directionality (INPUT, OUTPUT, or CLOCK). The ports in the
AtomNetlist are respective to the atoms. (i.e. the AtomNetlist does not contain ports of a Clustered Logic Block). Each
port has an associated t_model_port, describing the physical properties.

Pins

Pins are single-wire input/outputs. They are part of a port, and are connected to a single net.

Nets

Nets in the AtomNetlist track the wiring connections between the atoms.

Models

There are two main models, the primitive itself (t_model) and the ports of that primitive (t_model_ports). The models
are created from the architecture file, and describe the physical properties of the atom.

434 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

Truth Table

The AtomNetlist also contains a TruthTable for each block, which indicates what the LUTs contain.

Implementation

For all create_* functions, the AtomNetlist will wrap and call the Netlist’s version as it contains additional information
that the base Netlist does not know about.

All functions with suffix *_impl() follow the Non-Virtual Interface (NVI) idiom. They are called from the base Netlist
class to simplify pre/post condition checks and prevent Fragile Base Class (FBC) problems.

Refer to netlist.h for more information.

class AtomNetlist : public Netlist<AtomBlockId, AtomPortId, AtomPinId, AtomNetId>

Public Functions

AtomNetlist(std::string name = "", std::string id = "")
Constructs a netlist.

Parameters
• name – the name of the netlist (e.g. top-level module)

• id – a unique identifier for the netlist (e.g. a secure digest of the input file)

AtomBlockType block_type(const AtomBlockId id) const
Returns the type of the specified block.

const t_model *block_model(const AtomBlockId id) const
Returns the model associated with the block.

const TruthTable &block_truth_table(const AtomBlockId id) const
Returns the truth table associated with the block.

For LUTs the truth table stores the single-output cover representing the logic function.

For FF/Latches there is only a single entry representing the initial state

Note: This is only non-empty for LUTs and Flip-Flops/latches.

const t_model_ports *port_model(const AtomPortId id) const
Returns the model port of the specified port or nullptr if not.

Parameters
id – The ID of the port to look for

AtomPortId find_atom_port(const AtomBlockId blk_id, const t_model_ports *model_port) const
Returns the AtomPortId of the specifed port if it exists or AtomPortId::INVALID() if not.

Note: This method is typically more efficient than searching by name

15.3. Netlists 435

Verilog-to-Routing Documentation, Release 8.1.0-dev

Parameters
• blk_id – The ID of the block who’s ports will be checked

• model_port – The port model to look for

AtomBlockId find_atom_pin_driver(const AtomBlockId blk_id, const t_model_ports *model_port, const
BitIndex port_bit) const

Returns the AtomBlockId of the atom driving the specified pin if it exists or AtomBlockId::INVALID() if
not.

Parameters
• blk_id – The ID of the block whose ports will be checked

• model_port – The port model to look for

• port_bit – The pin number in this port

std::unordered_set<std::string> net_aliases(const std::string net_name) const
Returns the a set of aliases relative to the net name.

If no aliases are found, returns a set with the original net name.

Parameters
net_name – name of the net from which the aliases are extracted

AtomBlockId create_block(const std::string name, const t_model *model, const TruthTable truth_table =
TruthTable())

Create or return an existing block in the netlist.

Parameters
• name – The unique name of the block

• model – The primitive type of the block

• truth_table – The single-output cover defining the block’s logic function The
truth_table is optional and only relevant for LUTs (where it describes the logic func-
tion) and Flip-Flops/latches (where it consists of a single entry defining the initial
state).

AtomPortId create_port(const AtomBlockId blk_id, const t_model_ports *model_port)
Create or return an existing port in the netlist.

Parameters
• blk_id – The block the port is associated with

• model_port – The model port the port is associated with

AtomPinId create_pin(const AtomPortId port_id, BitIndex port_bit, const AtomNetId net_id, const PinType
pin_type, bool is_const = false)

Create or return an existing pin in the netlist.

Parameters
• port_id – The port this pin is associated with

• port_bit – The bit index of the pin in the port

• net_id – The net the pin drives/sinks

• pin_type – The type of the pin (driver/sink)

436 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

• is_const – Indicates whether the pin holds a constant value (e. g. vcc/gnd)

AtomNetId create_net(const std::string name)
Create an empty, or return an existing net in the netlist.

Parameters
name – The unique name of the net

AtomNetId add_net(const std::string name, AtomPinId driver, std::vector<AtomPinId> sinks)
Create a completely specified net from specified driver and sinks.

Parameters
• name – The name of the net (Note: must not already exist)

• driver – The net’s driver pin

• sinks – The net’s sink pins

void add_net_alias(const std::string net_name, std::string alias_net_name)
Adds a value to the net aliases set for a given net name in the net_aliases_map.

If there is no key/value pair in the net_aliases_map, creates a new set and adds it to the map.

Parameters
• net_name – The net to be added to the map

• alias_net_name – The alias of the assigned clock net id

15.4 Route Tree

15.4.1 RouteTree

Overview

A RouteTree holds a root RouteTreeNode and exposes top level operations on the tree, such as Route-
Tree::update_from_heap() and RouteTree::prune().

Routing itself is not done using this representation. The route tree is pushed to the heap with ConnectionRouter-
Interface::timing_driven_route_connection_from_route_tree() and the newly found path is committed via Route-
Tree::update_from_heap(). The timing data is updated with RouteTree::reload_timing() where required.

Each net in the netlist given to the router has a single RouteTree, which is kept in RoutingContext::route_trees.

Usage

A RouteTree either requires a RRNodeId or a ParentNetId (as the source node) to construct:

RouteTree tree(inet);
// ...

RouteTrees cannot be manually updated. The only way to extend them is to first route a connection and then update
from the resulting heap.

15.4. Route Tree 437

Verilog-to-Routing Documentation, Release 8.1.0-dev

std::tie(found_path, cheapest) = router.timing_driven_route_connection_from_route_
→˓tree(tree.root(), ...);
if (found_path)

std::tie(std::ignore, rt_node_of_sink) = tree.update_from_heap(&cheapest, ...);

Congested paths in a tree can be pruned using RouteTree::prune(). This is done between iterations to keep
only the legally routed section. Note that updates to a tree require an update to the global occupancy state via
pathfinder_update_cost_from_route_tree(). RouteTree::prune() depends on this global data to find congestions, so
the flow to prune a tree is somewhat convoluted:

RouteTree tree2 = tree;
// Prune the copy (using congestion data before subtraction)
vtr::optional<RouteTree&> pruned_tree2 = tree2.prune(connections_inf);

// Subtract congestion using the non-pruned original
pathfinder_update_cost_from_route_tree(tree.root(), -1);

if (pruned_tree2) { // Partially pruned
// Add back congestion for the pruned route tree
pathfinder_update_cost_from_route_tree(pruned_tree2.value().root(), 1);
...

} else { // Fully destroyed
...

Most usage of RouteTree outside of the router requires iterating through existing routing. Both RouteTree and Route-
TreeNode exposes functions to traverse the tree.

To iterate over all nodes in the tree:

RouteTree& tree = route_ctx.route_trees[inet].value();

for (auto& node: tree.all_nodes()) {
// ...

}

This will walk the tree in depth-first order. Breadth-first traversal would require recursion:

const RouteTreeNode& root = tree.root();

for (auto& child: root.child_nodes()) {
// recurse...

}

To walk a node’s subtree in depth-first order:

for (auto& node: root.all_nodes()) { // doesn't include root!
// ...

}

RouteTree::find_by_rr_id() finds the RouteTreeNode for a given RRNodeId. Note that RRNodeId isn’t a unique key for
SINK nodes and therefore an external lookup (generated from sink nodes returned by RouteTree::update_from_heap())
or a search may be required to find a certain SINK.

When the occupancy and timing data is up to date, a tree can be sanity checked using RouteTree::is_valid().

438 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

class RouteTree
Top level route tree used in timing analysis and keeping routing state.

Contains the root node and a lookup from RRNodeIds to RouteTreeNode&s in the tree.

Public Functions

RouteTree(RRNodeId inode)
Return a RouteTree initialized to inode. Note that prune() won’t work on a RouteTree initialized this way
(see _net_id comments)

RouteTree(ParentNetId inet)
Return a RouteTree initialized to the source of nets[inet]. Use this constructor where possible (needed for
prune() to work)

std::tuple<vtr::optional<const RouteTreeNode&>, vtr::optional<const RouteTreeNode&>> update_from_heap(t_heap
*hptr,
int
tar-
get_net_pin_index,
Spa-
tial-
Route-
TreeLookup
*spa-
tial_rt_lookup,
bool
is_flat)

Add the most recently finished wire segment to the routing tree, and update the Tdel, etc. numbers for the
rest of the routing tree. hptr is the heap pointer of the SINK that was reached, and target_net_pin_index is
the net pin index corresponding to the SINK that was reached. This routine returns a tuple: RouteTreeNode
of the branch it adds to the route tree and RouteTreeNode of the SINK it adds to the routing. Locking
operation: only one thread can update_from_heap() a RouteTree at a time.

Add the most recently finished wire segment to the routing tree, and update the Tdel, etc. numbers for the
rest of the routing tree. hptr is the heap pointer of the SINK that was reached, and target_net_pin_index is
the net pin index corresponding to the SINK that was reached. This routine returns a tuple: RouteTreeNode
of the branch it adds to the route tree and RouteTreeNode of the SINK it adds to the routing.

void reload_timing(vtr::optional<RouteTreeNode&> from_node = vtr::nullopt)
Reload timing values (R_upstream, C_downstream, Tdel). Can take a RouteTreeNode& to do an incre-
mental update. Note that update_from_heap already does this, but prune() doesn’t. Locking operation:
only one thread can reload_timing() for a RouteTree at a time.

Reload timing values (R_upstream, C_downstream, Tdel). Can take a RouteTreeNode& to do an incre-
mental update. Note that update_from_heap already calls this.

vtr::optional<const RouteTreeNode&> find_by_rr_id(RRNodeId rr_node) const
Get the RouteTreeNode corresponding to the RRNodeId. Returns nullopt if not found. SINK nodes may
be added to the tree multiple times. In that case, this will return the last one added. Use find_by_isink for
a more accurate lookup.

inline vtr::optional<const RouteTreeNode&> find_by_isink(int isink) const
Get the sink RouteTreeNode associated with the isink. Will probably segfault if the tree is not constructed
with a ParentNetId.

15.4. Route Tree 439

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline constexpr size_t num_sinks(void) const
Get the number of sinks in associated net.

bool is_valid(void) const
Check the consistency of this route tree. Looks for:

• invalid parent-child links

• invalid timing values

• congested SINKs Returns true if OK.

bool is_uncongested(void) const
Check if the tree has any overused nodes (-> the tree is congested). Returns true if not congested.

Check if the tree has any overused nodes (-> the tree is congested). Returns true if not congested

void print(void) const
Print information about this route tree to stdout.

vtr::optional<RouteTree&> prune(CBRR &connections_inf, std::vector<int> *non_config_node_set_usage =
nullptr)

Prune overused nodes from the tree. Also prune unused non-configurable nodes if
non_config_node_set_usage is provided (see get_non_config_node_set_usage) Returns nullopt if
the entire tree is pruned. Locking operation: only one thread can prune() a RouteTree at a time.

Prune a route tree of illegal branches - when there is at least 1 congested node on the path to a sink Returns
nullopt if the entire tree has been pruned. Updates “is_isink_reached” lookup! After prune(), if a sink is
marked as reached in the lookup, it is reached legally.

Note: does not update R_upstream/C_downstream

void freeze(void)
Remove all sinks and mark the remaining nodes as un-expandable. This is used after routing a clock net.
TODO: is this function doing anything? Try running without it Locking operation: only one thread can
freeze() a RouteTree at a time.

Remove all sinks and mark the remaining nodes as un-expandable. This is used after routing a clock net.
TODO: is this function doing anything? Try running without it

std::vector<int> get_non_config_node_set_usage(void) const
Count configurable edges to non-configurable node sets. (rr_nonconf_node_sets index -> int) Required
when using prune() to remove non-configurable nodes.

inline constexpr iterable all_nodes(void) const
Get an iterable for all nodes in this RouteTree.

inline constexpr const RouteTreeNode &root(void) const
Get a reference to the root RouteTreeNode.

inline constexpr const vtr::dynamic_bitset &get_is_isink_reached(void) const
Get a lookup which contains the “isink reached state”. It’s a 1-indexed! bitset of “pin indices”. True if
the nth sink has been reached, false otherwise. If you call it before prune() and after routing, there’s no
guarantee on whether the reached sinks are reached legally. Another catch is that vtr::dynamic_bitsets
don’t know their size, so keep tree.num_sinks()+1 as a limit when iterating over this.

inline constexpr reached_isink_range get_reached_isinks(void) const
Get reached isinks: 1-indexed pin indices enumerating the sinks in this net. “Reached” means “reached
legally” if you call this after prune() and not before any routing. Otherwise it doesn’t guarantee legality.
Builds and returns a value: use get_is_isink_reached directly if you want speed.

440 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline constexpr remaining_isink_range get_remaining_isinks(void) const
Get remaining (not routed (legally?)) isinks: 1-indexed pin indices enumerating the sinks in this net.
Caveats in get_reached_isinks() apply.

template<bool sink_state>

class IsinkIterator
Iterator implementation for remaining or reached isinks. Goes over [1..num_sinks] and only returns a value
when the sink state is right

15.4.2 RouteTreeNode

class RouteTreeNode
A single route tree node.

Structure describing one node in a RouteTree.

Public Functions

RouteTreeNode(RRNodeId inode, RRSwitchId parent_switch, RouteTreeNode *parent)
This struct makes little sense outside the context of a RouteTree. This constructor is only public for com-
patibility purposes.

inline constexpr iterable<const RouteTreeNode&> child_nodes(void) const
Traverse child nodes.

inline constexpr vtr::optional<const RouteTreeNode&> parent(void) const
Get parent node if exists. (nullopt if not)

inline constexpr rec_iterable<const RouteTreeNode&> all_nodes(void) const
Traverse the subtree under this node in depth-first order. Doesn’t include this node.

void print(void) const
Print information about this subtree to stdout.

inline constexpr bool is_leaf(void) const
Is this node a leaf?

True if the next node after this is not its child (we jumped up to the next branch) or if it’s null. The RouteTree
functions keep the books for this.

Public Members

RRNodeId inode
ID of the rr_node that corresponds to this node.

RRSwitchId parent_switch
Switch type driving this node (by its parent).

15.4. Route Tree 441

Verilog-to-Routing Documentation, Release 8.1.0-dev

bool re_expand
Should this node be put on the heap as part of the partial routing to act as a source for subsequent connec-
tions?

float Tdel
Time delay for the signal to get from the net source to this node. Includes the time to go through this node.

float R_upstream
Total upstream resistance from this node to the net source, including any device_ctx.rr_nodes[].R of this
node.

float C_downstream
Total downstream capacitance from this node. That is, the total C of the subtree rooted at the current node,
including the C of the current node.

int net_pin_index
Net pin index associated with the node. This value ranges from 1 to fanout [1..num_pins-1]. For cases
when different speed paths are taken to the same SINK for different pins, inode cannot uniquely identify
each SINK, so the net pin index guarantees an unique identification for each SINK node. For non-SINK
nodes and for SINK nodes with no associated net pin index, (i.e. special SINKs like the source of a clock
tree which do not correspond to an actual netlist connection), the value for this member should be set to
OPEN (-1).

Friends

inline friend bool operator==(const RouteTreeNode &lhs, const RouteTreeNode &rhs)
Equality operator. For now, just compare the addresses

template<class Iterator>

class Iterable
Provide begin and end fns when iterating on this tree. .child_nodes() returns Iterable<RTIterator> while
.all_nodes() returns Iterable<RTRecIterator>

template<class ref>

class RTIterator
Iterator implementation for child_nodes(). Walks using _next_sibling ptrs. At the end of the child list, the
ptr points up to where the parent’s subtree ends, so we know where to stop

template<class ref>

class RTRecIterator
Recursive iterator implementation for a RouteTreeNode. This walks over all child nodes of a given node
without a stack or recursion: we keep the nodes in depth-first order in the linked list managed by RouteTree.
Nodes know where their subtree ends, so we can just walk the _next ptrs until we find that

442 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

15.5 Routing Resource Graph

15.5.1 RRGraphView

class RRGraphView

Public Functions

inline size_t num_nodes() const
Return number of nodes. This function is inlined for runtime optimization.

inline bool empty() const
Is the RR graph currently empty?

inline vtr::StrongIdRange<RREdgeId> edge_range(RRNodeId id) const
Returns a range of RREdgeId’s belonging to RRNodeId id. If this range is empty, then RRNodeId id has
no edges.

inline t_rr_type node_type(RRNodeId node) const
Get the type of a routing resource node. This function is inlined for runtime optimization.

inline const char *node_type_string(RRNodeId node) const
Get the type string of a routing resource node. This function is inlined for runtime optimization.

inline short node_capacity(RRNodeId node) const
Get the capacity of a routing resource node. This function is inlined for runtime optimization.

inline Direction node_direction(RRNodeId node) const
Get the direction of a routing resource node. This function is inlined for runtime optimization. Direc-
tion::INC: wire driver is positioned at the low-coordinate end of the wire. Direction::DEC: wire_driver is
positioned at the high-coordinate end of the wire. Direction::BIDIR: wire has multiple drivers, so signals
can travel either way along the wire Direction::NONE: node does not have a direction, such as IPIN/OPIN.

inline const std::string &node_direction_string(RRNodeId node) const
Get the direction string of a routing resource node. This function is inlined for runtime optimization.

inline float node_C(RRNodeId node) const
Get the capacitance of a routing resource node. This function is inlined for runtime optimization.

inline float node_R(RRNodeId node) const
Get the resistance of a routing resource node. This function is inlined for runtime optimization.

inline int16_t node_rc_index(RRNodeId node) const
Get the rc_index of a routing resource node. This function is inlined for runtime optimization.

inline t_edge_size node_fan_in(RRNodeId node) const
Get the fan in of a routing resource node. This function is inlined for runtime optimization.

inline short node_xlow(RRNodeId node) const
Get the minimum x-coordinate of a routing resource node. This function is inlined for runtime optimiza-
tion.

inline short node_xhigh(RRNodeId node) const
Get the maximum x-coordinate of a routing resource node. This function is inlined for runtime optimiza-
tion.

15.5. Routing Resource Graph 443

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline short node_ylow(RRNodeId node) const
Get the minimum y-coordinate of a routing resource node. This function is inlined for runtime optimiza-
tion.

inline short node_yhigh(RRNodeId node) const
Get the maximum y-coordinate of a routing resource node. This function is inlined for runtime optimiza-
tion.

inline short node_layer(RRNodeId node) const
Get the layer num of a routing resource node. This function is inlined for runtime optimization.

inline short node_ptc_twist(RRNodeId node) const
Get the ptc number twist of a routing resource node. This function is inlined for runtime optimization.

inline RREdgeId node_first_edge(RRNodeId node) const
Get the first out coming edge of resource node. This function is inlined for runtime optimization.

inline RREdgeId node_last_edge(RRNodeId node) const
Get the last out coming edge of resource node. This function is inlined for runtime optimization.

inline int node_length(RRNodeId node) const
Get the length (number of grid tile units spanned by the wire, including the endpoints) of a routing resource
node. node_length() only applies to CHANX or CHANY and is always a positive number This function
is inlined for runtime optimization.

inline bool node_is_initialized(RRNodeId node) const
Check if routing resource node is initialized. This function is inlined for runtime optimization.

inline bool nodes_are_adjacent(RRNodeId chanx_node, RRNodeId chany_node) const
Check if two routing resource nodes are adjacent (must be a CHANX and a CHANY). This function is
used for error checking; it checks if two nodes are physically adjacent (could be connected) based on their
geometry. It does not check the routing edges to see if they are, in fact, possible to connect in the current
routing graph. This function is inlined for runtime optimization.

inline bool node_is_inside_bounding_box(RRNodeId node, vtr::Rect<int> bounding_box) const
Check if node is within bounding box. To return true, the RRNode must be completely contained within
the specified bounding box, with the edges of the bounding box being inclusive. This function is inlined
for runtime optimization.

inline bool x_in_node_range(int x, RRNodeId node) const
Check if x is within x-range spanned by the node, inclusive of its endpoints. This function is inlined for
runtime optimization.

inline bool y_in_node_range(int y, RRNodeId node) const
Check if y is within y-range spanned by the node, inclusive of its endpoints. This function is inlined for
runtime optimization.

inline const std::string node_coordinate_to_string(RRNodeId node) const
Get string of information about routing resource node. The string will contain the following information.
type, side, x_low, x_high, y_low, y_high, length, direction, segment_name, layer num This function is
inlined for runtime optimization.

inline bool is_node_on_specific_side(RRNodeId node, e_side side) const
Check whether a routing node is on a specific side. This function is inlined for runtime optimization.

inline const char *node_side_string(RRNodeId node) const
Get the side string of a routing resource node. This function is inlined for runtime optimization.

444 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline short edge_switch(RRNodeId id, t_edge_size iedge) const
Get the switch id that represents the iedge’th outgoing edge from a specific node TODO: We may need to
revisit this API and think about higher level APIs, like switch_delay()

inline RRNodeId edge_src_node(const RREdgeId edge_id) const
Get the source node for the specified edge.

inline RRNodeId edge_sink_node(RRNodeId id, t_edge_size iedge) const
Get the destination node for the iedge’th edge from specified RRNodeId. This method should generally
not be used, and instead first_edge and last_edge should be used.

inline bool edge_is_configurable(RRNodeId id, t_edge_size iedge) const
Detect if the edge is a configurable edge (controlled by a programmable routing multipler or a tri-state
switch).

inline t_edge_size num_configurable_edges(RRNodeId node) const
Get the number of configurable edges. This function is inlined for runtime optimization.

inline t_edge_size num_non_configurable_edges(RRNodeId node) const
Get the number of non-configurable edges. This function is inlined for runtime optimization.

inline edge_idx_range configurable_edges(RRNodeId node) const
A configurable edge represents a programmable switch between routing resources, which could be a mul-
tiplexer a tri-state buffer a pass gate This API gets ID range for configurable edges. This function is inlined
for runtime optimization.

inline edge_idx_range non_configurable_edges(RRNodeId node) const
A non-configurable edge represents a hard-wired connection between routing resources, which could be a
non-configurable buffer that can not be turned off a short metal connection that can not be turned off This
API gets ID range for non-configurable edges. This function is inlined for runtime optimization.

inline edge_idx_range edges(const RRNodeId &id) const
Get outgoing edges for a node. This API is designed to enable range-based loop to walk through the
outgoing edges of a node Example: RRGraphView rr_graph; // A dummny rr_graph for a short example
RRNodeId node; // A dummy node for a short example for (RREdgeId edge : rr_graph.edges(node)) { //
Do something with the edge }.

inline t_edge_size num_edges(RRNodeId node) const
Get the number of edges. This function is inlined for runtime optimization.

inline int node_ptc_num(RRNodeId node) const
The ptc_num carries different meanings for different node types (true in VPR RRG that is currently sup-
ported, may not be true in customized RRG) CHANX or CHANY: the track id in routing channels OPIN or
IPIN: the index of pins in the logic block data structure SOURCE and SINK: the class id of a pin (indicating
logic equivalence of pins) in the logic block data structure

Note:
This API is very powerful and developers should not use it unless it is necessary, e.g the node type is un-
known. If the node type is known, the more specific routines, node_pin_num(), node_track_num()and
node_class_num(), for different types of nodes should be used.

inline int node_pin_num(RRNodeId node) const
Get the pin num of a routing resource node. This is designed for logic blocks, which are IPIN and OPIN
nodes. This function is inlined for runtime optimization.

15.5. Routing Resource Graph 445

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline int node_track_num(RRNodeId node) const
Get the track num of a routing resource node. This is designed for routing tracks, which are CHANX and
CHANY nodes. This function is inlined for runtime optimization.

inline int node_class_num(RRNodeId node) const
Get the class num of a routing resource node. This is designed for routing source and sinks, which are
SOURCE and SINK nodes. This function is inlined for runtime optimization.

inline RRIndexedDataId node_cost_index(RRNodeId node) const
Get the cost index of a routing resource node. This function is inlined for runtime optimization.

inline const t_segment_inf &rr_segments(RRSegmentId seg_id) const
Return detailed routing segment information with a given id*.

Note: The routing segments here may not be exactly same as those defined in architecture file. They have
been adapted to fit the context of routing resource graphs.

inline size_t num_rr_segments() const
Return the number of rr_segments in the routing resource graph.

inline const vtr::vector<RRSegmentId, t_segment_inf> &rr_segments() const
Return a read-only list of rr_segments for queries from client functions

inline const t_rr_switch_inf &rr_switch_inf(RRSwitchId switch_id) const
Return the switch information that is categorized in the rr_switch_inf with a given id rr_switch_inf is cre-
ated to minimize memory footprint of RRGraph classs While the RRG could contain millions (even much
larger) of edges, there are only a limited number of types of switches. Hence, we use a flyweight pattern to
store switch-related information that differs only for types of switches (switch type, drive strength, R, C,
etc.). Each edge stores the ids of the switch that implements it so this additional information can be easily
looked up.

Note: All the switch-related information, such as R, C, should be placed in rr_switch_inf but NOT directly
in the edge-related data of RRGraph. If you wish to create a new data structure to represent switches
between routing resources, please follow the flyweight pattern by linking your switch ids to edges only!

inline size_t num_rr_switches() const
Return the number of rr_segments in the routing resource graph.

inline const vtr::vector<RRSwitchId, t_rr_switch_inf> &rr_switch() const
Return the rr_switch_inf_ structure for queries from client functions.

inline const RRSpatialLookup &node_lookup() const
Return the fast look-up data structure for queries from client functions.

inline const t_rr_graph_storage &rr_nodes() const
Return the node-level storage structure for queries from client functions.

inline MetadataStorage<int> rr_node_metadata_data() const
.. warning:: The Metadata should stay as an independent data structure than rest of the internal data, e.g.,
node_lookup!

446 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline bool validate_node(RRNodeId node_id) const
brief Validate that edge data is partitioned correctly

Note: This function is used to validate the correctness of the routing resource graph in terms of graph at-
tributes. Strongly recommend to call it when you finish the building a routing resource graph. If you
need more advance checks, which are related to architecture features, you should consider to use the
check_rr_graph() function or build your own check_rr_graph() function.

15.5.2 RRGraphBuilder

The builder does not own the storage but it serves a virtual protocol for

• node_storage: store the node list

• node_lookup: store a fast look-up for the nodes

Note:
• This is the only data structure allowed to modify a routing resource graph

class RRGraphBuilder

Public Functions

t_rr_graph_storage &rr_nodes()
Return a writable object for rr_nodes.

RRSpatialLookup &node_lookup()
Return a writable object for update the fast look-up of rr_node.

MetadataStorage<int> &rr_node_metadata()
Return a writable object for the meta data on the nodes.

.. warning:: The Metadata should stay as an independent data structure than rest of the internal data, e.g.,
node_lookup!

MetadataStorage<std::tuple<int, int, short>> &rr_edge_metadata()
Return a writable object for the meta data on the edge.

inline size_t rr_node_metadata_size() const
Return the size for rr_node_metadata.

inline size_t rr_edge_metadata_size() const
Return the size for rr_edge_metadata.

inline vtr::flat_map<int, t_metadata_dict>::const_iterator find_rr_node_metadata(const int &lookup_key)
const

Find the node in rr_node_metadata.

15.5. Routing Resource Graph 447

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline vtr::flat_map<std::tuple<int, int, short int>, t_metadata_dict>::const_iterator find_rr_edge_metadata(const
std::tuple<int,
int,
short
int>
&lookup_key)
const

Find the edge in rr_edge_metadata.

inline vtr::flat_map<int, t_metadata_dict>::const_iterator end_rr_node_metadata() const
Return the last node in rr_node_metadata.

inline vtr::flat_map<std::tuple<int, int, short int>, t_metadata_dict>::const_iterator end_rr_edge_metadata()
const

Return the last edge in rr_edge_metadata.

inline RRSegmentId add_rr_segment(const t_segment_inf &segment_info)
Add a rr_segment to the routing resource graph. Return an valid id if successful.

• Each rr_segment contains the detailed information of a routing track, which is denoted by a node in
CHANX or CHANY type.

It is frequently used by client functions in timing and routability prediction.

inline vtr::vector<RRSegmentId, t_segment_inf> &rr_segments()
Return a writable list of all the rr_segments .. warning:: It is not recommended to use this API unless you
have to. The API may be deprecated later, and future APIs will designed to return a specific data from the
rr_segments.

TODO

inline RRSwitchId add_rr_switch(const t_rr_switch_inf &switch_info)
Add a rr_switch to the routing resource graph. Return an valid id if successful.

• Each rr_switch contains the detailed information of a routing switch interconnecting two routing
resource nodes.

It is frequently used by client functions in timing prediction.

inline vtr::vector<RRSwitchId, t_rr_switch_inf> &rr_switch()
Return a writable list of all the rr_switches .. warning:: It is not recommended to use this API unless you
have to. The API may be deprecated later, and future APIs will designed to return a specific data from the
rr_switches.

TODO

inline void set_node_type(RRNodeId id, t_rr_type type)
Set the type of a node with a given valid id.

void add_node_to_all_locs(RRNodeId node)
Add an existing rr_node in the node storage to the node look-up.

The node will be added to the lookup for every side it is on (for OPINs and IPINs) and for every (x,y)
location at which it exists (for wires that span more than one (x,y)).

This function requires a valid node which has already been allocated in the node storage, with

448 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

• a valid node id

• valid geometry information: xlow/ylow/xhigh/yhigh

• a valid node type

• a valid node ptc number

• a valid side (applicable to OPIN and IPIN nodes only

void clear()
Clear all the underlying data storage.

void reorder_nodes(e_rr_node_reorder_algorithm reorder_rr_graph_nodes_algorithm, int
reorder_rr_graph_nodes_threshold, int reorder_rr_graph_nodes_seed)

reorder all the nodes Reordering the rr-graph nodes may be helpful in

• Increasing cache locality during routing

• Improving compile time Reorder RRNodeId’s using one of these algorithms:

• DEGREE_BFS: Order by degree primarily, and BFS traversal order secondarily.

• RANDOM_SHUFFLE: Shuffle using the specified seed. Great for testing. The DEGREE_BFS
algorithm was selected because it had the best performance of seven existing algorithms here:
https://github.com/SymbiFlow/vtr-rrgraph-reordering-tool It might be worth further research, as
the DEGREE_BFS algorithm is simple and makes some arbitrary choices, such as the starting node.
The re-ordering algorithm (DEGREE_BFS) does not speed up the router on most architectures vs.
using the node ordering created by the rr-graph builder in VPR, so it is off by default. The other
use of this algorithm is for some unit tests; by changing the order of the nodes in the rr-graph before
routing we check that no code depends on the rr-graph node order Nonetheless, it does improve
performance ~7% for the SymbiFlow Xilinx Artix 7 graph.

NOTE: Re-ordering will invalidate any references to rr_graph nodes, so this should generally be called
before creating such references.

inline void set_node_capacity(RRNodeId id, short new_capacity)
Set capacity of this node (number of routes that can use it).

inline void set_node_coordinates(RRNodeId id, short x1, short y1, short x2, short y2)
Set the node coordinate.

inline void set_node_layer(RRNodeId id, short layer)
Set the node layer (specifies which die the node is located at)

inline void set_node_ptc_num(RRNodeId id, int new_ptc_num)

The ptc_num carries different meanings for different node types (true in VPR RRG that is currently sup-
ported, may not be true in customized RRG) CHANX or CHANY: the track id in routing channels OPIN or
IPIN: the index of pins in the logic block data structure SOURCE and SINK: the class id of a pin (indicating
logic equivalence of pins) in the logic block data structure.

Note: This API is very powerful and developers should not use it unless it is necessary, e.g the
node type is unknown. If the node type is known, the more specific routines, set_node_pin_num(),
set_node_track_num()and set_node_class_num(), for different types of nodes should be used.

inline void set_node_layer(RRNodeId id, int layer)
set the layer number at which RRNodeId is located at

15.5. Routing Resource Graph 449

https://github.com/SymbiFlow/vtr-rrgraph-reordering-tool

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline void set_node_ptc_twist_incr(RRNodeId id, int twist)
set the ptc twist increment number for TILEABLE rr graphs (for more information see rr_graph_storage.h
twist increment comment)

inline void set_node_pin_num(RRNodeId id, int new_pin_num)

set_node_pin_num() is designed for logic blocks, which are IPIN and OPIN nodes

inline void set_node_track_num(RRNodeId id, int new_track_num)

set_node_track_num() is designed for routing tracks, which are CHANX and CHANY nodes

inline void set_node_class_num(RRNodeId id, int new_class_num)

set_ node_class_num() is designed for routing source and sinks, which are SOURCE and SINK nodes

inline void set_node_direction(RRNodeId id, Direction new_direction)
Set the node direction; The node direction is only available of routing channel nodes, such as x-direction
routing tracks (CHANX) and y-direction routing tracks (CHANY). For other nodes types, this value is not
meaningful and should be set to NONE.

inline void reserve_edges(size_t num_edges)
Reserve the lists of edges to be memory efficient. This function is mainly used to reserve memory space
inside RRGraph, when adding a large number of edges in order to avoid memory fragements.

inline void emplace_back_edge(RRNodeId src, RRNodeId dest, short edge_switch, bool remapped)
emplace_back_edge It adds one edge. This method is efficient if reserve_edges was called with the number
of edges present in the graph.

Parameters
remapped – If true, it means the switch id (edge_switch) corresponds to rr switch id.
Thus, when the remapped function is called to remap the arch switch id to rr switch
id, the edge switch id of this edge shouldn’t be changed. For example, when the intra-
cluster graph is built and the rr-graph related to global resources are read from a file,
this parameter is true since the intra-cluster switches are also listed in rr-graph file. So,
we use that list to use the rr switch id instead of passing arch switch id for intra-cluster
edges.

inline void emplace_back()
Append 1 more RR node to the RR graph.

inline void alloc_and_load_edges(const t_rr_edge_info_set *rr_edges_to_create)
alloc_and_load_edges; It adds a batch of edges.

inline void set_node_cost_index(RRNodeId id, RRIndexedDataId new_cost_index)
set_node_cost_index gets the index of cost data in the list of cost_indexed_data data structure It contains
the routing cost for different nodes in the RRGraph when used in evaluate different routing paths

inline void set_node_rc_index(RRNodeId id, NodeRCIndex new_rc_index)
Set the rc_index of routing resource node.

inline void add_node_side(RRNodeId id, e_side new_side)
Add the side where the node physically locates on a logic block. Mainly applicable to IPIN and OPIN
nodes.

inline void remap_rr_node_switch_indices(const t_arch_switch_fanin &switch_fanin)
It maps arch_switch_inf indicies to rr_switch_inf indicies.

inline void mark_edges_as_rr_switch_ids()
Marks that edge switch values are rr switch indicies.

450 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline size_t count_rr_switches(const std::vector<t_arch_switch_inf> &arch_switch_inf,
t_arch_switch_fanin &arch_switch_fanins)

Counts the number of rr switches needed based on fan in to support mux size dependent switch delays.

inline void reserve_nodes(size_t size)
Reserve the lists of nodes, edges, switches etc. to be memory efficient. This function is mainly used to
reserve memory space inside RRGraph, when adding a large number of nodes/edge/switches/segments, in
order to avoid memory fragements.

inline void resize_nodes(size_t size)
This function resize node storage to accomidate size RR nodes.

inline void resize_ptc_twist_incr(size_t size)
This function resize node ptc twist increment; Since it is only used for tileable rr-graph, we don’t put it in
general resize function.

inline void resize_switches(size_t size)
This function resize rr_switch to accomidate size RR Switch.

inline bool validate() const
Validate that edge data is partitioned correctly.

Note: This function is used to validate the correctness of the routing resource graph in terms of graph at-
tributes. Strongly recommend to call it when you finish the building a routing resource graph. If you
need more advance checks, which are related to architecture features, you should consider to use the
check_rr_graph() function or build your own check_rr_graph() function.

inline void partition_edges()
Sorts edge data such that configurable edges appears before non-configurable edges.

inline void init_fan_in()
Init per node fan-in data. Should only be called after all edges have been allocated.

Note: This is an expensive, O(N), operation so it should be called once you have a complete rr-graph and
not called often.

inline void reset_rr_graph_flags()
Disable the flags which would prevent adding adding extra-resources, when flat-routing is enabled, to the
RR Graph.

Note: When flat-routing is enabled, intra-cluster resources are added to the RR Graph after global
rosources are already added. This function disables the flags which would prevent adding extra-resources
to the RR Graph

15.5. Routing Resource Graph 451

Verilog-to-Routing Documentation, Release 8.1.0-dev

15.5.3 RRSpatialLookup

A data structure built to find the id of an routing resource node (rr_node) given information about its physical position
and type. The data structure is mostly needed during building a routing resource graph

The data structure allows users to

• Update the look-up with new nodes

• Find the id of a node with given information, e.g., x, y, type etc.

class RRSpatialLookup

Public Functions

RRNodeId find_node(int layer, int x, int y, t_rr_type type, int ptc, e_side side = NUM_SIDES) const
Returns the index of the specified routing resource node.

This routine also performs error checking to make sure the node in question exists.

Note: All ptcs start at 0 and are positive. Depending on what type of resource this is, ptc can be

• the class number of a common SINK/SOURCE node of grid, starting at 0 and go up to logi-
cal_class_inf size - 1 of SOURCEs + SINKs in a grid

• pin number of an input/output pin of a grid. They would normally start at 0 and go to the number of
pins on a block at that (layer,x,y) location

• track number of a routing wire in a channel. They would normally go from 0 to channel_width - 1
at that (layer,x,y)

Note: An invalid id will be returned if the node does not exist

Note: For segments (CHANX and CHANY) of length > 1, the segment is given an rr_index based on the
(layer,x,y) location at which it starts (i.e. lowest (layer,x,y) location at which this segment exists).

Note: The ‘side’ argument only applies to IPIN/OPIN types, and specifies which side of the grid tile the
node should be located on. The value is ignored for non-IPIN/OPIN types

Parameters
• layer – specified which FPGA die the node is located at (e.g. multi-die(3D) FPGA)

• (x, y) – are the grid location within the FPGA

• rr_type – specifies the type of resource,

• ptc – gives a unique number of resources of that type (e.g. CHANX) at that
(layer,x,y).

452 Chapter 15. VPR API

Verilog-to-Routing Documentation, Release 8.1.0-dev

std::vector<RRNodeId> find_channel_nodes(int layer, int x, int y, t_rr_type type) const
Returns the indices of the specified routing resource nodes, representing routing tracks in a channel.

Note:
• Return an empty list if there are no routing channel at the given (layer,x,y) location

• The node list returned only contain valid ids For example, if the 2nd routing track does not exist in
a routing channel at (layer,x,y) location, while the 3rd routing track does exist in a routing channel
at (layer,x, y) location, the node list will not contain the node for the 2nd routing track, but the 2nd
element in the list will be the node for the 3rd routing track

Parameters
• layer – specified which FPGA die the node is located at (e.g. multi-die(3D) FPGA)

• (x, y) – are the coordinate of the routing channel within the FPGA

• rr_type – specifies the type of routing channel, either x-direction or y-direction

std::vector<RRNodeId> find_nodes_at_all_sides(int layer, int x, int y, t_rr_type rr_type, int ptc) const
Like find_node() but returns all matching nodes on all the sides.

This is particularly useful for getting all instances of a specific IPIN/OPIN at a specific grid tile (layer,x,y).

std::vector<RRNodeId> find_grid_nodes_at_all_sides(int layer, int x, int y, t_rr_type rr_type) const
Returns all matching nodes on all the sides at a specific grid tile (layer,x,y) location.

As this is applicable to grid pins, the type of nodes are limited to SOURCE/SINK/IPIN/OPIN

void reserve_nodes(int layer, int x, int y, t_rr_type type, int num_nodes, e_side side = SIDES[0])
Reserve the memory for a list of nodes at (layer, x, y) location with given type and side.

void add_node(RRNodeId node, int layer, int x, int y, t_rr_type type, int ptc, e_side side = SIDES[0])
Register a node in the fast look-up.

Note: You must have a valid node id to register the node in the lookup

Note: a node added with this call will not create a node in the rr_graph_storage node list You MUST add
the node in the rr_graph_storage so that the node is valid

Parameters
• layer – specified which FPGA die the node is located at (e.g. multi-die(3D) FPGA)

• (x, y) – are the coordinate of the node to be indexable in the fast look-up

• type – is the type of a node

• ptc – is a feature number of a node, which can be

– the class number of a common SINK/SOURCE node of grid,

– pin index in a tile when type is OPIN/IPIN

– track index in a routing channel when type is CHANX/CHANY

15.5. Routing Resource Graph 453

Verilog-to-Routing Documentation, Release 8.1.0-dev

• side – is the side of node on the tile, applicable to OPIN/IPIN

void mirror_nodes(const int layer, const vtr::Point<int> &src_coord, const vtr::Point<int> &des_coord,
t_rr_type type, e_side side)

Mirror the last dimension of a look-up, i.e., a list of nodes, from a source coordinate to a destination
coordinate.

This function is mostly need by SOURCE and SINK nodes which are indexable in multiple locations.
Considering a bounding box (layer, x, y)->(layer, x + width, y + height) of a multi-height and multi-width
grid, SOURCE and SINK nodes are indexable in any location inside the boundry.

An example of usage:

// Create a empty lookup
RRSpatialLookup rr_lookup;
// Adding other nodes ...
// Copy the nodes whose types are SOURCE at (1, 1) to (1, 2)
rr_lookup.mirror_nodes(vtr::Point<int>(1, 1),

vtr::Point<int>(1, 2),
SOURCE,
TOP);

Note: currently this function only accepts SOURCE/SINK nodes. May unlock for the other types de-
pending on needs

void resize_nodes(int layer, int x, int y, t_rr_type type, e_side side)
Resize the given 4 dimensions (layer, x, y, side) of the RRSpatialLookup data structure for the given type.

This function will keep any existing data

Note: Strongly recommend to use when the sizes of dimensions are deterministic

void reorder(const vtr::vector<RRNodeId, RRNodeId> dest_order)
Reorder the internal look up to be more memory efficient.

void clear()
Clear all the data inside.

454 Chapter 15. VPR API

CHAPTER

SIXTEEN

VTRUTIL API

16.1 IDs - Ranges

16.1.1 vtr_range

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

Functions

template<typename T>
constexpr auto make_range(T b, T e)

Creates a vtr::Range from a pair of iterators.

Unlike using the vtr::Range() constructor (which requires specifying the template type T, using
vtr::make_range() infers T from the arguments.

Example usage: auto my_range = vtr::make_range(my_vec.begin(), my_vec.end());

template<typename Container>
inline auto make_range(const Container &c)

Creates a vtr::Range from a container.

template<typename T>

455

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

class Range
#include <vtr_range.h> The vtr::Range template models a range defined by two iterators of type T.

It allows conveniently returning a range from a single function call without having to explicity expose the
underlying container, or make two explicit calls to retrieve the associated begin and end iterators. It also
enables the easy use of range-based-for loops.

For example:

class My Data {
public:

typdef std::vector<int>::const_iterator my_iter;
vtr::Range<my_iter> data();

...
private:

std::vector<int> data_;
};

...

MyDat my_data;

//fill my_data

for(int val : my_data.data()) {
//work with values stored in my_data

}

The empty() and size() methods are convenience wrappers around the relevant iterator comparisons.

Note that size() is only constant time if T is a random-access iterator!

Public Functions

inline constexpr Range(T b, T e)
constructor

inline constexpr T begin()
Return an iterator to the start of the range.

inline constexpr T end()
Return an iterator to the end of the range.

inline constexpr const T begin() const
Return an iterator to the start of the range (immutable)

inline constexpr const T end() const
Return an iterator to the end of the range (immutable)

inline constexpr bool empty()
Return true if empty.

inline constexpr size_t size()
Return the range size.

456 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

16.1.2 vtr_strong_id

This header provides the StrongId class.

It is template which can be used to create strong Id’s which avoid accidental type conversions (generating compiler
errors when they occur).

Motivation

It is common to use an Id (typically an integer) to identify and represent a component. A basic example (poor style):

size_t count_net_terminals(int net_id);

Where a plain int is used to represent the net identifier. Using a plain basic type is poor style since it makes it unclear
that the parameter is an Id.

A better example is to use a typedef:

typedef int NetId;

size_t count_net_teriminals(NetId net_id);

It is now clear that the parameter is expecting an Id.

However this approach has some limitations. In particular, typedef’s only create type aliases, and still allow conversions.
This is problematic if there are multiple types of Ids. For example:

typedef int NetId;
typedef int BlkId;

size_t count_net_teriminals(NetId net_id);

BlkId blk_id = 10;
NetId net_id = 42;

count_net_teriminals(net_id); //OK
count_net_teriminals(blk_id); //Bug: passed a BlkId as a NetId

Since typdefs are aliases the compiler issues no errors or warnings, and silently passes the BlkId where a NetId is
expected. This results in hard to diagnose bugs.

We can avoid this issue by using a StrongId:

struct net_id_tag; //Phantom tag for NetId
struct blk_id_tag; //Phantom tag for BlkId

typedef StrongId<net_id_tag> NetId;
typedef StrongId<blk_id_tag> BlkId;

size_t count_net_teriminals(NetId net_id);

BlkId blk_id = 10;
NetId net_id = 42;

count_net_teriminals(net_id); //OK
count_net_teriminals(blk_id); //Compiler Error: NetId expected!

16.1. IDs - Ranges 457

Verilog-to-Routing Documentation, Release 8.1.0-dev

StrongId is a template which implements the basic features of an Id, but disallows silent conversions between different
types of Ids. It uses another ‘tag’ type (passed as the first template parameter) to uniquely identify the type of the Id
(preventing conversions between different types of Ids).

Usage

The StrongId template class takes one required and three optional template parameters:

1. Tag - the unique type used to identify this type of Ids [Required]

2. T - the underlying integral id type (default: int) [Optional]

3. T sentinel - a value representing an invalid Id (default: -1) [Optional]

If no value is supllied during construction the StrongId is initialized to the invalid/sentinel value.

Example 1: default definition

struct net_id_tag;
typedef StrongId<net_id_tag> NetId; //Internally stores an integer Id, -1 represents␣
→˓invalid

Example 2: definition with custom underlying type

struct blk_id_tag;
typedef StrongId<net_id_tag,size_t> BlkId; //Internally stores a size_t Id, -1␣
→˓represents invalid

Example 3: definition with custom underlying type and custom sentinel value

struct pin_id_tag;
typedef StrongId<net_id_tag,size_t,0> PinId; //Internally stores a size_t Id, 0␣
→˓represents invalid

Example 4: Creating Ids

struct net_id_tag;
typedef StrongId<net_id_tag> MyId; //Internally stores an integer Id, -1 represents␣
→˓invalid

MyId my_id; //Defaults to the sentinel value (-1 by default)
MyId my_other_id = 5; //Explicit construction
MyId my_thrid_id(25); //Explicit construction

Example 5: Comparing Ids

struct net_id_tag;
typedef StrongId<net_id_tag> MyId; //Internally stores an integer Id, -1 represents␣
→˓invalid

MyId my_id; //Defaults to the sentinel value (-1 by default)
MyId my_id_one = 1;
MyId my_id_two = 2;
MyId my_id_also_one = 1;

(continues on next page)

458 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

(continued from previous page)

my_id_one == my_id_also_one; //True
my_id_one == my_id; //False
my_id_one == my_id_two; //False
my_id_one != my_id_two; //True

Example 5: Checking for invalid Ids

struct net_id_tag;
typedef StrongId<net_id_tag> MyId; //Internally stores an integer Id, -1 represents␣
→˓invalid

MyId my_id; //Defaults to the sentinel value
MyId my_id_one = 1;

//Comparison against a constructed invalid id
my_id == MyId::INVALID(); //True
my_id_one == MyId::INVALID(); //False
my_id_one != MyId::INVALID(); //True

//The Id can also be evaluated in a boolean context against the sentinel value
if(my_id) //False, my_id is invalid
if(!my_id) //True my_id is valid
if(my_id_one) //True my_id_one is valid

Example 6: Indexing data structures

struct my_id_tag;
typedef StrongId<net_id_tag> MyId; //Internally stores an integer Id, -1 represents␣
→˓invalid

std::vector<int> my_vec = {0, 1, 2, 3, 4, 5};

MyId my_id = 2;

my_vec[size_t(my_id)]; //Access the third element via explicit conversion

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and

16.1. IDs - Ranges 459

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

namespace std
Specialize std::hash for StrongId’s (needed for std::unordered_map-like containers)

template<typename tag, typename T = int, T sentinel = T (-1)>

class StrongId
Class template definition with default template parameters.

Public Functions

inline constexpr StrongId()
Default to the sentinel value.

inline explicit constexpr StrongId(T id)
Only allow explicit constructions from a raw Id (no automatic conversions)

inline explicit constexpr operator bool() const
Allow explicit conversion to bool (e.g. if(id))

inline constexpr bool is_valid() const
Another name for the bool cast.

inline explicit constexpr operator std::size_t() const
Allow explicit conversion to size_t (e.g. my_vector[size_t(strong_id)])

Public Static Functions

static inline constexpr StrongId INVALID() noexcept
Gets the invalid Id.

Friends

friend constexpr friend bool operator== (const StrongId< tag, T, sentinel > &lhs,
const StrongId< tag, T, sentinel > &rhs)

To enable comparisons between Ids.

Note that since these are templated functions we provide an empty set of template parameters after the
function name (i.e. <>)

friend constexpr friend bool operator!= (const StrongId< tag, T, sentinel > &lhs,
const StrongId< tag, T, sentinel > &rhs)

!= operator

friend constexpr friend bool operator< (const StrongId< tag, T, sentinel > &lhs,
const StrongId< tag, T, sentinel > &rhs)

< operator

friend std::ostream &operator<<(std::ostream &out, const StrongId<tag, T , sentinel> &rhs)
to be able to print them out

460 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

16.1.3 vtr_strong_id_range

This header defines a utility class for StrongId’s.

StrongId’s are described in vtr_strong_id.h. In some cases, StrongId’s be considered like random access iterators, but
not all StrongId’s have this property. In addition, there is utility in refering to a range of id’s, and being able to iterator
over that range.

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

Functions

template<typename IdType>
inline StrongIdIterator<IdType> operator+(const StrongIdIterator<IdType> &lhs, ssize_t n)

• operator

template<typename IdType>
inline StrongIdIterator<IdType> operator-(const StrongIdIterator<IdType> &lhs, ssize_t n)

• operator

template<typename StrongId>

class StrongIdIterator
#include <vtr_strong_id_range.h> StrongIdIterator class.

StrongIdIterator allows a StrongId to be treated like a random access iterator. Whether this is a correct
use of the abstraction is up to the called.

16.1. IDs - Ranges 461

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Functions

StrongIdIterator() = default
constructor

StrongIdIterator &operator=(const StrongIdIterator &other) = default
copy constructor

StrongIdIterator(const StrongIdIterator &other) = default
copy constructor

inline explicit StrongIdIterator(StrongId id)
constructor

inline StrongId &operator*()
Dereference operator (*)

inline StrongIdIterator &operator+=(ssize_t n)
+= operator

inline StrongIdIterator &operator-=(ssize_t n)
-= operator

inline StrongIdIterator &operator++()
++ operator

inline StrongIdIterator &operator--()
Decremment operator.

inline StrongId operator[](ssize_t offset) const
Indexing operator [].

template<typename IdType>
inline ssize_t operator-(const StrongIdIterator<IdType> &other) const

~ operator

template<typename IdType>
inline bool operator==(const StrongIdIterator<IdType> &other) const

== operator

template<typename IdType>
inline bool operator!=(const StrongIdIterator<IdType> &other) const

!= operator

template<typename IdType>
inline bool operator<(const StrongIdIterator<IdType> &other) const

< operator

template<typename StrongId>

class StrongIdRange
#include <vtr_strong_id_range.h> StrongIdRange class.

StrongIdRange allows a pair of StrongId’s to defines a continguous range of ids. The “end” StrongId is
excluded from this range.

462 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Functions

inline StrongIdRange(StrongId b, StrongId e)
constructor

inline StrongIdIterator<StrongId> begin() const
Returns a StrongIdIterator to the first strongId in the range.

inline StrongIdIterator<StrongId> end() const
Returns a StrongIdIterator referring to the past-the-end element in the vector container.

inline bool empty()
Returns true if the range is empty.

inline size_t size()
Reurns the size of the range.

16.2 Containers

16.2.1 vtr_vector

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

template<typename K, typename V, typename Allocator = std::allocator<V>>

class vector : private std::vector<V , std::allocator<V>>
#include <vtr_vector.h> A std::vector container which is indexed by K (instead of size_t).

The main use of this container is to behave like a std::vector which is indexed by a vtr::StrongId. It assumes
that K is explicitly convertable to size_t (i.e. via operator size_t()), and can be explicitly constructed from
a size_t.

It includes all the following std::vector functions:

• begin

• cbegin

• cend

16.2. Containers 463

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

• crbegin

• crend

• end

• rbegin

• rend

• capacity

• empty

• max_size

• reserve

• resize

• shrink_to_fit

• size

• back

• front

• assign

• clear

• emplace

• emplace_back

• erase

• get_allocator

• insert

• pop_back

• push_back

If you need more std::map-like (instead of std::vector-like) behaviour see vtr::vector_map.

class key_iterator : public std::iterator<std::bidirectional_iterator_tag, key_type>
#include <vtr_vector.h> Iterator class which is convertable to the key_type.

This allows end-users to call the parent class’s keys() member to iterate through the keys with a
range-based for loop

Public Functions

inline key_iterator(key_iterator::value_type init)
constructor

inline key_iterator operator++()
++ operator

inline key_iterator operator--()
decrement operator

464 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline reference operator*()
dereference oeprator

inline pointer operator->()
-> operator

Public Functions

inline V *data()
Returns a pointer to the vector’s data.

inline const V *data() const
Returns a pointer to the vector’s data (immutable)

inline reference operator[](const key_type id)
[] operator

inline const_reference operator[](const key_type id) const
[] operator immutable

inline reference at(const key_type id)
at() operator

inline const_reference at(const key_type id) const
at() operator immutable

inline void swap(vector<K , V , Allocator> &other)
swap function

inline key_range keys() const
Returns a range containing the keys.

16.2.2 vtr_small_vector

template<class T, class S = uint32_t>

class small_vector
vtr::small_vector is a std::vector like container which:

• consumes less memory: sizeof(vtr::small_vector) < sizeof(std::vector)
• possibly stores elements in-place (i.e. within the object)

On a typical LP64 system a vtr::small_vector consumes 16 bytes by default and supports vectors up to ~2^32
elements long, while a std::vector consumes 24 bytes and supports up to ~2^64 elements. The type used to store
the size and capacity is configurable, and set by the second template parameter argument. Setting it to size_t will
replicate std::vector’s characteristics.

For short vectors vtr::small_vector will try to store elements in-place (i.e. within the vtr::small_vector object)
instead of dynamically allocating an array (by re-using the internal storage for the pointer, size and capacity).
Whether this is possible depends on the size and alignment requirements of the value type, as compared to
vtr::small_vector. If in-place storage is not possible (e.g. due to a large value type, or a large number of elements)
a dynamic buffer is allocated (similar to std::vector).

This is a highly specialized container. Unless you have specifically measured it’s usefulness you should use
std::vector.

16.2. Containers 465

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Functions

inline small_vector()
constructor

inline small_vector(size_type nelem)

constructor

inline const_iterator begin() const
Return a const_iterator to the first element.

inline const_iterator end() const
Return a const_iterator pointing to the past-the-end element in the container.

inline const_reverse_iterator rbegin() const
Return a const_reverse_iterator pointing to the last element in the container (i.e., its reverse beginning).

inline const_reverse_iterator rend() const
Return a const_reverse_iterator pointing to the theoretical element preceding the first element in the con-
tainer (which is considered its reverse end).

inline const_iterator cbegin() const
Return a const_iterator pointing to the first element in the container.

inline const_iterator cend() const
a const_iterator pointing to the past-the-end element in the container.

inline const_reverse_iterator crbegin() const
Return a const_reverse_iterator pointing to the last element in the container (i.e., its reverse beginning).

inline const_reverse_iterator crend() const
Return a const_reverse_iterator pointing to the theoretical element preceding the first element in the con-
tainer (which is considered its reverse end).

inline size_type size() const
return the vector size (Padding ensures long/short format sizes are always aligned)

inline size_t max_size() const
Return the maximum size.

inline size_type capacity() const
Return the vector capacity.

inline bool empty() const
Return true if empty.

inline const_reference operator[](size_t i) const
Immutable indexing operator [].

inline const_reference at(size_t i) const
Immutable at() operator.

inline const_reference front() const
Return a constant reference to the first element.

inline const_reference back() const
Return a constant reference to the last element.

466 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline const_pointer data() const
Return a constant pointer to the vector data.

inline iterator begin()
Return an iterator pointing to the first element in the sequence.

inline iterator end()
Return an iterator referring to the past-the-end element in the vector container.

inline reverse_iterator rbegin()
Return a reverse iterator pointing to the last element in the vector (i.e., its reverse beginning).

inline reverse_iterator rend()
Return a reverse iterator pointing to the theoretical element preceding the first element in the vector (which
is considered its reverse end).

inline void resize(size_type n)
Resizes the container so that it contains n elements.

inline void resize(size_type n, value_type val)
Resizes the container so that it contains n elements and fills it with val.

inline void reserve(size_type num_elems)
Reserve memory for a spicific number of elemnts.

Don’t change capacity unless requested number of elements is both:

• More than the short capacity (no need to reserve up to short capacity)

• Greater than the current size (capacity can never be below size)

inline void shrink_to_fit()
Requests the container to reduce its capacity to fit its size.

inline reference operator[](size_t i)
Indexing operator [].

inline reference at(size_t i)
at() operator

inline reference front()
Returns a reference to the first element in the vector.

inline reference back()
Returns a reference to the last element in the vector.

template<class InputIterator>
inline void assign(InputIterator first, InputIterator last)

Assigns new contents to the vector, replacing its current contents, and modifying its size accordingly.

Input iterators to the initial and final positions in a sequence. The range used is [first,last), which includes
all the elements between first and last, including the element pointed by first but not the element pointed
by last.

inline void assign(size_type n, const value_type &val)
Assigns new contents to the vector, replacing its current contents, and modifying its size accordingly.

Resize the vector to n and fill it with val

16.2. Containers 467

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline void assign(std::initializer_list<value_type> il)
Assigns new contents to the vector, replacing its current contents, and modifying its size accordingly.

The compiler will automatically construct such objects from initializer list declarators (il)

inline void push_back(value_type value)
Construct default value_type at new location.

inline void pop_back()
Removes the last element in the vector, effectively reducing the container size by one.

inline iterator insert(const_iterator position, const value_type &val)
The vector is extended by inserting new elements before the element at the specified position, effectively
increasing the container size by the number of elements inserted.

inline iterator insert(const_iterator position, size_type n, const value_type &val)
Insert a new value.

Location of position as an index, which will be unchanged if the underlying storage is reallocated

inline iterator insert(const_iterator position, size_type n, value_type &&val)
Insert n elements at position position and fill them with value val.

inline iterator erase(const_iterator position)
Removes from the vector a single element (position).

inline iterator erase(const_iterator first, const_iterator last)
Removes from the vector either a range of elements ([first,last)).

inline void swap(small_vector<T , S> &other)
Exchanges the content of the container by the content of x, which is another vector object of the same type.
Sizes may differ.

inline void clear()
Removes all elements from the vector (which are destroyed), leaving the container with a size of 0.

template<typename ...Args>
inline void emplace_back(Args&&... args)

Inserts a new element at the end of the vector, right after its current last element. This new element is
constructed in place using args as the arguments for its constructor.

inline ~small_vector()
destructor

inline small_vector(const small_vector &other)
copy constructor

inline small_vector(small_vector &&other)
copy and swap constructor

468 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

Friends

inline friend void swap(small_vector<T , S> &lhs, small_vector<T , S> &rhs)
swaps two vectors

inline friend bool operator==(const small_vector<T , S> &lhs, const small_vector<T , S> &rhs)
== p[erator

inline friend bool operator<(const small_vector<T , S> &lhs, const small_vector<T , S> &rhs)
< operator

inline friend bool operator!=(const small_vector<T , S> &lhs, const small_vector<T , S> &rhs)
!= operator

inline friend bool operator>(const small_vector<T , S> &lhs, const small_vector<T , S> &rhs)
> operator

inline friend bool operator<=(const small_vector<T , S> &lhs, const small_vector<T , S> &rhs)
<= operator

inline friend bool operator>=(const small_vector<T , S> &lhs, const small_vector<T , S> &rhs)
>= operator

16.2.3 vtr_vector_map

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

template<typename K, typename V, typename Sentinel = DefaultSentinel<V>>

class vector_map
#include <vtr_vector_map.h> A vector-like container which is indexed by K (instead of size_t as in
std::vector).

The main use of this container is to behave like a std::vector which is indexed by vtr::StrongId.

Requires that K be convertable to size_t with the size_t operator (i.e. size_t()), and that the conversion
results in a linearly increasing index into the underlying vector.

This results in a container that is somewhat similar to a std::map (i.e. converts from one type to another),
but requires contiguously ascending (i.e. linear) keys. Unlike std::map only the values are stored (at the

16.2. Containers 469

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

specified index/key), reducing memory usage and improving cache locality. Furthermore, operator[] and
find() return the value or iterator directly associated with the value (like std::vector) rather than a std::pair
(like std::map). insert() takes both the key and value as separate arguments and has no return value.

Additionally, vector_map will silently create values for ‘gaps’ in the index range (i.e. those elements are
initialized with Sentinel::INVALID()).

If you need a fully featured std::map like container without the above differences see vtr::linear_map.

If you do not need std::map-like features see vtr::vector. Note that vtr::vector_map is very similar to
vtr::vector. Unless there is a specific reason that vtr::vector_map is needed, it is better to use vtr::vector.

Note that it is possible to use vector_map with sparse/non-contiguous keys, but this is typically memory
inefficient as the underlying vector will allocate space for [0..size_t(max_key)-1], where max_key is the
largest key that has been inserted.

As with a std::vector, it is the caller’s responsibility to ensure there is sufficient space when a given in-
dex/key before it is accessed. The exception to this are the find(), insert() and update() methods which
handle non-existing keys gracefully.

Public Functions

template<typename ...Args>
inline vector_map(Args&&... args)

Constructor.

inline const_iterator begin() const
Returns an iterator referring to the first element in the map container.

inline const_iterator end() const
Returns an iterator referring to the past-the-end element in the map container.

inline const_reverse_iterator rbegin() const
@begin Returns a reverse iterator pointing to the last element in the container (i.e., its reverse be-
ginning).

inline const_reverse_iterator rend() const
Returns a reverse iterator pointing to the theoretical element right before the first element in the map
container (which is considered its reverse end).

inline const_reference operator[](const K n) const
[] operator immutable

inline const_iterator find(const K key) const
Searches the container for an element with a key equivalent to k and returns an iterator to it if found,
otherwise it returns an iterator to vector_map::end.

inline std::size_t size() const
Returns the number of elements in the container.

inline bool empty() const
Returns true if the container is empty.

inline bool contains(const K key) const
Returns true if the container contains key.

470 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline size_t count(const K key) const
Returns 1 if the container contains key, 0 otherwise.

template<typename ...Args>
inline void push_back(Args&&... args)

push_back function

template<typename ...Args>
inline void emplace_back(Args&&... args)

emplace_back function

template<typename ...Args>
inline void resize(Args&&... args)

resize function

inline void clear()
clears the container

inline size_t capacity() const
Returns the capacity of the container.

inline void shrink_to_fit()
Requests the container to reduce its capacity to fit its size.

inline iterator begin()
Returns an iterator referring to the first element in the map container.

inline iterator end()
Returns an iterator referring to the past-the-end element in the map container.

inline reference operator[](const K n)
Indexing.

inline iterator find(const K key)
Returns an iterator to the first element in the container that compares equal to val. If no such element
is found, the function returns end().

inline void insert(const K key, const V value)
Extends the container by inserting new elements, effectively increasing the container size by the
number of elements inserted.

inline void update(const K key, const V value)
Inserts the new key value pair in the container.

16.2.4 vtr_linear_map

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.

16.2. Containers 471

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

template<class K, class T, class Sentinel = DefaultSentinel<K>>

class linear_map
#include <vtr_linear_map.h> A std::map-like container which is indexed by K.

The main use of this container is to behave like a std::map which is optimized to hold mappings between
a dense linear range of keys (e.g. vtr::StrongId).

Requires that K be convertable to size_t with the size_t operator (i.e. size_t()), and that the conversion
results in a linearly increasing index into the underlying vector. Also requires that K() return the sentinel
value used to mark invalid entries.

If you only need to access the value associated with the key consider using vtr::vector_map instead, which
provides a similar but more std::vector-like interface.

Note that it is possible to use linear_map with sparse/non-contiguous keys, but this is typically memory
inefficient as the underlying vector will allocate space for [0..size_t(max_key)-1], where max_key is the
largest key that has been inserted.

As with a std::vector, it is the caller’s responsibility to ensure there is sufficient space when a given in-
dex/key before it is accessed. The exception to this are the find() and insert() methods which handle
non-existing keys gracefully.

Public Functions

linear_map() = default
Standard big 5 constructors.

linear_map(const linear_map&) = default

linear_map(linear_map&&) = default

linear_map &operator=(const linear_map&) = default

linear_map &operator=(linear_map&&) = default

inline linear_map(size_t num_keys)

inline iterator begin()
Return an iterator to the first element.

inline const_iterator begin() const
Return a constant iterator to the first element.

inline iterator end()
Return an iterator to the last element.

inline const_iterator end() const
Return a constant iterator to the last element.

472 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline reverse_iterator rbegin()
Return a reverse iterator to the last element.

inline const_reverse_iterator rbegin() const
Return a constant reverse iterator to the last element.

inline reverse_iterator rend()
Return a reverse iterator pointing to the theoretical element preceding the first element.

inline const_reverse_iterator rend() const
Return a constant reverse iterator pointing to the theoretical element preceding the first element.

inline const_iterator cbegin() const
Return a const iterator to the first element.

inline const_iterator cend() const
Return a const_iterator pointing to the past-the-end element in the container.

inline const_reverse_iterator crbegin() const
Return a const_reverse_iterator pointing to the last element in the container (i.e., its reverse begin-
ning).

inline const_reverse_iterator crend() const
Return a const_reverse_iterator pointing to the theoretical element preceding the first element in the
container (which is considered its reverse end).

inline bool empty() const
Return true if the container is empty.

inline size_type size() const
Return the size of the container.

inline size_type max_size() const
Return the maximum size of the container.

inline mapped_type &operator[](const key_type &key)
[] operator

inline mapped_type &at(const key_type &key)
at() operator

inline const mapped_type &at(const key_type &key) const
constant at() operator

inline std::pair<iterator, bool> insert(const value_type &value)
Insert value.

template<class InputIterator>
inline void insert(InputIterator first, InputIterator last)

Insert range.

inline void erase(const key_type &key)
Erase by key.

inline void erase(const_iterator position)
Erase at iterator.

16.2. Containers 473

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline void erase(const_iterator first, const_iterator last)
Erase range.

inline void swap(linear_map &other)
Swap two linear maps.

inline void clear()
Clear the container.

template<class ...Args>
inline std::pair<iterator, bool> emplace(const key_type &key, Args&&... args)

Emplace.

inline void reserve(size_type n)
Requests that the underlying vector capacity be at least enough to contain n elements.

inline void shrink_to_fit()
Reduces the capacity of the container to fit its size and destroys all elements beyond the capacity.

inline iterator find(const key_type &key)
Returns an iterator to the first element in the range [first,last) that compares equal to val. If no such
element is found, the function returns last.

inline const_iterator find(const key_type &key) const
Returns a constant iterator to the first element in the range [first,last) that compares equal to val. If
no such element is found, the function returns last.

inline size_type count(const key_type &key) const
Returns the number of elements in the range [first,last) that compare equal to val.

inline iterator lower_bound(const key_type &key)
Returns an iterator pointing to the first element in the range [first,last) which does not compare less
than val.

inline const_iterator lower_bound(const key_type &key) const
Returns a constant iterator pointing to the first element in the range [first,last) which does not com-
pare less than val.

inline iterator upper_bound(const key_type &key)
Returns an iterator pointing to the first element in the range [first,last) which compares greater than
val.

inline const_iterator upper_bound(const key_type &key) const
Returns a constant iterator pointing to the first element in the range [first,last) which compares greater
than val.

inline std::pair<iterator, iterator> equal_range(const key_type &key)
Returns the bounds of the subrange that includes all the elements of the range [first,last) with values
equivalent to val.

inline std::pair<const_iterator, const_iterator> equal_range(const key_type &key) const
Returns constant bounds of the subrange that includes all the elements of the range [first,last) with
values equivalent to val.

inline size_type valid_size() const
Return the size of valid elements.

474 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

16.2.5 vtr_flat_map

template<class K, class T, class Compare, class Storage>

class flat_map
flat_map is a (nearly) std::map compatible container

It uses a vector as it’s underlying storage. Internally the stored elements are kept sorted allowing efficient look-up
in O(logN) time via binary search.

This container is typically useful in the following scenarios:
• Reduced memory usage if key/value are small (std::map needs to store pointers to other BST nodes which

can add substantial overhead for small keys/values)
• Faster search/iteration by exploiting data locality (all elments are in continguous memory enabling better

spatial locality)
The container deviates from the behaviour of std::map in the following important ways:

• Insertion/erase takes O(N) instead of O(logN) time
• Iterators may be invalidated on insertion/erase (i.e. if the vector is reallocated)

The slow insertion/erase performance makes this container poorly suited to maps that frequently add/remove new
keys. If this is required you likely want std::map or std::unordered_map. However if the map is constructed once
and then repeatedly quieried, consider using the range or vector-based constructors which initializes the flat_map
in O(NlogN) time.

Subclassed by vtr::flat_map2< K, T, Compare, Storage >

Public Functions

flat_map() = default
Standard constructors.

template<class InputIterator>
inline flat_map(InputIterator first, InputIterator last)

range constructor

inline explicit flat_map(Storage &&values)
direct vector constructor

inline void assign(Storage &&values)
Move the values.

Should be more efficient than the range constructor which must copy each element

inline void assign_sorted(Storage &&values)
By moving the values this should be more efficient than the range constructor which must copy each
element.

inline iterator begin()
Return an iterator pointing to the first element in the sequence:

inline const_iterator begin() const
Return a constant iterator pointing to the first element in the sequence:

inline iterator end()
Returns an iterator referring to the past-the-end element in the vector container.

inline const_iterator end() const
Returns a constant iterator referring to the past-the-end element in the vector container.

16.2. Containers 475

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline reverse_iterator rbegin()
Returns a reverse iterator which points to the last element of the map.

inline const_reverse_iterator rbegin() const
Returns a constant reverse iterator which points to the last element of the map.

inline reverse_iterator rend()
Returns a reverse iterator pointing to the theoretical element preceding the first element in the vector (which
is considered its reverse end).

inline const_reverse_iterator rend() const
Returns a constant reverse iterator pointing to the theoretical element preceding the first element in the
vector (which is considered its reverse end).

inline const_iterator cbegin() const
Returns a constant_iterator to the first element in the underlying vector.

inline const_iterator cend() const
Returns a const_iterator pointing to the past-the-end element in the container.

inline const_reverse_iterator crbegin() const
Returns a const_reverse_iterator pointing to the last element in the container (i.e., its reverse beginning).

inline const_reverse_iterator crend() const
Returns a const_reverse_iterator pointing to the theoretical element preceding the first element in the con-
tainer (which is considered its reverse end).

inline bool empty() const
Return true if the underlying vector is empty.

inline size_type size() const
Return the container size.

inline size_type max_size() const
Return the underlying vector’s max size.

inline const mapped_type &operator[](const key_type &key) const
The constant version of operator [].

inline mapped_type &operator[](const key_type &key)
operator []

inline mapped_type &at(const key_type &key)
operator at()

inline const mapped_type &at(const key_type &key) const
The constant version of at() operator.

inline std::pair<iterator, bool> insert(const value_type &value)
Insert value.

inline std::pair<iterator, bool> emplace(const value_type &&value)
Emplace function.

inline iterator insert(const_iterator position, const value_type &value)
Insert value with position hint.

476 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline iterator emplace(const_iterator position, const value_type &value)
Emplace value with position hint.

template<class InputIterator>
inline void insert(InputIterator first, InputIterator last)

Insert range.

inline void erase(const key_type &key)
Erase by key.

inline void erase(const_iterator position)
Erase at iterator.

inline void erase(const_iterator first, const_iterator last)
Erase range.

inline void swap(flat_map &other)
swap two flat maps

inline void clear()
clear the flat map

template<class ...Args>
inline iterator emplace(const key_type &key, Args&&... args)

templated emplace function

template<class ...Args>
inline iterator emplace_hint(const_iterator position, Args&&... args)

templated emplace_hint function

inline void reserve(size_type n)
Reserve a minimum capacity for the underlying vector.

inline void shrink_to_fit()
Reduce the capacity of the underlying vector to fit its size.

inline iterator find(const key_type &key)
Find a key and return an iterator to the found key.

inline const_iterator find(const key_type &key) const
Find a key and return a constant iterator to the found key.

inline size_type count(const key_type &key) const
Return the count of occurances of a key.

inline iterator lower_bound(const key_type &key)
lower bound function

inline const_iterator lower_bound(const key_type &key) const
Return a constant iterator to the lower bound.

inline iterator upper_bound(const key_type &key)
upper bound function

inline const_iterator upper_bound(const key_type &key) const
Return a constant iterator to the upper bound.

16.2. Containers 477

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline std::pair<iterator, iterator> equal_range(const key_type &key)
Returns a range containing all elements equivalent to “key”.

inline std::pair<const_iterator, const_iterator> equal_range(const key_type &key) const
Returns a constant range containing all elements equivalent to “key”.

Friends

inline friend void swap(flat_map &lhs, flat_map &rhs)
Swaps 2 flat maps.

class value_compare
A class to perform the comparison operation for the flat map.

template<class K, class T, class Compare, class Storage>

class flat_map2 : public vtr::flat_map<K , T , Compare, Storage>
Another flat_map container.

Like flat_map, but operator[] never inserts and directly returns the mapped value

Public Functions

inline flat_map2()
Constructor.

inline const T &operator[](const K &key) const
const [] operator

inline T &operator[](const K &key)
[] operator

namespace vtr

Functions

template<class K, class V>
flat_map<K , V> make_flat_map(std::vector<std::pair<K , V>> &&vec)

A function to create a flat map.

Helper function to create a flat map from a vector of pairs without haveing to explicity specify the key and
value types

template<class K, class V>
flat_map2<K , V> make_flat_map2(std::vector<std::pair<K , V>> &&vec)

Same as make_flat_map but for flat_map2.

478 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

16.2.6 vtr_bimap

The vtr_bimap.h header provides a bi-directonal mapping between key and value which means that it can be addressed
by either the key or the value.

It provides this bi-directional feature for all the map-like containers defined in vtr:

• unordered map

• flat map

• linear map

One example where this container might be so useful is the mapping between the atom and clustered net Id. See
atom_lookup.h

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

template<class K, class V, template<typename...> class Map = std::map, template<typename...> class InvMap =
std::map>
class bimap

#include <vtr_bimap.h> A map-like class which provides a bi-directonal mapping between key and value.

Keys and values can be looked up directly by passing either the key or value. the indexing operator will
throw if the key/value does not exist.

Public Functions

inline iterator begin() const
Return an iterator to the begin of the map.

inline iterator end() const
Return an iterator to the end of the map.

inline inverse_iterator inverse_begin() const
Return an iterator to the begin of the inverse map.

inline inverse_iterator inverse_end() const
Return an iterator to the end of the inverse map.

16.2. Containers 479

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline iterator find(const K key) const
Return an iterator to the key-value pair matching key, or end() if not found.

inline inverse_iterator find(const V value) const
Return an iterator to the value-key pair matching value, or inverse_end() if not found.

inline const V &operator[](const K key) const
Return an immutable reference to the value matching key (throw an exception if key is not found)

inline const K &operator[](const V value) const
Return an immutable reference to the key matching value (throw an exception if value is not found)

inline std::size_t size() const
Return the number of key-value pairs stored.

inline bool empty() const
Return true if there are no key-value pairs stored.

inline bool contains(const K key) const
Return true if the specified key exists.

inline bool contains(const V value) const
Return true if the specified value exists.

bimap() = default
default constructor required by compiler

inline bimap(std::initializer_list<value_type> il)
construct the bimap using initializer list with value_type

inline bimap(std::initializer_list<inverse_value_type> il)
construct the bimap using initializer list with inverse_value_type

inline void clear()
Drop all stored key-values.

inline std::pair<iterator, bool> insert(const K key, const V value)
Insert a key-value pair, if not already in map.

inline void update(const K key, const V value)
Update a key-value pair, will insert if not already in map.

inline void erase(const K key)
Remove the specified key (and it’s associated value)

inline void erase(const V val)
Remove the specified value (and it’s associated key)

Typedefs

template<class K, class V>

using unordered_bimap = bimap<K , V , std::unordered_map, std::unordered_map>

template<class K, class V>

480 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

using flat_bimap = bimap<K , V , vtr::flat_map, vtr::flat_map>

template<class K, class V>

using linear_bimap = bimap<K , V , vtr::linear_map, vtr::linear_map>

16.2.7 vtr_vec_id_set

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

template<typename T>

class vec_id_set
#include <vtr_vec_id_set.h> Implements a set-like interface which supports multiple operations.

The supported operations are:

• insertion

• iteration

• membership test all in constant time.

It assumes the element type (T) is convertable to size_t. Usually, elements are vtr::StrongIds.

Iteration through the elements is not strictly ordered, usually insertion order, unless sort() has been previ-
ously called.

The underlying implementation uses a vector for element storage (for iteration), and a bit-set for member-
ship tests.

16.2. Containers 481

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Functions

inline auto begin() const
Returns an iterator to the first element in the sequence.

inline auto end() const
Returns an iterator referring to the past-the-end element in the vector container.

inline auto cbegin() const
Returns a constant iterator to the first element in the sequence.

inline auto cend() const
Returns a constant iterator referring to the past-the-end element in the vector container.

inline bool insert(T val)
Insert val in the set.

template<typename Iter>
inline void insert(Iter first, Iter last)

Iterators specifying a range of elements. Copies of the elements in the range [first,last) are inserted
in the container.

inline size_t count(T val) const
Count elements with a specific value.

inline size_t size() const
Returns the size of the container.

inline void sort()
Sort elements in the container.

inline void clear()
@bried Clears the container

16.2.8 vtr_list

Linked lists of void pointers and integers, respectively.

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

482 Chapter 16. VTRUTIL API

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

struct t_linked_vptr
#include <vtr_list.h> Linked list node struct.

t_linked_vptr *vtr::insert_in_vptr_list(t_linked_vptr *head, void *vptr_to_add)
Inserts a node to a list.

t_linked_vptr *vtr::delete_in_vptr_list(t_linked_vptr *head)
Delete a list.

16.2.9 vtr_ragged_matrix

template<typename T, typename Index0 = size_t, typename Index1 = size_t>

class FlatRaggedMatrix
A 2 dimensional ‘ragged’ matrix with rows indexed by Index0, and each row of variable length (indexed by
Index1)

Example:

std::vector<int> row_sizes = {1, 5, 3, 10};
FlatRaggedMatrix<float> matrix(row_sizes);

//Fill in all entries with ascending values
float value = 1.;
for (size_t irow = 0; irow < row_sizes.size(); ++irow) {

for (size_t icol = 0; icol < row_sizes[irow]; ++icoll) {
matrix[irow][icol] = value;
value += 1.;

}
}

For efficiency, this class uses a flat memory layout, where all elements are laid out contiguiously (one row after
another).

Expects Index0 and Index1 to be convertable to size_t.

Public Functions

FlatRaggedMatrix() = default
default constructor

template<class Callback>
inline FlatRaggedMatrix(size_t nrows, Callback &row_length_callback, T default_value = T ())

Constructs matrix with ‘nrows’ rows.

The row length is determined by calling ‘row_length_callback’ with the associated row index.

template<class Container>
inline FlatRaggedMatrix(Container container, T default_value = T ())

Constructs matrix from a container of row lengths.

template<class Iter>

16.2. Containers 483

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline FlatRaggedMatrix(Iter row_size_first, Iter row_size_last, T default_value = T ())
Constructs matrix from an iterator range.

The length of the range is the number of rows, and iterator values are the row lengths.

inline auto begin()
Iterators to all elements.

inline auto end()
Iterator to the last element of the matrix.

inline auto begin() const
Iterator to the first element of the matrix (immutable)

inline auto end() const
Iterator to the last element of the matrix (immutable)

inline size_t size() const
Return the size of the matrix.

inline bool empty() const
Return true if empty.

inline vtr::array_view<T> operator[](Index0 i)
Indexing operators for the first dimension.

inline vtr::array_view<const T> operator[](Index0 i) const
Indexing operators for the first dimension (immutable)

inline void clear()
Clears the matrix.

inline void swap(FlatRaggedMatrix<T , Index0, Index1> &other)
Swaps two matrices.

Friends

inline friend void swap(FlatRaggedMatrix<T , Index0, Index1> &lhs, FlatRaggedMatrix<T , Index0, Index1>
&rhs)

Swaps two matrices.

template<typename U>

class ProxyRow
Proxy class used to represent a ‘row’ in the matrix.

Public Functions

inline ProxyRow(U *first, U *last)
constructor

inline U *begin()
Return iterator to the first element.

inline U *end()
Return iterator to the last element.

484 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline const U *begin() const
Return iterator to the first element (immutable)

inline const U *end() const
Return iterator to the last element (immutable)

inline size_t size() const
Return the size of the row.

inline U &operator[](Index1 j)
indexing [] operator

inline const U &operator[](Index1 j) const
indexing [] operator (immutable)

inline U *data()
Return iterator to the first element.

inline U *data() const
Return iterator to the first element (immutable)

16.2.10 vtr_ndmatrix

namespace vtr

template<typename T, size_t N>

class NdMatrixProxy
#include <vtr_ndmatrix.h> Proxy class for a sub-matrix of a NdMatrix class.

This is used to allow chaining of array indexing [] operators in a natural way.

Each instance of this class peels off one-dimension and returns a NdMatrixProxy representing the resulting
sub-matrix. This is repeated recursively until we hit the 1-dimensional base-case.

Since this expansion happens at compiler time all the proxy classes get optimized away, yielding both high
performance and generality.

Recursive case: N-dimensional array

Public Functions

inline NdMatrixProxy(const size_t *dim_sizes, const size_t *dim_strides, T *start)
Construct a matrix proxy object.

Parameters
• dim_sizes – Array of dimension sizes

• idim – The dimension associated with this proxy

• dim_stride – The stride of this dimension (i.e. how many element in memory
between indicies of this dimension)

• start – Pointer to the start of the sub-matrix this proxy represents

NdMatrixProxy<T , N> &operator=(const NdMatrixProxy<T , N> &other) = delete

16.2. Containers 485

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline const NdMatrixProxy<T , N - 1> operator[](size_t index) const
const [] operator

inline NdMatrixProxy<T , N - 1> operator[](size_t index)
[] operator

template<typename T>

class NdMatrixProxy<T , 1>
#include <vtr_ndmatrix.h> Base case: 1-dimensional array.

Public Functions

inline NdMatrixProxy(const size_t *dim_sizes, const size_t *dim_stride, T *start)
Construct a 1-d matrix proxy object.

Parameters
• dim_sizes – Array of dimension sizes

• dim_stride – The stride of this dimension (i.e. how many element in memory
between indicies of this dimension)

• start – Pointer to the start of the sub-matrix this proxy represents

NdMatrixProxy<T , 1> &operator=(const NdMatrixProxy<T , 1> &other) = delete

inline const T &operator[](size_t index) const
const [] operator

inline T &operator[](size_t index)
[] operator

inline const T *data() const
Backward compitability.

For legacy compatibility (i.e. code expecting a pointer) we allow this base dimension case to retrieve
a raw pointer to the last dimension elements.

Note that it is the caller’s responsibility to use this correctly; care must be taken not to clobber
elements in other dimensions

inline T *data()
same as above but allow update the value

template<typename T, size_t N>

class NdMatrixBase
#include <vtr_ndmatrix.h> Base class for an N-dimensional matrix.

Base class for an N-dimensional matrix supporting arbitrary index ranges per dimension. This class imple-
ments all of the matrix handling (lifetime etc.) except for indexing (which is implemented in the NdMatrix
class). Indexing is split out to allows specialization (of indexing for N = 1.

Implementation:

This class uses a single linear array to store the matrix in c-style (row major) order. That is, the right-most
index is laid out contiguous memory.

This should improve memory usage (no extra pointers to store for each dimension), and cache locality (less
indirection via pointers, predictable strides).

486 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

The indicies are calculated based on the dimensions to access the appropriate elements. Since the indexing
calculations are visible to the compiler at compile time they can be optimized to be efficient.

Public Functions

inline NdMatrixBase()
An empty matrix (all dimensions size zero)

inline NdMatrixBase(std::array<size_t, N> dim_sizes, T value = T ())
Specified dimension sizes:

[0..dim_sizes[0])
[0..dim_sizes[1])
...
with optional fill value

inline size_t size() const
Returns the size of the matrix (number of elements)

inline bool empty() const
Returns true if there are no elements in the matrix.

inline size_t ndims() const
Returns the number of dimensions (i.e. N)

inline size_t dim_size(size_t i) const
Returns the size of the ith dimension.

inline size_t begin_index(size_t i) const
Returns the starting index of ith dimension.

inline size_t end_index(size_t i) const
Returns the one-past-the-end index of the ith dimension.

inline const T &get(size_t i) const
const Flat accessors of NdMatrix

inline T &get(size_t i)
Flat accessors of NdMatrix.

inline void fill(T value)
Set all elements to ‘value’.

inline void resize(std::array<size_t, N> dim_sizes, T value = T ())
Resize the matrix to the specified dimension ranges.

If ‘value’ is specified all elements will be initialized to it, otherwise they will be default constructed.

inline void clear()
Reset the matrix to size zero.

inline NdMatrixBase(const NdMatrixBase &other)
Copy constructor.

inline NdMatrixBase(NdMatrixBase &&other)
Move constructor.

16.2. Containers 487

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline NdMatrixBase &operator=(NdMatrixBase rhs)
Copy/move assignment.

Note that rhs is taken by value (copy-swap idiom)

template<typename T, size_t N>

class NdMatrix : public vtr::NdMatrixBase<T , N>
#include <vtr_ndmatrix.h> An N-dimensional matrix supporting arbitrary (continuous) index ranges per
dimension.

Examples:

//A 2-dimensional matrix with indicies [0..4][0..9]
NdMatrix<int,2> m1({5,10});

//Accessing an element
int i = m1[3][5];

//Setting an element
m1[2][8] = 0;

//A 3-dimensional matrix with indicies [0..4][0..9][0..19]
NdMatrix<int,3> m2({5,10,20});

//A 2-dimensional matrix with indicies [0..4][0..9], with all entries
//initialized to 42
NdMatrix<int,2> m3({5,10}, 42);

//Filling all entries with value 101
m3.fill(101);

//Resizing an existing matrix (all values reset to default constucted value)
m3.resize({5,5})

//Resizing an existing matrix (all elements set to value 88)
m3.resize({15,55}, 88)

Public Functions

inline const NdMatrixProxy<T , N - 1> operator[](size_t index) const
Access an element.

Returns a proxy-object to allow chained array-style indexing (N >= 2 case)

inline NdMatrixProxy<T , N - 1> operator[](size_t index)
Access an element.

Returns a proxy-object to allow chained array-style indexing

template<typename T>

class NdMatrix<T , 1> : public vtr::NdMatrixBase<T , 1>
#include <vtr_ndmatrix.h> A 1-dimensional matrix supporting arbitrary (continuous) index ranges per
dimension.

This is considered a specialization for N=1

488 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Functions

inline const T &operator[](size_t index) const
Access an element (immutable)

inline T &operator[](size_t index)
Access an element (mutable)

std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

Typedefs

template<typename T>

using Matrix = NdMatrix<T , 2>
Convenient short forms for common NdMatricies.

16.2.11 vtr_ndoffsetmatrix

namespace vtr

class DimRange
#include <vtr_ndoffsetmatrix.h> A half-open range specification for a matrix dimension [begin_index,
last_index)

It comes with valid indicies from [begin_index() . . . end_index()-1], provided size() > 0.

16.2. Containers 489

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Functions

DimRange() = default
default constructor

inline DimRange(size_t begin, size_t end)
a constructor with begin_index, end_index

inline size_t begin_index() const
Return the begin index.

inline size_t end_index() const
Return the end index.

inline size_t size() const
Return the size.

template<typename T, size_t N>

class NdOffsetMatrixProxy
#include <vtr_ndoffsetmatrix.h> Proxy class for a sub-matrix of a NdOffsetMatrix class.

This is used to allow chaining of array indexing [] operators in a natural way.

Each instance of this class peels off one-dimension and returns a NdOffsetMatrixProxy representing the
resulting sub-matrix. This is repeated recursively until we hit the 1-dimensional base-case.

Since this expansion happens at compiler time all the proxy classes get optimized away, yielding both high
performance and generality.

Recursive case: N-dimensional array

Public Functions

inline NdOffsetMatrixProxy(const DimRange *dim_ranges, size_t idim, size_t dim_stride, T *start)
Construct a matrix proxy object.

dim_ranges: Array of DimRange objects idim: The dimension associated with this proxy dim_stride:
The stride of this dimension (i.e. how many element in memory between indicies of this dimension)
start: Pointer to the start of the sub-matrix this proxy represents

inline const NdOffsetMatrixProxy<T , N - 1> operator[](size_t index) const
const [] operator

inline NdOffsetMatrixProxy<T , N - 1> operator[](size_t index)
[] operator

template<typename T>

class NdOffsetMatrixProxy<T , 1>
#include <vtr_ndoffsetmatrix.h> Base case: 1-dimensional array.

490 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Functions

inline NdOffsetMatrixProxy(const DimRange *dim_ranges, size_t idim, size_t dim_stride, T *start)
Construct a matrix proxy object.

- dim_ranges: Array of DimRange objects
- dim_stride: The stride of this dimension (i.e. how many element in␣
→˓memory between indicies of this dimension)
- start: Pointer to the start of the sub-matrix this proxy represents

inline const T &operator[](size_t index) const
const [] operator

inline T &operator[](size_t index)
[] operator

template<typename T, size_t N>

class NdOffsetMatrixBase
#include <vtr_ndoffsetmatrix.h> Base class for an N-dimensional matrix supporting arbitrary index ranges
per dimension.

This class implements all of the matrix handling (lifetime etc.) except for indexing (which is implemented
in the NdOffsetMatrix class). Indexing is split out to allows specialization of indexing for N = 1.

Implementation:

This class uses a single linear array to store the matrix in c-style (row major) order. That is, the right-most
index is laid out contiguous memory.

This should improve memory usage (no extra pointers to store for each dimension), and cache locality (less
indirection via pointers, predictable strides).

The indicies are calculated based on the dimensions to access the appropriate elements. Since the indexing
calculations are visible to the compiler at compile time they can be optimized to be efficient.

Public Functions

inline NdOffsetMatrixBase()
An empty matrix (all dimensions size zero)

inline NdOffsetMatrixBase(std::array<size_t, N> dim_sizes, T value = T ())
Specified dimension sizes:

[0..dim_sizes[0])
[0..dim_sizes[1])
...

with optional fill value

inline NdOffsetMatrixBase(std::array<DimRange, N> dim_ranges, T value = T ())
Specified dimension index ranges:

16.2. Containers 491

Verilog-to-Routing Documentation, Release 8.1.0-dev

[dim_ranges[0].begin_index() ... dim_ranges[1].end_index())
[dim_ranges[1].begin_index() ... dim_ranges[1].end_index())
...

with optional fill value

inline size_t size() const
Returns the size of the matrix (number of elements)

inline bool empty() const
Returns true if there are no elements in the matrix.

inline size_t ndims() const
Returns the number of dimensions (i.e. N)

inline size_t dim_size(size_t i) const
Returns the size of the ith dimension.

inline size_t begin_index(size_t i) const
Returns the starting index of ith dimension.

inline size_t end_index(size_t i) const
Returns the one-past-the-end index of the ith dimension.

inline void fill(T value)
Set all elements to ‘value’.

inline void resize(std::array<size_t, N> dim_sizes, T value = T ())
Resize the matrix to the specified dimensions.

If ‘value’ is specified all elements will be initialized to it, otherwise they will be default constructed.

inline void resize(std::array<DimRange, N> dim_ranges, T value = T ())
Resize the matrix to the specified dimension ranges.

If ‘value’ is specified all elements will be initialized to it, otherwise they will be default constructed.

inline void clear()
Reset the matrix to size zero.

inline NdOffsetMatrixBase(const NdOffsetMatrixBase &other)
Copy constructor.

inline NdOffsetMatrixBase(NdOffsetMatrixBase &&other)
Move constructor.

inline NdOffsetMatrixBase &operator=(NdOffsetMatrixBase rhs)
Copy/move assignment.

Note that rhs is taken by value (copy-swap idiom)

template<typename T, size_t N>

class NdOffsetMatrix : public vtr::NdOffsetMatrixBase<T , N>
#include <vtr_ndoffsetmatrix.h> An N-dimensional matrix supporting arbitrary (continuous) index ranges
per dimension.

If no second template parameter is provided defaults to a 2-dimensional matrix

Examples:

492 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

//A 2-dimensional matrix with indicies [0..4][0..9]
NdOffsetMatrix<int,2> m1({5,10});

//Accessing an element
int i = m4[3][5];

//Setting an element
m4[6][20] = 0;

//A 2-dimensional matrix with indicies [2..6][5..9]
// Note that C++ requires one more set of curly brace than you would expect
NdOffsetMatrix<int,2> m2({{{2,7},{5,10}}});

//A 3-dimensional matrix with indicies [0..4][0..9][0..19]
NdOffsetMatrix<int,3> m3({5,10,20});

//A 3-dimensional matrix with indicies [2..6][1..19][50..89]
NdOffsetMatrix<int,3> m4({{{2,7}, {1,20}, {50,90}}});

//A 2-dimensional matrix with indicies [2..6][1..20], with all entries
//intialized to 42
NdOffsetMatrix<int,2> m4({{{2,7}, {1,21}}}, 42);

//A 2-dimensional matrix with indicies [0..4][0..9], with all entries
//initialized to 42
NdOffsetMatrix<int,2> m1({5,10}, 42);

//Filling all entries with value 101
m1.fill(101);

//Resizing an existing matrix (all values reset to default constucted value)
m1.resize({5,5})

//Resizing an existing matrix (all elements set to value 88)
m1.resize({15,55}, 88)

Public Functions

inline const NdOffsetMatrixProxy<T , N - 1> operator[](size_t index) const
Access an element.

Returns a proxy-object to allow chained array-style indexing (N >= 2 case) template<typename =
typename std::enable_if<N >= 2>::type, typename T1=T>

inline NdOffsetMatrixProxy<T , N - 1> operator[](size_t index)
Access an element.

Returns a proxy-object to allow chained array-style indexing

template<typename T>

class NdOffsetMatrix<T , 1> : public vtr::NdOffsetMatrixBase<T , 1>
#include <vtr_ndoffsetmatrix.h> A 1-dimensional matrix supporting arbitrary (continuous) index ranges
per dimension.

16.2. Containers 493

Verilog-to-Routing Documentation, Release 8.1.0-dev

This is considered a specialization for N=1

Public Functions

inline const T &operator[](size_t index) const
Access an element (immutable)

inline T &operator[](size_t index)
Access an element (mutable)

std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

Typedefs

template<typename T>

using OffsetMatrix = NdOffsetMatrix<T , 2>
Convenient short forms for common NdMatricies.

16.2.12 vtr_array_view

template<typename K, typename V>

class array_view_id : private vtr::array_view<V>
Implements a fixed length view to an array which is indexed by vtr::StrongId.

The main use of this container is to behave like a std::span which is indexed by a vtr::StrongId instead of size_t.
It assumes that K is explicitly convertable to size_t (i.e. via operator size_t()), and can be explicitly constructed
from a size_t.

494 Chapter 16. VTRUTIL API

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Functions

inline V &operator[](const key_type id)
[] operator

inline const V &operator[](const key_type id) const
constant [] operator

inline V &at(const key_type id)
at() operator

inline const V &at(const key_type id) const
constant at() operator

inline key_range keys() const
Returns a range containing the keys.

class key_iterator : public std::iterator<std::bidirectional_iterator_tag, key_type>
Iterator class which is convertable to the key_type.

This allows end-users to call the parent class’s keys() member to iterate through the keys with a range-based
for loop

Public Types

using my_iter = typename std::iterator<std::bidirectional_iterator_tag, K>
Intermediate type my_iter.

We use the intermediate type my_iter to avoid a potential ambiguity for which clang generates errors
and warnings

Public Functions

inline key_iterator operator++()
Note.

vtr::vector assumes that the key time is convertable to size_t and that all the underlying IDs are
zero-based and contiguous. That means we can just increment the underlying Id to build the next
key.

increment the iterator

inline key_iterator operator--()
decrement the iterator

inline reference operator*()
dereference operator (*)

inline pointer operator->()
-> operator

template<typename T>

class array_view
An array view class to avoid copying data.

16.2. Containers 495

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Functions

inline explicit constexpr array_view()
default constructor

inline explicit constexpr array_view(T *str, size_t size)
A constructor with data initialization.

inline constexpr T &operator[](size_t pos)
[] operator

inline constexpr const T &operator[](size_t pos) const
constant [] operator

inline T &at(size_t pos)
at() operator

inline const T &at(size_t pos) const
const at() operator

inline constexpr T &front()
get the first element of the array

inline constexpr const T &front() const
get the first element of the array (can’t update it)

inline constexpr T &back()
get the last element of the array

inline constexpr const T &back() const
get the last element of the array (can’t update it)

inline constexpr T *data()
return the underlying pointer

inline constexpr const T *data() const
return the underlying pointer (constant pointer)

inline constexpr size_t size() const noexcept
return thr array size

inline constexpr size_t length() const noexcept
return the array size

inline constexpr bool empty() const noexcept
check if the array is empty

inline constexpr T *begin() noexcept
return a pointer to the first element of the array

inline constexpr const T *begin() const noexcept
return a constant pointer to the first element of the array

inline constexpr const T *cbegin() const noexcept
return a constant pointer to the first element of the array

inline constexpr T *end() noexcept
return a pointer to the last element of the array

496 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline constexpr const T *end() const noexcept
return a constant pointer to the last element of the array

inline constexpr const T *cend() const noexcept
return a constant pointer to the last element of the array

16.2.13 vtr_string_view

class string_view
Implements a view to a fixed length string (similar to std::basic_string_view).

The underlying string does not need to be NULL terminated.

Public Functions

inline explicit constexpr string_view()
constructor

inline explicit string_view(const char *str)
constructor

inline explicit constexpr string_view(const char *str, size_t size)
constructor

inline constexpr string_view &operator=(const string_view &view) noexcept
copy constructor

inline constexpr char operator[](size_t pos) const
indexing [] operator (immutable)

inline const char &at(size_t pos) const
aT() operator (immutable)

inline constexpr const char &front() const
Returns the first character of the string.

inline constexpr const char &back() const
Returns the last character of the string.

inline constexpr const char *data() const
Returns a pointer to the string data.

inline constexpr size_t size() const noexcept
Returns the string size.

inline constexpr size_t length() const noexcept
Returns the string size.

inline constexpr bool empty() const noexcept
Returns true if empty.

inline constexpr const char *begin() const noexcept
Returns a pointer to the begin of the string.

16.2. Containers 497

Verilog-to-Routing Documentation, Release 8.1.0-dev

inline constexpr const char *cbegin() const noexcept
Same as begin()

inline constexpr const char *end() const noexcept
Returns a pointer to the end of the string.

inline constexpr const char *cend() const noexcept
Same as end()

inline void swap(string_view &v) noexcept
Swaps two string views.

inline string_view substr(size_t pos = 0, size_t count = npos)
Returns a newly constructed string object with its value initialized to a copy of a substring of this object.

16.2.14 vtr_cache

template<typename CacheKey, typename CacheValue>

class Cache
An implementation of a simple cache.

Public Functions

inline void clear()
Clear cache.

inline const CacheValue *get(const CacheKey &key) const
Check if the cache is valid.

Returns the cached value if present and valid. Returns nullptr if the cache is invalid.

inline const CacheValue *set(const CacheKey &key, std::unique_ptr<CacheValue> value)
Update the cache.

16.2.15 vtr_dynamic_bitset

template<typename Index = size_t, typename Storage = unsigned int>

class dynamic_bitset
A container to represent a set of flags either they are set or reset.

It allocates any required length of bit at runtime. It is very useful in bit manipulation

498 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Functions

inline void resize(size_t size)
Reize to the determined size.

inline void clear()
Clear all the bits.

inline size_t size() const
Return the size of the bitset (total number of bits)

inline void fill(bool set)
Fill the whole bitset with a specific value (0 or 1)

inline void set(Index index, bool val)
Set a specific bit in the bit set to a specific value (0 or 1)

inline bool get(Index index) const
Return the value of a specific bit in the bitset.

inline constexpr size_t count(void) const
Return count of set bits.

inline constexpr dynamic_bitset<Index, Storage> &operator|=(const dynamic_bitset<Index, Storage> &x)
Bitwise OR with rhs. Truncate the operation if one operand is smaller.

inline constexpr dynamic_bitset<Index, Storage> &operator&=(const dynamic_bitset<Index, Storage> &x)
Bitwise AND with rhs. Truncate the operation if one operand is smaller.

inline dynamic_bitset<Index, Storage> operator~(void) const
Return inverted bitset.

Public Static Attributes

static constexpr size_t kWidth = std::numeric_limits<Storage>::digits
Bits in underlying storage.

16.3 Container Utils

16.3.1 vtr_hash

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.

16.3. Container Utils 499

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

Functions

template<class T>
inline void hash_combine(std::size_t &seed, const T &v)

Hashes v and combines it with seed (as in boost)

This is typically used to implement std::hash for composite types.

struct hash_pair
#include <vtr_hash.h>

Public Functions

template<class T1, class T2>
inline std::size_t operator()(const std::pair<T1, T2> &pair) const noexcept

16.3.2 vtr_memory

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

struct t_chunk
#include <vtr_memory.h> This structure keeps track to chenks of memory

This structure is to keep track of chunks of memory that is being

500 Chapter 16. VTRUTIL API

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

allocated to save overhead when allocating very small memory pieces. For a complete description, please
see the comment in chunk_malloc

template<class T>

struct aligned_allocator
#include <vtr_memory.h> aligned_allocator is a STL allocator that allocates memory in an aligned fash-
ion

works if supported by the platform

It is worth noting the C++20 std::allocator does aligned allocations, but C++20 has poor support.

Functions

template<typename Container>
void release_memory(Container &container)

This function will force the container to be cleared.

It release it’s held memory. For efficiency, STL containers usually don’t release their actual heap-allocated
memory until destruction (even if Container::clear() is called).

template<typename T>
T *chunk_new(t_chunk *chunk_info)

Like chunk_malloc, but with proper C++ object initialization.

template<typename T>
void chunk_delete(T *obj, t_chunk*)

Call the destructor of an obj which must have been allocated in the specified chunk.

inline int memalign(void **ptr_out, size_t align, size_t size)

template<typename T>
bool operator==(const aligned_allocator<T>&, const aligned_allocator<T>&)

compare two aligned_allocators.

Since the allocator doesn’t have any internal state, all allocators for a given type are the same.

16.3.3 vtr_pair_util

namespace vtr

template<typename PairIter>

class pair_first_iter
#include <vtr_pair_util.h> Iterator which derefernces the ‘first’ element of a std::pair iterator.

16.3. Container Utils 501

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Functions

inline pair_first_iter(PairIter init)
constructor

inline auto operator++()
increment operator (++)

inline auto operator--()
decrement operator (–)

inline auto operator*()
dereference * operator

inline auto operator->()
-> operator

template<typename PairIter>

class pair_second_iter
#include <vtr_pair_util.h> Iterator which derefernces the ‘second’ element of a std::pair iterator

Public Functions

inline pair_second_iter(PairIter init)
constructor

inline auto operator++()
increment operator (++)

inline auto operator--()
decrement operator (—)

inline auto operator*()
dereference * operator

inline auto operator->()
-> operator

std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

502 Chapter 16. VTRUTIL API

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

16.3.4 vtr_map_util

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

Typedefs

template<typename Iter>

using map_key_iter = pair_first_iter<Iter>
An iterator who wraps a std::map iterator to return it’s key.

template<typename Iter>

using map_value_iter = pair_second_iter<Iter>
An iterator who wraps a std::map iterator to return it’s value.

Functions

template<typename T>
auto make_key_range(T b, T e)

Returns a range iterating over a std::map’s keys.

template<typename Container>
auto make_key_range(const Container &c)

Returns a range iterating over a std::map’s keys.

template<typename T>
auto make_value_range(T b, T e)

Returns a range iterating over a std::map’s values.

template<typename Container>
auto make_value_range(const Container &c)

Returns a range iterating over a std::map’s values.

16.3. Container Utils 503

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

16.4 Logging - Errors - Assertions

16.4.1 vtr_log

This header defines useful logging macros for VTR projects.

Message Type

Three types of log message types are defined:

• VTR_LOG : The standard ‘info’ type log message

• VTR_LOG_WARN : A warning log message. This represents unusual condition that may indicate an issue but
executiom continues

• VTR_LOG_ERROR : An error log message. This represents a clear issue that should result in stopping the
program execution. Please note that using this log message will not actually terminate the program. So a VtrError
should be thrown after all the neccessary VTR_LOG_ERROR messages are printed.

For example:

VTR_LOG("This produces a regular '%s' message\n", "info");
VTR_LOG_WARN("This produces a '%s' message\n", "warning");
VTR_LOG_ERROR("This produces an '%s' message\n", "error");

Conditional Logging

Each of the three message types also have a VTR_LOGV_* variant, which will cause the message to be logged if a
user-defined condition is satisifed.

For example:

VTR_LOGV(verbosity > 5, "This message will be logged only if verbosity is greater than
→˓%d\n", 5);
VTR_LOGV_WARN(verbose, "This warning message will be logged if verbose is true\n");
VTR_LOGV_ERROR(false, "This error message will never be logged\n");

Custom Location Logging

Each of the three message types also have a VTR_LOGF_* variant, which will cause the message to be logged for a
custom file and

For example:

VTR_LOGF("my_file.txt", "This message will be logged from file 'my_file.txt' line %d\n",
→˓ 42);

504 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

Debug Logging

For debug purposes it may be useful to have additional logging. This is supported by VTR_LOG_DEBUG() and
VTR_LOGV_DEBUG().

To avoid run-time overhead, these are only enabled if VTR_ENABLE_DEBUG_LOGGING is defined (disabled by
default).

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

Functions

void add_warnings_to_suppress(std::string function_name)
The following data structure and functions allow to suppress noisy warnings and direct them into an external file,
if specified.

void set_noisy_warn_log_file(std::string log_file_name)
This function creates a new log file to hold the suppressed warnings. If the file already exists, it is cleared out
first.

void print_or_suppress_warning(const char *pszFileName, unsigned int lineNum, const char *pszFuncName,
const char *pszMessage, ...)

This function checks whether to print or to suppress warning.

This function checks whether the function from which the warning has been called is in the set of warn-
ings_to_suppress. If so, the warning is printed on the noisy_warn_log_file, otherwise it is printed on stdout
(or the regular log file)

16.4. Logging - Errors - Assertions 505

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

16.4.2 vtr_error

A utility container that can be used to identify VTR execution errors.

The recommended usage is to store information in this container about the error during an error event and and then
throwing an exception with the container. If the exception is not handled (exception is not caught), this will result in
the termination of the program.

Error information can be displayed using the information stored within this container.

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

class VtrError : public std::runtime_error
#include <vtr_error.h> Container that holds information related to an error.

It holds different info related to a VTR error:

• error message

• file name associated with the error

• line number associated with the error

Example Usage:

// creating and throwing an exception with a VtrError container that has an␣
→˓error occuring in file "error_file.txt" at line number 1

throw vtr::VtrError("This is a program terminating error!", "error_file.txt",␣
→˓1);

506 Chapter 16. VTRUTIL API

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Functions

inline VtrError(std::string msg = "", std::string new_filename = "", size_t new_linenumber = -1)
VtrError constructor.

inline std::string filename() const
gets the filename

Returns the filename associated with this error. Returns an empty string if none is specified.

inline const char *filename_c_str() const
same as filename() but returns in c style string

inline size_t line() const
get the line number

Returns the line number associated with this error. Returns zero if none is specified.

16.4.3 vtr_assertion

The header vtr_assert.h defines useful assertion macros for VTR projects.

Four types of assertions are defined:

VTR_ASSERT_OPT - low overhead assertions that should always be enabled
VTR_ASSERT - medium overhead assertions that are usually be enabled
VTR_ASSERT_SAFE - high overhead assertions typically enabled only for debugging
VTR_ASSERT_DEBUG - very high overhead assertions typically enabled only for extreme␣
→˓debugging

Each of the above assertions also have a *_MSG variants (e.g. VTR_ASSERT_MSG(expr, msg)) which takes an
additional argument specifying additional message text to be shown. By convention the message should state the
condition being checked (and not the failure condition), since that the condition failed is obvious from the assertion
failure itself.

The macro VTR_ASSERT_LEVEL specifies the level of assertion checking desired and is updated in CMAKE com-
pilation:

VTR_ASSERT_LEVEL == 4: VTR_ASSERT_OPT, VTR_ASSERT, VTR_ASSERT_SAFE, VTR_ASSERT_DEBUG␣
→˓enabled
VTR_ASSERT_LEVEL == 3: VTR_ASSERT_OPT, VTR_ASSERT, VTR_ASSERT_SAFE enabled
VTR_ASSERT_LEVEL == 2: VTR_ASSERT_OPT, VTR_ASSERT enabled
VTR_ASSERT_LEVEL == 1: VTR_ASSERT_OPT enabled
VTR_ASSERT_LEVEL == 0: No assertion checking enabled

@Note that an assertion levels beyond 4 are currently treated the same as level 4 and the default assertion level is 2

16.4. Logging - Errors - Assertions 507

Verilog-to-Routing Documentation, Release 8.1.0-dev

16.4.4 vtr_time

class ScopedStartFinishTimer : public vtr::ScopedActionTimer
Scoped elapsed time class which prints out the action when initialized and again both the action and elapsed
time.

when destructed. For example:

{
vtr::ScopedStartFinishTimer timer("my_action") //Will print: 'my_action'

//Do other work

//Will print 'my_action took X.XX seconds' when out of scope
}

class ScopedFinishTimer : public vtr::ScopedActionTimer
Scoped elapsed time class which prints the time elapsed for the specified action when it is destructed.

For example:

{
vtr::ScopedFinishTimer timer("my_action");

//Do other work

//Will print: 'my_action took X.XX seconds' when out-of-scope
}

class ScopedActionTimer : public vtr::Timer
Scoped time class which prints the time elapsed for the specifid action.

Subclassed by vtr::ScopedFinishTimer, vtr::ScopedStartFinishTimer

class Timer
Class for tracking time elapsed since construction.

Subclassed by vtr::ScopedActionTimer

16.5 Geometry

16.5.1 vtr_geometry

This file include differents different geometry classes.

template<class T>

class Point
A point in 2D space.

This class represents a point in 2D space. Hence, it holds both x and y components of the point.

508 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Functions

T x() const
x coordinate

T y() const
y coordinate

void set(T x_val, T y_val)
Set x and y values.

void set_x(T x_val)
set x value

void set_y(T y_val)
set y value

void swap()
Swap x and y values.

Friends

friend bool operator==(Point<T> lhs, Point<T> rhs)
== operator

friend bool operator!=(Point<T> lhs, Point<T> rhs)
!= operator

friend bool operator<(Point<T> lhs, Point<T> rhs)
< operator

template<class T>

class Rect
A 2D rectangle.

This class represents a 2D rectangle. It can be created with its 4 points or using the bottom left and the top rights
ones only

Public Functions

Rect()

default constructor

Rect(T left_val, T bottom_val, T right_val, T top_val)
construct using 4 vertex

Rect(Point<T> bottom_left_val, Point<T> top_right_val)
construct using the bottom left and the top right vertex

template<typename U = T , typename std::enable_if<std::is_integral<U>::value>::type...>
Rect(Point<U> point)

Constructs a rectangle that only contains the given point.

Rect(p1).contains(p2) => p1 == p2 It is only enabled for integral types, because making this work for
floating point types would be difficult and brittle. The following line only enables the constructor if
std::is_integral<T>::value == true

16.5. Geometry 509

Verilog-to-Routing Documentation, Release 8.1.0-dev

T xmin() const
xmin coordinate

T xmax() const
xmax coordinate

T ymin() const
ymin coodrinate

T ymax() const
ymax coordinate

Point<T> bottom_left() const
Return the bottom left point.

Point<T> top_right() const
Return the top right point.

T width() const
Return the rectangle width.

T height() const
Return the rectangle height.

bool contains(Point<T> point) const
Returns true if the point is fully contained within the rectangle (excluding the top-right edges)

bool strictly_contains(Point<T> point) const
Returns true if the point is strictly contained within the region (excluding all edges)

bool coincident(Point<T> point) const
Returns true if the point is coincident with the rectangle (including the top-right edges)

bool contains(const Rect<T> &other) const
Returns true if other is contained within the rectangle (including all edges)

bool empty() const
Checks whether the rectangle is empty.

Returns true if no points are contained in the rectangle rect.empty() => not exists p. rect.contains(p) This
also implies either the width or height is 0.

void set_xmin(T xmin_val)
set xmin to a point

void set_ymin(T ymin_val)
set ymin to a point

void set_xmax(T xmax_val)
set xmax to a point

void set_ymax(T ymax_val)
set ymax to a point

Rect<T> &expand_bounding_box(const Rect<T> &other)
Equivalent to *this = bounding_box(*this, other)

510 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

Friends

friend bool operator==(const Rect<T> &lhs, const Rect<T> &rhs)
== operator

friend bool operator!=(const Rect<T> &lhs, const Rect<T> &rhs)
!= operator

template<class T>

class Line
A 2D line.

It is constructed using a vector of the line points

Public Functions

Line(std::vector<Point<T>> line_points)
contructor

Rect<T> bounding_box() const
Returns the bounding box.

point_range points() const
Returns a range of constituent points.

template<class T>

class RectUnion
A union of 2d rectangles.

Public Functions

RectUnion(std::vector<Rect<T>> rects)
Construct from a set of rectangles.

Rect<T> bounding_box() const
Returns the bounding box of all rectangles in the union.

bool contains(Point<T> point) const
Returns true if the point is fully contained within the region (excluding top-right edges)

bool strictly_contains(Point<T> point) const
Returns true if the point is strictly contained within the region (excluding all edges)

bool coincident(Point<T> point) const
Returns true if the point is coincident with the region (including the top-right edges)

rect_range rects() const
Returns a range of all constituent rectangles.

16.5. Geometry 511

Verilog-to-Routing Documentation, Release 8.1.0-dev

Friends

friend bool operator==(const RectUnion<T> &lhs, const RectUnion<T> &rhs)
Checks whether two RectUnions have identical representations.

Note: does not check whether the representations they are equivalent

friend bool operator!=(const RectUnion<T> &lhs, const RectUnion<T> &rhs)
!= operator

16.6 Other

16.6.1 vtr_expr_eval

This file implements an expressopn evaluator.

The expression evaluator is capable of performing many operations on given variables, after parsing the expression.
The parser goes character by character and identifies the type of char or chars. (e.g bracket, comma, number, opera-
tor, variable). The supported operations include addition, subtraction, multiplication, division, finding max, min, gcd,
lcm, as well as boolean operators such as &&, ||, ==, >=, <= etc. The result is returned as an int value and operation
precedance is taken into account. (e.g given 3-2*4, the result will be -5). This class is also used to parse expres-
sions indicating breakpoints. The breakpoint expressions consist of variable names such as move_num, temp_num,
from_block etc, and boolean operators (e.g move_num == 3). Multiple breakpoints can be expressed in one expression

Functions

BreakpointStateGlobals *get_bp_state_globals()
returns the global variable that holds all values that can trigger a breakpoint and are updated by the router and
placer

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

512 Chapter 16. VTRUTIL API

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

Enums

enum e_formula_obj
Used to identify the type of symbolic formula object.

Values:

enumerator E_FML_UNDEFINED

enumerator E_FML_NUMBER

enumerator E_FML_BRACKET

enumerator E_FML_COMMA

enumerator E_FML_OPERATOR

enumerator E_FML_VARIABLE

enumerator E_FML_NUM_FORMULA_OBJS

enum e_operator
Used to identify an operator in a formula.

Values:

enumerator E_OP_UNDEFINED

enumerator E_OP_ADD

enumerator E_OP_SUB

enumerator E_OP_MULT

enumerator E_OP_DIV

enumerator E_OP_MIN

enumerator E_OP_MAX

enumerator E_OP_GCD

enumerator E_OP_LCM

16.6. Other 513

Verilog-to-Routing Documentation, Release 8.1.0-dev

enumerator E_OP_AND

enumerator E_OP_OR

enumerator E_OP_GT

enumerator E_OP_LT

enumerator E_OP_GTE

enumerator E_OP_LTE

enumerator E_OP_EQ

enumerator E_OP_MOD

enumerator E_OP_AA

enumerator E_OP_NUM_OPS

enum e_compound_operator
Used to identify operators with more than one character.

Values:

enumerator E_COM_OP_UNDEFINED

enumerator E_COM_OP_AND

enumerator E_COM_OP_OR

enumerator E_COM_OP_EQ

enumerator E_COM_OP_AA

enumerator E_COM_OP_GTE

enumerator E_COM_OP_LTE

class Formula_Object
A class represents an object in a formula.

This object can be any of the following:
• a number
• a bracket

514 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

• an operator
• a variable

Public Functions

inline Formula_Object()
constructor

inline std::string to_string() const
convert enum to string

Public Members

t_formula_obj type
indicates the type of formula object this is

union u_Data
object data, accessed based on what kind of object this is

Public Members

int num
for number objects

t_operator op
for operator objects

bool left_bracket
for bracket objects — specifies if this is a left bracket

class FormulaParser
A class to parse formula.

Public Functions

int parse_formula(std::string formula, const t_formula_data &mydata, bool is_breakpoint = false)
returns integer result according to specified formula and data

int parse_piecewise_formula(const char *formula, const t_formula_data &mydata)
returns integer result according to specified piece-wise formula and data

16.6. Other 515

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Static Functions

static bool is_piecewise_formula(const char *formula)
checks if the specified formula is piece-wise defined

class t_formula_data
a class to hold the formula data

Public Functions

inline void clear()
clears all the formula data

inline void set_var_value(vtr::string_view var, int value)
set the value of a specific part of the formula

inline void set_var_value(const char *var, int value)
set the value of a specific part of the formula (the var can be c-style string)

inline int get_var_value(const std::string &var) const
get the value of a specific part of the formula

inline int get_var_value(vtr::string_view var) const
get the value of a specific part of the formula (the var can be c-style string)

16.6.2 vtr_color_map

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

template<class T>

struct Color
#include <vtr_color_map.h> A container to save the rgb components of a color.

class ColorMap
#include <vtr_color_map.h> A class that holds a complete color map.

516 Chapter 16. VTRUTIL API

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Functions

ColorMap(float min, float max, const std::vector<Color<float>> &color_data)
color map constructor

virtual ~ColorMap() = default
color map destructor

Color<float> color(float value) const
Returns the full color corresponding to the input value.

float min() const
Return the min Color of this color map.

float max() const
Return the max color of this color map.

float range() const
Return the range of the color map.

class InfernoColorMap : public vtr::ColorMap
#include <vtr_color_map.h>

Public Functions

InfernoColorMap(float min, float max)

class PlasmaColorMap : public vtr::ColorMap
#include <vtr_color_map.h>

Public Functions

PlasmaColorMap(float min, float max)

class ViridisColorMap : public vtr::ColorMap
#include <vtr_color_map.h>

Public Functions

ViridisColorMap(float min, float max)

16.6. Other 517

Verilog-to-Routing Documentation, Release 8.1.0-dev

16.6.3 vtr_digest

std::string vtr::secure_digest_file(const std::string &filepath)
Generate a secure hash of the file at filepath.

std::string vtr::secure_digest_stream(std::istream &is)
Generate a secure hash of a stream.

16.6.4 vtr_logic

namespace vtr

Enums

enum class LogicValue
This class represents the different supported logic values.

Values:

enumerator FALSE

enumerator TRUE

enumerator DONT_CARE

enumerator UNKOWN

16.6.5 vtr_math

This file defines some math operations.

namespace vtr

Functions

constexpr int nint(float val)
Integer rounding conversion for floats.

template<typename T>
T safe_ratio(T numerator, T denominator)

Returns a ‘safe’ ratio which evaluates to zero if the denominator is zero.

template<typename InputIterator>
double median(InputIterator first, InputIterator last)

Returns the median of the elements in range [first, last].

template<typename Container>

518 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

double median(Container c)
Returns the median of a whole container.

template<typename InputIterator>
double geomean(InputIterator first, InputIterator last, double init = 1.)

Returns the geometric mean of the elments in range [first, last)

To avoid potential round-off issues we transform the standard formula:

geomean = (v_1 * v_2 * ... * v_n) ^ (1/n)

by taking the log:

geomean = exp((1 / n) * (log(v_1) + log(v_2) + ... + log(v_n)))

template<typename Container>
double geomean(Container c)

Returns the geometric mean of a whole container.

template<typename InputIterator>
double arithmean(InputIterator first, InputIterator last, double init = 0.)

Returns the arithmatic mean of the elements in range [first, last].

template<typename Container>
double arithmean(Container c)

Returns the aritmatic mean of a whole container.

template<typename T>
static T gcd(T x, T y)

Returns the greatest common divisor of x and y.

Note that T should be an integral type

template<typename T>
T lcm(T x, T y)

Return the least common multiple of x and y.

Note that T should be an integral type

template<class T>
bool isclose(T a, T b, T rel_tol, T abs_tol)

Return true if a and b values are close to each other.

template<class T>
bool isclose(T a, T b)

Return true if a and b values are close to each other (using the default tolerances)

namespace vtr

16.6. Other 519

Verilog-to-Routing Documentation, Release 8.1.0-dev

Functions

int ipow(int base, int exp)
Calculates the value pow(base, exp)

float median(std::vector<float> vector)
Returns the median of an input vector.

template<typename X, typename Y>
Y linear_interpolate_or_extrapolate(const std::map<X, Y> *xy_map, X requested_x)

Linear interpolation/Extrapolation.

Performs linear interpolation or extrapolation on the set of (x,y) values specified by the xy_map. A re-
quested x value is passed in, and we return the interpolated/extrapolated y value at this requested value of
x. Meant for maps where both key and element are numbers. This is specifically enforced by the explicit
instantiations below this function. i.e. only templates using those types listed in the explicit instantiations
below are allowed

template double linear_interpolate_or_extrapolate (const std::map< int,
double > *xy_map, int requested_x)

template double linear_interpolate_or_extrapolate (const std::map< double,
double > *xy_map, double requested_x)

16.6.6 vtr_ostream_guard

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

class OsFormatGuard
#include <vtr_ostream_guard.h> A RAII guard class to ensure restoration of output stream format.

520 Chapter 16. VTRUTIL API

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Functions

inline explicit OsFormatGuard(std::ostream &os)
constructor

inline ~OsFormatGuard()
destructor

OsFormatGuard(const OsFormatGuard&) = delete

OsFormatGuard &operator=(const OsFormatGuard&) = delete

OsFormatGuard(const OsFormatGuard&&) = delete

OsFormatGuard &operator=(const OsFormatGuard&&) = delete

16.6.7 vtr_path

This file defines some useful utilities to handle paths.

std::array<std::string, 2> vtr::split_ext(const std::string &filename)
Splits off the name and extension (including “.”) of the specified filename.

std::string vtr::basename(const std::string &path)
Returns the basename of path (i.e. the last filename component)

For example, the path “/home/user/my_files/test.blif” -> “test.blif”

std::string vtr::dirname(const std::string &path)
Returns the dirname of path (i.e. everything except the last filename component)

For example, the path “/home/user/my_files/test.blif” -> “/home/user/my_files/”

std::string vtr::getcwd()
Returns the current working directory.

16.6.8 vtr_random

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

16.6. Other 521

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

Functions

template<typename Iter>
void shuffle(Iter first, Iter last, RandState &rand_state)

Portable/invariant version of std::shuffle.

Note that std::shuffle relies on std::uniform_int_distribution which can produce different sequences accross
different compilers/compiler versions.

This version should be deterministic/invariant. However, since it uses vtr::irand(), may not be as well
distributed as std::shuffle.

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

Functions

void srandom(int seed)
The pseudo-random number generator is initialized using the argument passed as seed.

RandState get_random_state()
Return The random number generator state.

int irand(int imax, RandState &rand_state)
Return a randomly generated integer less than or equal imax using the generator (rand_state)

int irand(int imax)
Return a randomly generated integer less than or equal imax.

float frand()
Return a randomly generated float number between [0,1].

522 Chapter 16. VTRUTIL API

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

16.6.9 vtr_rusage

namespace vtr

Functions

size_t get_max_rss()
Returns the maximum resident set size in bytes, or zero if unable to determine.

16.6.10 vtr_sentinels

This header defines different sentinal value classes.

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

template<class T>

class DefaultSentinel
#include <vtr_sentinels.h> The Default sentinal value class.

Some specialized containers like vtr::linear_map and vtr::vector_map require sentinel values to mark in-
valid/uninitialized values. By convention, such containers query the sentinel objects static INVALID()
member function to retrieve the sentinel value.

These classes allows users to specify a custom sentinel value.

Usually the containers default to DefaultSentinel

The sentinel value is the default constructed value of the type

template<class T>

class DefaultSentinel<T*>
#include <vtr_sentinels.h> Specialization for pointer types.

template<class T, T val>

16.6. Other 523

https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

class CustomSentinel
#include <vtr_sentinels.h> The sentile value is a specified value of the type.

16.6.11 vtr_string_interning

Provides basic string interning, along with pattern splitting suitable for use with FASM.

For reference, string interning refers to keeping a unique copy of a string in storage, and then handing out an id to that
storage location, rather than keeping the string around. This deduplicates memory overhead for strings.

This string internment has an additional feature that is splitting the input string into “parts” based on ‘.’, which happens
to be the feature seperator for FASM. This means the string “TILE.CLB.A” and “TILE.CLB.B” would be made up of the
intern ids for {“TILE”, “CLB”, “A”} and {“TILE”, “CLB”, “B”} respectively, allowing some internal deduplication.

Strings can contain up to kMaxParts, before they will be interned as their whole string.

Interned strings (interned_string) that come from the same internment object (string_internment) can safely be checked
for equality and hashed without touching the underlying string. Lexigraphical comprisions (e.g. <) requires reconstruct-
ing the string.

Basic usage:

1. Create a string_internment

2. Invoke string_internment::intern_string, which returns the interned_string object that is the interned string’s
unique idenfier. This idenfier can be checked for equality or hashed. If string_internment::intern_string is called
with the same string, a value equivalent interned_string object will be returned.

3. If the original string is required, interned_string::get can be invoked to copy the string into a std::string. in-
terned_string also provides iteration via begin/end, however the begin method requires a pointer to original
string_internment object. This is not suitable for range iteration, so the method interned_string::bind can be
used to create a bound_interned_string that can be used in a range iteration context.

For reference, the reason that interned_string’s does not have a reference back to the string_internment object is
to keep their memory footprint lower.

class string_internment
Storage of interned string, and object capable of generating new interned_string objects.

Public Functions

inline interned_string intern_string(vtr::string_view view)
Intern a string, and return a unique identifier to that string.

If interned_string is ever called with two strings of the same value, the interned_string will be equal.

inline vtr::string_view get_string(StringId id) const
Retrieve a string part based on id.

This method should not generally be called directly.

inline size_t unique_strings() const
Number of unique string parts stored.

524 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

class interned_string
Interned string value returned from a string_internment object.

This is a value object without allocation. It can be checked for equality and hashed safely against other in-
terned_string’s generated from the same string_internment.

Public Functions

inline interned_string(std::array<StringId, kMaxParts> intern_ids, size_t n)
constructor

inline void get(const string_internment *internment, std::string *output) const
Copy the underlying string into output.

internment must the object that generated this interned_string.

inline std::string get(const string_internment *internment) const
Returns the underlying string as a std::string.

This method will allocated memory.

inline bound_interned_string bind(const string_internment *internment) const
Bind the parent string_internment and return a bound_interned_string object.

That bound_interned_string lifetime must be shorter than this interned_string object lifetime, as
bound_interned_string contains a reference this object, along with a reference to the internment object.

inline interned_string_iterator begin(const string_internment *internment) const
begin() function

inline interned_string_iterator end() const
end() function

Friends

friend bool operator==(interned_string lhs, interned_string rhs) noexcept
== operator

friend bool operator!=(interned_string lhs, interned_string rhs) noexcept
!= operator

class bound_interned_string
A interned_string bound to it’s string_internment object.

This object is heavier than just an interned_string. This object holds a pointer to interned_string, so its lifetime
must be shorter than the parent interned_string.

16.6. Other 525

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Functions

inline bound_interned_string(const string_internment *internment, const interned_string *str)
constructor

inline interned_string_iterator begin() const
return an iterator to the first part of the interned_string

inline interned_string_iterator end() const
return an iterator to the last part of the interned_string

class interned_string_iterator
Iterator over interned string.

This object is much heavier memory wise than interned_string, so do not store these.

This iterator only accomidates the forward_iterator concept.

Do no construct this iterator directly. Use either bound_interned_string::begin/end or in-
terned_string;:begin/end.

Public Functions

inline interned_string_iterator(const string_internment *internment, std::array<StringId, kMaxParts>
intern_ids, size_t n)

constructor for interned string iterator.

Do no construct this iterator directly. Use either bound_interned_string::begin/end or in-
terned_string;:begin/end.

inline interned_string_iterator &operator++()
Increment operator for interned_string_iterator.

inline interned_string_iterator operator++(int)
Increment operator for interned_string_iterator.

Friends

friend bool operator==(const interned_string_iterator &lhs, const interned_string_iterator &rhs)
== operator

16.6.12 vtr_token

Tokenizer.

Author
Jason Luu @Date July 22, 2009

526 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

Enums

enum e_token_type
Token types.

Values:

enumerator TOKEN_NULL

enumerator TOKEN_STRING

enumerator TOKEN_INT

enumerator TOKEN_OPEN_SQUARE_BRACKET

enumerator TOKEN_CLOSE_SQUARE_BRACKET

enumerator TOKEN_OPEN_SQUIG_BRACKET

enumerator TOKEN_CLOSE_SQUIG_BRACKET

enumerator TOKEN_COLON

enumerator TOKEN_DOT

Functions

t_token *GetTokensFromString(const char *inString, int *num_tokens)
Returns a token list of the text for a given string.

void freeTokens(t_token *tokens, const int num_tokens)
Free (tokens)

bool checkTokenType(const t_token token, enum e_token_type token_type)
Returns true if the token’s type equals to token_type.

void my_atof_2D(float **matrix, const int max_i, const int max_j, const char *instring)
Returns a 2D array representing the atof result of all the input string entries seperated by whitespace.

bool check_my_atof_2D(const int max_i, const int max_j, const char *instring, int *num_entries)
Checks if the number of entries (separated by whitespace) matches the the expected number (max_i * max_j)

can be used before calling my_atof_2D

struct t_token
#include <vtr_token.h> Token structure.

16.6. Other 527

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Members

enum e_token_type type

char *data

16.6.13 vtr_util

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

Functions

template<typename Iter>
std::string join(Iter begin, Iter end, std::string_view delim)

Joins a sequence by a specified delimeter.

Template join function implementation.

For example the sequence {“home”, “user”, “my_files”, “test.blif”} with delim=”/” would return
“home/user/my_files/test.blif”

template<typename Container>
std::string join(Container container, std::string_view delim)

template<typename T>
std::string join(std::initializer_list<T> list, std::string_view delim)

template<typename Container>
void uniquify(Container container)

Template uniquify function implementation.

Removes repeated elements in the container

namespace vtr
std::optional-like interface with optional references. currently: import TartanLlama’s optional into the vtr names-
pace documentation at https://tl.tartanllama.xyz/en/latest/api/optional.html there are three main uses of this:

528 Chapter 16. VTRUTIL API

https://tl.tartanllama.xyz/en/latest/api/optional.html
https://tl.tartanllama.xyz/en/latest/api/optional.html

Verilog-to-Routing Documentation, Release 8.1.0-dev

a. replace pointers when refactoring legacy code optional<T&> (reference) is in many ways a pointer, it even
has * and -> operators, but it can’t be allocated or freed. this property is very helpful in refactoring.

b. explicit alternative for containers optional<T> (non-reference) allows you to put non-empty-initializable
objects into a container which owns them. it is an alternative to unique_ptr<T> in that sense, but with a
cleaner interface.

c. function return types returning an optional<T> gives the caller a clear hint to check the return value.
Q: why not use std::optional? A: std::optional doesn’t allow optional<T&> due to a disagreement about what
it means to assign to an optional reference. tl::optional permits this, with “rebind on assignment” behavior.
this means opt<T&> acts very similarly to a pointer. Q: why do we need opt<T&>? there’s already T*. A:
in an ideal world where all pointers are aliases to existing values and nothing else, opt<T&> wouldn’t be that
necessary. however VPR is full of legacy code where the usual C++ conventions about pointers don’t apply.
when refactoring such code, turning all pointers into opt<T&> helps a lot. it can’t be allocated or freed and
doesn’t allow pointer arithmetic. in that aspect it acts as a “enforced proper C++ ptr”. that’s why I think it’s
worth keeping around in the codebase.

Functions

std::vector<std::string> split(const char *text, std::string_view delims)
Splits the c-style string ‘text’ along the specified delimiter characters in ‘delims’.

Splits the string ‘text’ along the specified delimiter characters in ‘delims’.

The split strings (excluding the delimiters) are returned

std::vector<std::string> split(std::string_view text, std::string_view delims)
Splits the string ‘text’ along the specified delimiter characters in ‘delims’.

The split strings (excluding the delimiters) are returned

std::string replace_first(std::string_view input, std::string_view search, std::string_view replace)
Returns ‘input’ with the first instance of ‘search’ replaced with ‘replace’.

std::string replace_all(std::string_view input, std::string_view search, std::string_view replace)
Returns ‘input’ with all instances of ‘search’ replaced with ‘replace’.

bool starts_with(const std::string &str, std::string_view prefix)
Returns true if str starts with prefix.

Retruns true if str starts with prefix.

std::string string_fmt(const char *fmt, ...)
Returns a std::string formatted using a printf-style format string.

std::string vstring_fmt(const char *fmt, va_list args)
Returns a std::string formatted using a printf-style format string taking an explicit va_list.

char *strncpy(char *dest, const char *src, size_t size)
An alternate for strncpy since strncpy doesn’t work as most people would expect. This ensures null termi-
nation.

char *strdup(const char *str)
Legacy c-style function replacements.

Typically these add extra error checking and/or correct ‘unexpected’ behaviour of the standard c-functions

template<class T>

16.6. Other 529

Verilog-to-Routing Documentation, Release 8.1.0-dev

T atoT(const std::string &value, std::string_view type_name)
Legacy c-style function replacements.

Typically these add extra error checking and/or correct ‘unexpected’ behaviour of the standard c-functions

int atoi(const std::string &value)
Legacy c-style function replacements.

Typically these add extra error checking and/or correct ‘unexpected’ behaviour of the standard c-functions

double atod(const std::string &value)
Legacy c-style function replacements.

Typically these add extra error checking and/or correct ‘unexpected’ behaviour of the standard c-functions

float atof(const std::string &value)
Legacy c-style function replacements.

Typically these add extra error checking and/or correct ‘unexpected’ behaviour of the standard c-functions

unsigned atou(const std::string &value)
Legacy c-style function replacements.

Typically these add extra error checking and/or correct ‘unexpected’ behaviour of the standard c-functions

char *strtok(char *ptr, const char *tokens, FILE *fp, char *buf)
Get next token, and wrap to next line if \ at end of line.

There is a bit of a “gotcha” in strtok. It does not make a * copy of the character array which you pass by
pointer on the

first call. Thus, you must make sure this array exists for

as long as you are using strtok to parse that line. Don’t

use local buffers in a bunch of subroutines calling each

other; the local buffer may be overwritten when the stack is

restored after return from the subroutine.

FILE *fopen(const char *fname, const char *flag)
The legacy fopen function with extra error checking.

int fclose(FILE *f)
The legacy fclose function.

char *fgets(char *buf, int max_size, FILE *fp)
Get an input line, update the line number and cut off any comment part.

A \ at the end of a line with no comment part (#) means continue. vtr::fgets should give identical results
for Windows (\r

) and Linux (

) newlines, since it replaces each carriage return \r by a newline character

. Returns NULL after EOF.

530 Chapter 16. VTRUTIL API

Verilog-to-Routing Documentation, Release 8.1.0-dev

char *getline(char *&_lineptr, FILE *_stream)

to get an arbitrary long input line and cut off any comment part

the getline function is exaly like the __get_delim function in GNU with ‘

’ delimiter. As a result, to make the function behaviour identical for Windows (\r

) and Linux (

) compiler macros for checking operating systems have been used.

Note: user need to take care of the given pointer, which will be dynamically allocated by getdelim

int get_file_line_number_of_last_opened_file()
Returns line number of last opened and read file.

File utilities.

bool file_exists(const char *filename)

bool check_file_name_extension(std::string_view file_name, std::string_view file_extension)
Checks the file extension of an file to ensure correct file format.

Returns true if the extension is correct, and false otherwise.

std::vector<std::string> ReadLineTokens(FILE *InFile, int *LineNum)

Legacy ReadLine Tokening.

int get_pid()
Returns pid if os is unix, -1 otherwise.

16.6. Other 531

Verilog-to-Routing Documentation, Release 8.1.0-dev

532 Chapter 16. VTRUTIL API

CHAPTER

SEVENTEEN

VPR INTERNALS

17.1 VPR Draw Structures

17.1.1 T_Draw_State

struct t_draw_state
Structure used to store variables related to highlighting/drawing.

Stores a lot of different variables to reflect current draw state. Most callback functions/UI elements mutate some
member in this struct, which then alters the draw state. Accessible through global function get_draw_state_vars()
in draw_global.cpp. It is recommended to name the variable draw_state for consistent form.

Note: t_draw_state is used in the same way as a Context, but cannot be a Context because Contexts are not
copyable, while t_draw_state must be. (t_draw_state is copied to save a restore of the graphics state when running
graphics commands.)

Public Members

pic_type pic_on_screen = NO_PICTURE
What to draw on the screen (ROUTING, PLACEMENT, NO_PICTURE)

e_draw_nets show_nets = DRAW_NO_NETS
Whether to show nets at placement and routing.

e_draw_crit_path show_crit_path = DRAW_NO_CRIT_PATH
Whether to show crit path.

e_draw_congestion show_congestion = DRAW_NO_CONGEST
Controls if congestion is shown, when ROUTING is on screen.

e_draw_routing_costs show_routing_costs
Controls if routing congestion costs are shown, when ROUTING is on screen.

533

Verilog-to-Routing Documentation, Release 8.1.0-dev

e_draw_block_pin_util show_blk_pin_util = DRAW_NO_BLOCK_PIN_UTIL
Toggles whether block pin util is shown.

e_draw_router_expansion_cost show_router_expansion_cost =
DRAW_NO_ROUTER_EXPANSION_COST

Toggles whether router expansion cost is shown.

e_draw_placement_macros show_placement_macros = DRAW_NO_PLACEMENT_MACROS
Toggles whether placement macros are shown.

e_draw_routing_util show_routing_util = DRAW_NO_ROUTING_UTIL
toggles whether routing util is shown

e_draw_rr_toggle draw_rr_toggle = DRAW_NO_RR
Controls drawing of routing resources on screen, if pic_on_screen is ROUTING.

bool clip_routing_util = false
Whether routing util is shown.

bool draw_block_outlines = true
Boolean that toggles block outlines are shown.

bool draw_block_text = true
Boolean that toggles block names.

bool draw_partitions = false
Boolean that toggles showing partitions.

int draw_net_max_fanout = std::numeric_limits<int>::max()
integer value for net max fanout

int max_sub_blk_lvl = 0
The maximum number of sub-block levels among all physical block types in the FPGA.

int show_blk_internal = 0
If 0, no internal drawing is shown. Otherwise, indicates how many levels of sub-pbs to be drawn.

bool show_graphics = false
Whether graphics are enabled.

int gr_automode = 0
How often is user input required. (0: each t, 1: each place, 2: never)

bool auto_proceed = false
Should we automatically finish drawing (instead of waiting in the event loop for user interaction?

534 Chapter 17. VPR INTERNALS

Verilog-to-Routing Documentation, Release 8.1.0-dev

e_route_type draw_route_type = GLOBAL
GLOBAL or DETAILED.

char default_message[vtr::bufsize]
default screen message on screen

vtr::vector<ClusterNetId, ezgl::color> net_color
color in which each net should be drawn. [0..cluster_ctx.clb_nlist.nets().size()-1]

vtr::vector<RRNodeId, t_draw_rr_node> draw_rr_node
stores the state information of each routing resource.

Used to control drawing each routing resource when ROUTING is on screen.
[0..device_ctx.rr_nodes.size()-1]

const t_arch *arch_info = nullptr
pointer to architecture info. const

bool save_graphics = false
Whether to generate an output graphics file.

bool forced_pause = false
If we should pause for user interaction (requested by user)

float pres_fac = 1.
Present congestion cost factor used when drawing. Is a copy of router’s current pres_fac.

bool show_noc_button = false
Whether we are showing the NOC button.

e_draw_noc draw_noc = DRAW_NO_NOC
Draw state for NOC drawing.

bool justEnabled = false
Tracks autocomplete enabling.

std::vector<t_draw_layer_display> draw_layer_display
Stores visibility and transparency drawing controls for each layer [0 . . . grid.num_layers -1].

t_draw_layer_display cross_layer_display
Visibility and transparency for elements that cross die layers.

std::string save_graphics_file_base = "vpr"
base of save graphics file name (i.e before extension)

17.1. VPR Draw Structures 535

Verilog-to-Routing Documentation, Release 8.1.0-dev

17.1.2 T_Draw_Coords

struct t_draw_coords
Global Struct that stores drawn coords/sizes of grid blocks/logic blocks.

Structure used to store coordinates and dimensions for grid tiles and logic blocks in the FPGA. Accessible through
the global function get_draw_coords_vars().

Public Functions

t_draw_coords()

constructor

float get_tile_width()
returns tile width

float get_tile_height()
returns tile width

ezgl::rectangle get_pb_bbox(ClusterBlockId clb_index, const t_pb_graph_node &pb_gnode)
returns bounding box for given pb in given clb

ezgl::rectangle get_pb_bbox(int grid_layer, int grid_x, int grid_y, int sub_block_index, const
t_logical_block_type_ptr type, const t_pb_graph_node &pb_gnode)

returns bounding box of sub block at given location of given type w. given pb

ezgl::rectangle get_pb_bbox(int grid_layer, int grid_x, int grid_y, int sub_block_index, const
t_logical_block_type_ptr type)

returns pb of sub block of given idx/given type at location

ezgl::rectangle get_absolute_pb_bbox(const ClusterBlockId clb_index, const t_pb_graph_node
*pb_gnode)

returns a bounding box for the given pb in the given clb with absolute coordinates, that can be directly
drawn.

ezgl::rectangle get_absolute_clb_bbox(const ClusterBlockId clb_index, const t_logical_block_type_ptr
type)

Returns bounding box for CLB of given idx/type.

ezgl::rectangle get_absolute_clb_bbox(int grid_layer, int grid_x, int grid_y, int sub_block_index)
Returns a bounding box for the clb at device_ctx.grid[grid_x][grid_y].blocks[sub_block_index], even if it
is empty.

ezgl::rectangle get_absolute_clb_bbox(int grid_layer, int grid_x, int grid_y, int sub_block_index, const
t_logical_block_type_ptr block_type)

Returns a bounding box for the clb at device_ctx.grid[grid_x][grid_y].blocks[sub_block_index], of given
type even if it is empty.

536 Chapter 17. VPR INTERNALS

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Members

float *tile_x
Form the axes of the chips coordinate system.

tile_x and tile_y form two axes that make a COORDINATE SYSTEM for grid_tiles, which goes from
(tile_x[0],tile_y[0]) at the lower left corner of the FPGA to (tile_x[device_ctx.grid.width()-1]+tile_width,
tile_y[device_ctx.grid.height()-1]+tile_width) in the upper right corner.

float pin_size
Half-width or Half-height of a pin. Set when init_draw_coords is called.

std::vector<t_draw_pb_type_info> blk_info
stores drawing information for different block types

a list of drawing information for each type of block, one for each type. Access it with
cluster_ctx.clb_nlist.block_type(block_id)->index

17.2 VPR UI

17.2.1 UI SETUP

Functions

void basic_button_setup(ezgl::application *app)
configures basic buttons

Sets up Window, Search, Save, and SearchType buttons. Buttons are created in glade main.ui file. Connects
them to their cbk functions. Always called.

void net_button_setup(ezgl::application *app)
sets up net related buttons and connects their signals

Sets up the toggle nets combo box, net alpha spin button, and max fanout spin button which are created in main.ui
file. Found in Net Settings dropdown. Always called.

void block_button_setup(ezgl::application *app)
sets up block related buttons, connects their signals

Connects signals and sets init. values for blk internals spin button, blk pin util combo box,placement macros
combo box, and noc combo bx created in main.ui. Found in Block Settings dropdown. Always Called.

void search_setup(ezgl::application *app)
Loads required data for search autocomplete, sets up special completion fn.

void routing_button_setup(ezgl::application *app)
configures and connects signals/functions for routing buttons

Connects signals/sets default values for toggleRRButton, ToggleCongestion, ToggleCongestionCost, ToggleR-
outingBBox, RoutingExpansionCost, ToggleRoutingUtil buttons. Called in all startup options/runs that include
Routing

Connects signals/sets default values for toggleRRButton, ToggleCongestion, ToggleCongestionCost, ToggleR-
outingBBox, RoutingExpansionCost, ToggleRoutingUtil buttons.

17.2. VPR UI 537

Verilog-to-Routing Documentation, Release 8.1.0-dev

void view_button_setup(ezgl::application *app)
configures and connects signals/functions for View buttons

Determines how many layers there are and displays depending on number of layers

void crit_path_button_setup(ezgl::application *app)
connects critical path button to its cbk fn. Called in all setup options that show crit. path

void hide_crit_path_routing(ezgl::application *app, bool hide)
Hides or displays Critical Path routing / routing delay UI elements, Use to ensure we don’t show inactive buttons
etc. when routing data doesn’t exist.

void load_block_names(ezgl::application *app)
Loads block names into Gtk Structures to enable autocomplete.

Loads block names into Gtk Structures to enable autocomplete.
Parameters

app – ezgl application used for ui

void load_net_names(ezgl::application *app)
Loads net names into Gtk ListStore to enable autocomplete.

void hide_widget(std::string widgetName, ezgl::application *app)
Hides widget with given name; name is id string created in Glade.

void show_widget(std::string widgetName, ezgl::application *app)
Shows widget with given name; name is id string created in Glade.

Shows widget with given name; name is id string created in Glade.

17.3 VPR Draw Files

17.3.1 breakpoint.h/cpp

This file holds the declaration of the breakpoint class, and also some of the breakpoint related functions.

This class holds the definiton of type Breakpoint as well as all related functions. Breakpoints can be set through the GUI
anytime during placement or routing. Breakpoints can also be activated, deactivated, and deleted. Each breakpoint has
a type (BT_MOVE_NUM, BT_TEMP_NUM, BT_FROM_BLOCK, BT_ROUTER_ITER, BT_ROUTE_NET_ID,
BT_EXPRESSION) and holds the values for corresponding to its type, as well as a boolean variable to activate and
deactivate a breakpoint. It should be noted that each breakpoint can only have one type and hold one value correspond-
ing to that type. More complicated breakpoints are set using an expression. (e.g move_num > 3 && block_id == 11)
Breakpoints can be create using 3 constructors, the default contructor that doesn’t identify the type and sets a break-
point that is never reached, a constructor that takes in the type and an int value, and lastly a constructor that takes in the
type and the sting that holds the expression. (e.g Breakpoint(BT_MOVE_NUM, 4) or Breakpoint(BT_EXPRESSION,
“move_num += 3”)) The == operator has also been provided which returns true when two breakpoints have the same
type, and the same value corresponding to the type.

538 Chapter 17. VPR INTERNALS

Verilog-to-Routing Documentation, Release 8.1.0-dev

17.3.2 draw_basic.h/cpp

draw_basic.cpp contains all functions that draw in the main graphics area that aren’t RR nodes or muxes (they have
their own file). All functions in this file contain the prefix draw_.

17.3.3 draw_color.h

Contains declarations for different colors used to draw blocks, as well as a global vector of colors shuffled to prevent
similar colors from being close together

17.3.4 draw_debug.h/cpp

This file contains all functions regarding the graphics related to the setting of place and route breakpoints. Manages
creation of new Gtk Windows with debug options on use of the “Debug” button.

17.3.5 draw_floorplanning.h/cpp

17.3.6 draw_global.h/cpp

This file contains declaration of accessor functions that can be used to retrieve global variables declared at filed scope
inside draw_global.c. Doing so could reduce the number of global variables in VPR and thus reduced the likelihood
of compiler error for declaration of multiple variables with the same name.

Author: Long Yu (Mike) Wang Date: August 21, 2013

17.3.7 draw_mux.h/cpp

This file contains all functions related to drawing muxes

17.3.8 draw_noc.h/cpp

Overview

The following steps are all performd when displaying the NoC:

• First, the state of the NoC display button is checked. If the user selected to not display the NoC, then nothing is
displayed.

• If the user selected to display the NoC, then first the NoC routers are highlighted. The highlighting is done on
top of the already drawn FPGA device within the canvas.

• Then links are drawn on top of the FPGA device, connecting the routers together based on the topology. There
is an option to display the “usage” of each link in the NoC. If this is selected then a color map legend is drawn
and each link is colored based on how much of its bandwidth is being used relative to its maximum capaity.

Author: Srivatsan Srinivasan

17.3. VPR Draw Files 539

Verilog-to-Routing Documentation, Release 8.1.0-dev

17.3.9 draw_rr_edges.h/cpp

draw_rr_edges.cpp contains all functions that draw lines between RR nodes.

17.3.10 draw_rr.h/cpp

draw_rr.cpp contains all functions that relate to drawing routing resources.

17.3.11 draw_searchbar.h/cpp

draw_searchbar contains functions that draw/highlight search results, and manages the selection/highlighting of cur-
rently selected options.

17.3.12 draw_toggle_functions.h/cpp

This file contains all of the callback functions for main UI elements. These callback functions alter the state of a set
enum member in t_draw_state (draw_types.cpp) which is then reflected in the drawing. Please add any new callback
functions here, and if it makes sense, add _cbk at the end of function name to prevent someone else calling it in any
non gtk context.

Author: Sebastian Lievano

17.3.13 draw_triangle.h/cpp

draw_triangle.cpp contains functions that draw triangles. Used for drawing arrows for showing switching in the routing,
direction of signals, flylines

17.3.14 draw_types.h/cpp

This file contains declarations of structures and types shared by all drawing routines.

Key structures: t_draw_coords - holds coordinates and dimensions for each grid tile and each logic block t_draw_state
- holds variables that control drawing modes based on user input (eg. clicking on the menu buttons)

• holds state variables that control drawing and highlighting of architectural elements on the FPGA chip

Author: Long Yu (Mike) Wang, Sebastian Lievano

17.3.15 draw.h/cpp

The main drawing file. Contains the setup for ezgl application, ui setup, and graphis functions

This is VPR’s main graphics application program. The program interacts with ezgl/graphics.hpp, which provides an
API for displaying graphics on both X11 and Win32. The most important subroutine in this file is draw_main_canvas(),
which is a callback function that will be called whenever the screen needs to be updated. Then, draw_main_canvas()
will decide what drawing subroutines to call depending on whether PLACEMENT or ROUTING is shown on screen.
The initial_setup_X() functions link the menu button signals to the corresponding drawing functions. As a note, looks
into draw_global.c for understanding the data structures associated with drawing->

Contains all functions that didn’t fit in any other draw_*.cpp file.

Authors: Vaughn Betz, Long Yu (Mike) Wang, Dingyu (Tina) Yang, Sebastian Lievano Last updated: August 2022

540 Chapter 17. VPR INTERNALS

Verilog-to-Routing Documentation, Release 8.1.0-dev

17.3.16 hsl.h/cpp

This file manages conversions between color (red, green, and blue) and hsl (hue, saturation, and luminesence)

17.3.17 intra_logic_block.h/cpp

This file manages the interactions between logic blocks, cluster blocks, and their sub blocks Contains declaration of
selected_Sub_block_info struct, which holds the information on the currently selected/highlighted block

Authors: Long Yu Wang, Matthew J.P. Walker, Sebastian Lievano

17.3.18 manual_moves.h/cpp

Includes the data structures and gtk function for manual moves. The Manual Move Generator class is defined man-
ual_move_generator.h/cpp.

Author: Paula Perdomo

17.3.19 save_graphics.h/cpp

Manages saving of graphics in different file formats

17.3.20 search_bar.h/cpp

This file essentially follows the whole search process, from searching, finding the match, and finally highlighting the
searched for item. Also includes auto-complete functionality/matching functions.

Author: Sebastian Lievano

17.3.21 ui_setup.h/cpp

UI Members are initialized and created through a main.ui file, which is maintained and edited using the Glade program.
This file (ui_setup.h/cpp) contains the setup of these buttons, which are connected to their respective callback functions
in draw_toggle_functions.cpp.

Author: Sebastian Lievano

17.4 VPR NoC

17.4.1 NoC Router

NocRouter

This file defines the NocRouter class.

17.4. VPR NoC 541

Verilog-to-Routing Documentation, Release 8.1.0-dev

Overview

The NocRouter represents a physical router in the NoC. The NocRouter acts as nodes in the NoC and is used as entry
points to the NoC. The NocRouters are created based on the topology information provided by the user in the arch file.

The NocRouter contains the following information:

• The router id. This represents the unique ID given by the user in the architecture description file when describing
a router. The purpose of this is to help the user identify the router when logging information or displaying errors.

• The grid position of the physical router tile this object represents. Each router in the NoC represents a physical
router tile in the FPGA device. By storing the grid positions, we can quickly get the corresponding physical
router tile information by searching the DeviceGrid in the device context.

• The design module (router cluster blocks) currently occupying this tile. Within the user design there will be
a number of instantiations of NoC routers. The user will also provide information about which router blocks
will be communication with each other. During placement, it is possible for the router blocks to move between
the physical router tiles, so by storing the module reference, we can determine which physical router tiles are
communicating between each other and find a route between them.

class NocRouter
#include <noc_router.h>

Public Functions

NocRouter(int id, int grid_position_x, int grid_position_y, int layer_position)

int get_router_user_id(void) const
Gets the unique id assigned by the user for the physical router.

Returns
A numerical value (integer) that represents the physical router id

int get_router_grid_position_x(void) const
Gets the horizontal position on the FPGA device that the physical router is located.

Returns
A numerical value (integer) that represents horizontal position of the physical router

int get_router_grid_position_y(void) const
Gets the vertical position on the FPGA device that the physical router is located.

Returns
A numerical value (integer) that represents vertical position of the physical router

int get_router_layer_position(void) const
Gets the layer number of the die the the physical router is located.

Returns
A numerical value (integer) that represents layer position of the physical router

t_physical_tile_loc get_router_physical_location(void) const
Gets the physical location where the the physical router is located.

Returns
t_physical_tile_loc that contains x-y coordinates and the layer number

542 Chapter 17. VPR INTERNALS

Verilog-to-Routing Documentation, Release 8.1.0-dev

ClusterBlockId get_router_block_ref(void) const
Gets the unique id of the router block that is current placed on the physical router.

Returns
A ClusterBlockId that identifies a router block in the clustered netlist

void set_router_block_ref(ClusterBlockId router_block_ref_id)
Sets the router block that is placed on the physical router.

Parameters
router_block_ref_id – A ClusterBlockId that represents a router block

Private Members

int router_user_id
This represents a unique id provided by the user when describing the NoC topology in the arch file. The
intended use is to report errors with router ids the user understands

int router_grid_position_x
Represents the horizontal grid position on the device the physical router tile is located

int router_grid_position_y
Represents the vertical grid position on the device the physical router is located

int router_layer_position
Represents the layer number of the die that the physical router is located

ClusterBlockId router_block_ref
A unique identifier that represents a router block in the clustered netlist that is placed on the physical router

17.4.2 NoC Link

NocLink

This file defines the NocLink class.

Overview

The NocLink represents a connection between two routers in the NoC. The NocLink acts as edges in the NoC and can
be used to traverse between routers.The NocLinks are created based on the user provided topology information in the
arch file. The NocLink contains the following information:

• The source router and destination router the link connects

• The bandwidth usage of the link. When a link is used within a traffic flow (communication between two routers),
each link in the communication path needs to support a predefined bandwidth of the flow. Every time a link is
used in a flow, its bandwidth usage increases based on the bandwidth needed by this link. This is useful to track
as it can indicate when a link is being overused (the bandwidth usage exceeds the links supported capability).

17.4. VPR NoC 543

Verilog-to-Routing Documentation, Release 8.1.0-dev

Example:

---------- ----------
/ / link / /
/ router / --------------------->/ router /
/ a / / b /
/ / / /
/--------/ /--------/

In the example above the links source router would be router a and the sink router would be router b.

class NocLink
#include <noc_link.h>

Public Functions

NocLink(NocLinkId link_id, NocRouterId source_router, NocRouterId sink_router, double bw)

NocRouterId get_source_router(void) const
Provides the id of the router that has this link as an outgoing edge.

Returns
A unique id (NocRouterId) that identifies the source router of the link

NocRouterId get_sink_router(void) const
Provides the id of the router that has this link as an incoming edge.

Returns
A unique id (NocRouterId) that identifies the sink router of the link

double get_bandwidth_usage(void) const
Provides the size of the data (bandwidth) being currently transmitted using the link.

Returns
A numeric value of the bandwidth usage of the link

double get_bandwidth(void) const
Returns the maximum bandwidth that the link can carry without congestion.

Returns
A numeric value of the bandwidth capacity of the link

double get_congested_bandwidth(void) const
Calculates the extent to which the current bandwidth utilization exceeds the link capacity. Any positive
value means the link is congested.

Returns
A numeric value of the bandwidth over-utilization in the link

double get_congested_bandwidth_ratio() const
Computes the congested bandwidth to bandwidth capacity ratio.

Returns
The congested bandwidth to bandwidth capacity of the link.

544 Chapter 17. VPR INTERNALS

Verilog-to-Routing Documentation, Release 8.1.0-dev

NocLinkId get_link_id() const
Returns the unique link ID. The ID can be used to index vtr::vector<NoCLinkId, . . . > instances.

Returns
The unique ID for the link

void set_source_router(NocRouterId source)
Can be used to set the source router of the link to a different router.

Parameters
source – An identifier representing the router that should be the source of this link

void set_sink_router(NocRouterId sink)
Can be used to set the sink router of the link to a different router.

Parameters
sink – An identifier representing the router that should be the sink of this link

void set_bandwidth_usage(double new_bandwidth_usage)
Can modify the bandwidth usage of the link. It is expected that when the NoC is being placed the traffic
flows will be re-routed multiple times. So the links will end up being used and un-used by different traffic
flows and the bandwidths of the links will correspondingly change. This function can be used to make
those changes.

Parameters
new_bandwidth_usage – The new value of the bandwidth usage of the link

void set_bandwidth(double new_bandwidth)
Sets the bandwidth capacity of the link. This function should be used when global NoC data structures are
created and populated. The bandwidth capacity is used along with bandwidth_usage to measure conges-
tion.

Parameters
new_bandwidth – The new value of the bandwidth of the link

operator NocLinkId() const
Returns the unique link ID. The ID can be used to index vtr::vector<NoCLinkId, . . . > instances.

Returns
The unique ID for the link

Private Members

NocLinkId id

NocRouterId source_router
The router which uses this link as an outgoing edge

NocRouterId sink_router
The router which uses this link as an incoming edge

double bandwidth_usage
Represents the bandwidth of the data being transmitted on the link. Units in bits-per-second(bps)

17.4. VPR NoC 545

Verilog-to-Routing Documentation, Release 8.1.0-dev

double bandwidth
Represents the maximum bits per second that can be transmitted over the link without causing congestion

17.4.3 NoC Storage

NocStorage

This file defines the NocStorage class.

Overview

The NocStorage class represents the model of the embedded NoC in the FPGA device. The model describes the
topology of the NoC, its placement on the FPGA and properties of the NoC components. The NocStorage consists of
two main components, which are routers and links. The routers and links can be accessed to retrieve information about
them using unique identifier (NocRouterId, NocLinkId). Each router and link modelled in the NoC has a unique ID.

Router

A router is component of the NoC and is defined by the NocRouter class. Routers are represent physical FPGA tiles
and represent entry and exit points to and from the NoC.

Link

A link is a component of the NoC and is defined by the NocLink class. Links are connections between two routers.
Links are used by routers to communicate with other routers in the NoC. They can be thought of as edges in a graph.
Links have a source router where they exit from and sink router where they enter. It is important to note that the links
are not bi-directional; the legal way to traverse a link is from the source router of the link to the sink router.

class NocStorage
#include <noc_storage.h>

Public Functions

NocStorage()

const std::vector<NocLinkId> &get_noc_router_connections(NocRouterId id) const
Gets a vector of outgoing links for a given router in the NoC. THe link vector cannot be modified.

Parameters
id – A unique identifier that represents a router

Returns
A vector of links. The links are represented by a unique identifier.

const vtr::vector<NocRouterId, NocRouter> &get_noc_routers(void) const
Get all the routers in the NoC. The routers themselves cannot be modified. This function should be used
to when information on all routers is needed.

Returns
A vector of routers.

546 Chapter 17. VPR INTERNALS

Verilog-to-Routing Documentation, Release 8.1.0-dev

int get_number_of_noc_routers(void) const

Returns
An integer representing the total number of routers within the NoC.

const vtr::vector<NocLinkId, NocLink> &get_noc_links(void) const
Get all the links in the NoC. The links themselves cannot be modified. This function should be used when
information on every link is needed.

Returns
A vector of links.

vtr::vector<NocLinkId, NocLink> &get_mutable_noc_links(void)
Get all the links in the NoC. The links themselves can be modified. This function should be used when
information on every link needs to be modified.

Returns
A vector of links.

int get_number_of_noc_links(void) const

Returns
An integer representing the total number of links within the NoC.

double get_noc_link_bandwidth(void) const
Get the maximum allowable bandwidth for a link within the NoC.

Returns
a numeric value that represents the link bandwidth in bps

double get_noc_link_latency(void) const
Get the latency of traversing through a link in the NoC.

Returns
a numeric value that represents the link latency in seconds

double get_noc_router_latency(void) const
Get the latency of traversing through a router in the NoC.

Returns
a numeric value that represents the router latency in seconds

const NocRouter &get_single_noc_router(NocRouterId id) const
Given a unique router identifier, get the corresponding router within the NoC. The router cannot be modi-
fied, so the intended use of this function is to retrieve information about a specific router.

Parameters
id – A unique router identifier.

Returns
A router (NocRouter) that is identified by the given id.

NocRouter &get_single_mutable_noc_router(NocRouterId id)
Given a unique router identifier, get the corresponding router within the NoC. The router can be modified,
so the intended use of this function is to retrieve a router to modify it.

Parameters
id – A unique router identifier.

Returns
A router (NocRouter) that is identified by the given id.

17.4. VPR NoC 547

Verilog-to-Routing Documentation, Release 8.1.0-dev

const NocLink &get_single_noc_link(NocLinkId id) const
Given a unique link identifier, get the corresponding link within the NoC. The link cannot be modified, so
the intended use of this function is to retrieve information about a specific link.

Parameters
id – A unique link identifier.

Returns
A link (NocLink) that is identified by the given id.

NocLinkId get_single_noc_link_id(NocRouterId src_router, NocRouterId dst_router) const
Given source and sink router identifiers, this function finds a link connecting these routers and returns
its identifier. If such a link does not exist, an invalid id is returned. The function is not optimized for
performance as it has a complexity of O(N_links).

Parameters
• src_router – The unique router identifier for the source router.

• dst_router – The unique router identifier for the destination router.

Returns
A link identifier (NocLinkId) that connects the source router to the destination router.
NocLinkId::INVALID() is such a link is not found.

NocLink &get_single_mutable_noc_link(NocLinkId id)
Given a unique link identifier, get the corresponding link within the NoC. The link can be modified, so the
intended use of this function is tis to retrieve a link to modify it.

Parameters
id – A unique link identifier.

Returns
A link (NocLink) that is identified by the given id.

NocRouterId get_router_at_grid_location(const t_pl_loc &hard_router_location) const
Given a grid location of a hard router block on the FPGA device this function determines the id of the hard
router block positioned on that grid location.

Parameters
hard_router_location – A struct that contains the grid location of an arbitrary hard
router block on the FPGA.

Returns
NocRouterId The hard router block “id”

located at the given grid location.

void add_router(int id, int grid_position_x, int grid_position_y, int layer_poisition)
Creates a new router and adds it to the NoC. When the router is created, its corresponding internal id
(NocRouterId) is also created and a conversion between the user supplied id to the internal id is setup. If
“finish_building_noc()” was called then calling this function after will throw an error as the NoC cannot
be modified after building the NoC.

Parameters
• id – The user supplied identification for the router.

• grid_position_x – The horizontal position on the FPGA of the physical tile that
this router represents.

548 Chapter 17. VPR INTERNALS

Verilog-to-Routing Documentation, Release 8.1.0-dev

• grid_position_y – The vertical position on the FPGA of the physical tile that
this router represents.

void add_link(NocRouterId source, NocRouterId sink)
Creates a new link and adds it to the NoC. The newly created links internal id (NocLinkId) is then added
to the vector of outgoing links of its source router. If “finish_building_noc()” was called then calling this
function after will throw an error as the NoC cannot be modified after building the NoC.

Parameters
• source – A unique identifier for the router that the new link exits from (outgoing

from the router)

• sink – A unique identifier for the router that the new link enters into (incoming to
the router)

void set_noc_link_bandwidth(double link_bandwidth)
Set the maximum allowable bandwidth for a link within the NoC.

void set_noc_link_latency(double link_latency)
Set the latency of traversing through a link in the NoC.

void set_noc_router_latency(double router_latency)
Set the latency of traversing through a router in the NoC.

void set_device_grid_width(int grid_width)
Set the internal reference to the device grid width.

void set_device_grid_spec(int grid_width, int grid_height)

bool remove_link(NocRouterId src_router_id, NocRouterId sink_router_id)
The link is removed from the outgoing vector of links for the source router. The link is not removed from
the vector of all links as this will require a re-indexing of all link ids. Instead, the link is set to being invalid
by. The link is still removed since it will be considered invalid when used externally. THe link is identified
by going through the vector outgoing links of the supplied source router, for each outgoing link the sink
router is compared the supplied sink router and the link to remove is identified if there is a match. If the
link doesn’t exist in the NoC then a warning message is printed and a boolean status is updated indicating
that the link does not exist in the NoC.

Parameters
• src_router_id – The source router of the traffic flow to delete

• sink_router_id – The sink router of the traffic flow to delete

Returns
true The link was successfully removed

Returns
false The link was not removed

void finished_building_noc(void)
Asserts an internal flag which represents that the NoC has been built. This means that no changes can be
made to the NoC (routers and links cannot be added or removed). This function should be called after
building the NoC. Guarantees that no future changes can be made.

void clear_noc(void)
Resets the NoC by clearing all internal datastructures. This includes deleting all routers and links. Also
all internal IDs are removed (the is conversion table is cleared). It is recommended to run this function
before building the NoC.

17.4. VPR NoC 549

Verilog-to-Routing Documentation, Release 8.1.0-dev

NocRouterId convert_router_id(int id) const
Given a user id of a router, this function converts the id to the equivalent internal NocRouterId. If there
were no routers in the NoC with the given id an error is thrown.

Parameters
id – The user supplied identification for the router.

Returns
The equivalent internal NocRouterId.

void make_room_for_noc_router_link_list(void)
The datastructure that stores the outgoing links to each router is an 2-D Vector. When processing the links,
they can be outgoing from any router in the NoC. Therefore the column size of the 2-D vector needs to be
the size of the number of routers in the NoC. The function below sets the column size to the number of
routers in the NoC.

NocLinkId get_parallel_link(NocLinkId current_link) const
Two links are considered parallel when the source router of one link is the sink router of the second link
and when the sink router of one link is the source router of the other link. Given a link, this functions finds
a parallel link, if no link is found then an invalid link is returned.

Example:

---------- ----------
/ / link 1 / /
/ router / --------------------->/ router /
/ a / <---------------------/ b /
/ / link 2 / /
/--------/ /--------/

In the example above, link 1 and link 2 are parallel.

Parameters
current_link – A unique identifier that represents a link

Returns
NocLinkId An identifier that represents a link that is parallel to the input link.

int generate_router_key_from_grid_location(int grid_position_x, int grid_position_y, int
layer_position) const

Generates a unique integer using the x and y coordinates of a hard router block that can be used to identify
it. This should be used to generate the keys for the ‘grid_location_to_router_id’ datastructure.

The key will be generated as follows: key = y * device_grid.width() + x

Parameters
• grid_position_x – The horizontal position on the FPGA of the physical tile that

this router represents.

• grid_position_y – The vertical position on the FPGA of the phyical tile that this
router represents.

• layer_position – The layer number of the phyical tile that this router represents.

Returns
int Represents a unique key that can be used to identify a hard router block.

void echo_noc(char *file_name) const
Writes out the NocStorage class information to a file. This includes the list of routers and their connections
to other routers in the NoC.

550 Chapter 17. VPR INTERNALS

Verilog-to-Routing Documentation, Release 8.1.0-dev

Parameters
file_name – The name of the file that contains the NoC model info.

Private Functions

NocStorage(const NocStorage&) = delete

void operator=(const NocStorage&) = delete

Private Members

vtr::vector<NocRouterId, NocRouter> router_storage
Contains all the routers in the NoC

vtr::vector<NocRouterId, std::vector<NocLinkId>> router_link_list
Stores outgoing links for each router in the NoC. These links can be used by the router to communicate to
other routers in the NoC.

vtr::vector<NocLinkId, NocLink> link_storage
Contains all the links in the NoC

std::unordered_map<int, NocRouterId> router_id_conversion_table
The user provides an ID for the router when describing the NoC in the architecture file. This ID system
will be different than the NocRouterIds assigned to each router. The user ID system will be arbitrary but
the internal ID system used here will start at 0 and are dense since it is used to index the routers. The
datastructure below is a conversiont able that maps the user router IDs to the corresponding internal ones.

std::unordered_map<int, NocRouterId> grid_location_to_router_id
Associates the hard (physical) routers on the device to their grid location. During placement, when logical
routers are moved to different hard routers, only the grid location of where the logical router was moved
is known. Using this datastructure, the grid location can be used to identify the corresponding hard router
block positioned at that grid location. The NocROuterId uniquely identifies hard router blocks and can be
used to retrieve the hard router block information using the router_storage data structure above. This can
also be used to access the connectivity graph datastructure above.

It is important to know the specific hard router block because without it we cannot determine the start-
ing/end points of the traffic flows associated to the moved logical router. We need this so that we can
re-route all traffic flows and evaluate the the placement cost of the moved logical router block.

The intended use is when trying to re-route a traffic flow. The current location of a logical router block
can be used in conjunction with this datastructure to identify the corresponding hard router block.

bool built_noc
A flag that indicates whether the NoC has been built. If this flag is true, then the NoC cannot be modified,
meaning that routers and links cannot be added or removed. The intended use of this flag is to set it after
you complete building the NoC (adding routers and links). This flag can then acts as a check so that the
NoC is not modified later on after building it.

17.4. VPR NoC 551

Verilog-to-Routing Documentation, Release 8.1.0-dev

double noc_link_bandwidth
Represents the maximum allowed bandwidth for the links in the NoC (in bps)

double noc_link_latency
Represents the delay expected when going through a link (in seconds)

double noc_router_latency
Represents the expected delay when going through a router (in seconds))

int device_grid_width
Internal reference to the device grid width. This is necessary to compute a unique key for a given grid
location which we can then use to get the corresponding physical (hard) router at the given grid location
using ‘grid_location_to_router_id’.

int layer_num_grid_locs
Internal reference to the number of blocks at each layer (width * height). This is necessary to compute a
unique key for a given grid location which we can then use to get the corresponding physical (hard) router
at the given grid location using ‘grid_location_to_router_id’.

17.4.4 NoC Traffic Flows

NocTrafficFlows

This file defines the NocTrafficFlows class, which contains all communication between routers in the NoC.

Overview

The NocTrafficFlows class contains all traffic flows in a given design. A traffic flow is defined by the t_noc_traffic_flow
struct. Each traffic flow is indexed by a unique id that can be used to retrieve information about them.

The class also associates traffic flows to their logical source routers (start point) and logical sink routers (end point).
This is useful if one wants to find traffic flows based on just the source or sink logical router. The routes for the traffic
flows are expected to change throughout placement as routers will be moved within the chip. Therefore this class
provides a datastructure to keep track of which flows have been updated (re-routed).

Finally, this class also stores all router blocks (logical routers) in the design.

This class will be primarily used during placement to identify which routers inside the NoC (NocStorage) need to be
routed to each other.This is important since the router modules can be moved around to different tiles on the FPGA
device.

struct t_noc_traffic_flow
#include <noc_traffic_flows.h> Describes a traffic flow within the NoC, which is the communication between
two logical routers. The NocTrafficFlows contains a number of this structure to describe all the communication
happening within the NoC.

552 Chapter 17. VPR INTERNALS

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Functions

inline t_noc_traffic_flow(std::string source_router_name, std::string sink_router_name, ClusterBlockId
source_router_id, ClusterBlockId sink_router_id, double flow_bandwidth,
double max_flow_latency, int flow_priority)

Constructor initializes all variables

Public Members

std::string source_router_module_name
stores the partial name of the source router block communicating within this traffic flow. Names must
uniquely identify router blocks in the netlist.

std::string sink_router_module_name
stores the partial name of the sink router block communicating within this traffic flow. Names must
uniquely identify router blocks in the netlist.

ClusterBlockId source_router_cluster_id
stores the block id of the source router block communicating within this traffic flow. This can be used to
retrieve the block information from the clustered netlist

ClusterBlockId sink_router_cluster_id
stores the block id of the destination router block communicating within this traffic flow. This can be used
to retrieve the block information from the clustered netlist

double traffic_flow_bandwidth
The bandwidth of the information transferred between the two routers. Units in bytes per second. This
parameters will be used to update the link usage in the noc model after routing the traffic flow.

double max_traffic_flow_latency
The maximum allowable time to transmit data between thw two routers, in seconds. This parameter will
be used to evaluate a router traffic flow.

int traffic_flow_priority
Indicates the importance of the traffic flow. Higher priority traffic flows will have more importance and
will be more likely to have their latency reduced and constraints met. Range: [0-inf)

class NocTrafficFlows
#include <noc_traffic_flows.h>

17.4. VPR NoC 553

Verilog-to-Routing Documentation, Release 8.1.0-dev

Public Functions

NocTrafficFlows()

int get_number_of_traffic_flows(void) const

Returns
int An integer that represents the number of unique traffic flows within the NoC.

const t_noc_traffic_flow &get_single_noc_traffic_flow(NocTrafficFlowId traffic_flow_id) const
Given a unique id of a traffic flow (t_noc_traffic_flow) retrieve it from the vector of all traffic flows in the
design. The retrieved traffic flow cannot be modified but can be used to retrieve information such as the
routers involved.

Parameters
traffic_flow_id – The unique identifier (NocTrafficFlowId) of the traffic flow to re-
trieve.

Returns
const t_noc_traffic_flow& The traffic flow represented by the provided identifier.

const std::vector<NocTrafficFlowId> &get_traffic_flows_associated_to_router_block(ClusterBlockId
router_block_id)
const

Get a vector of all traffic flows that have a given router block in the clustered netlist as the source (starting
point) or sink (destination point) in the flow. If the router block does not have any traffic flows associated
to it then NULL is returned.

Parameters
router_block_id – A unique identifier that represents the a router block in the clus-
tered netlist. This router block will be the source or sink router in the retrieved traffic
flows.

Returns
const std::vector<NocTrafficFlowId>& A vector of traffic flows that have the input router
block parameter as the source or sink in the flow.

int get_number_of_routers_used_in_traffic_flows(void)
Gets the number of unique router blocks in the clustered netlist that were used within the user provided
traffic flows description.

Returns
int The total number of unique routers used in the traffic flows provided by the user.

const std::vector<NocLinkId> &get_traffic_flow_route(NocTrafficFlowId traffic_flow_id) const
Gets the routed path of traffic flow. This cannot be modified externally.

Parameters
traffic_flow_id – A unique identifier that represents a traffic flow.

Returns
std::vector<NocLinkId>& A reference to the provided traffic flow’s routed path.

std::vector<NocLinkId> &get_mutable_traffic_flow_route(NocTrafficFlowId traffic_flow_id)
Gets the routed path of a traffic flow. The path returned can and is expected to be modified externally.

Parameters
traffic_flow_id – A unique identifier that represents a traffic flow.

554 Chapter 17. VPR INTERNALS

Verilog-to-Routing Documentation, Release 8.1.0-dev

Returns
std::vector<NocLinkId>& A reference to the provided traffic flow’s vector of links used
from the src to dst.

const vtr::vector<NocTrafficFlowId, std::vector<NocLinkId>> &get_all_traffic_flow_routes() const
Gets all routed paths for all traffic flows. This cannot be modified externally.

Returns
vtr::vector<NocTrafficFlowId, std::vector<NocLinkId>>& A reference to the provided
container that includes all traffic flow routes.

const std::vector<ClusterBlockId> &get_router_clusters_in_netlist(void) const

Returns
a vector ([0..num_logical_router-1]) where each entry gives the clusterBlockId of a log-
ical NoC router. Used for fast lookups in the placer.

const std::vector<NocTrafficFlowId> &get_all_traffic_flow_id(void) const

Returns
provides access to all traffic flows’ ids to allow a range-based loop through all traffic
flows, used in noc_place_utils.cpp functions.

void create_noc_traffic_flow(const std::string &source_router_module_name, const std::string
&sink_router_module_name, ClusterBlockId source_router_cluster_id,
ClusterBlockId sink_router_cluster_id, double traffic_flow_bandwidth,
double traffic_flow_latency, int traffic_flow_priority)

Given a set of parameters that specify a traffic flow, create and add the specified traffic flow it to the vector
of flows in the design.

Finally, the newly created traffic flow is also added to internal datastructures that can be used to quickly
look up which traffic flows contain a specific router cluster block.

Parameters
• source_router_module_name – A string that represents the name of the source

router block in the traffic flow. This is provided by the user.

• sink_router_module_name – A string that represents the name of the sink router
block in the traffic flow. This is provided by the user.

• source_router_cluster_id – The source router block id that uniquely identifies
this block in the clustered netlist.

• sink_router_cluster_id – The sink router block id that uniquely identifier this
block in the clustered netlist.

• traffic_flow_bandwidth – The size of the data transmission in this traffic flow
(units of bps).

• traffic_flow_latency – The maximum allowable delay between transmitting
data at the source router and having it received at the sink router.

• traffic_flow_priority – The importance of a given traffic flow.

void set_router_cluster_in_netlist(const std::vector<ClusterBlockId>
&routers_cluster_id_in_netlist)

Copies the passed in router_cluster_id_in_netlist vector to the private internal vector.

Parameters
routers_cluster_id_in_netlist – A vector ([0..num_logical_routers-1]) contain-
ing all routers’ ClusterBlockId extracted from netlist.

17.4. VPR NoC 555

Verilog-to-Routing Documentation, Release 8.1.0-dev

void finished_noc_traffic_flows_setup(void)
Indicates that the class has been fully constructed, meaning that all the traffic flows have been added and
cannot be added anymore. This function should be called only after adding all the traffic flows provided
by the user. Additionally, creates the storage space for storing the routed paths for all traffic flows.

void clear_traffic_flows(void)
Resets the class by clearing internal datastructures.

bool check_if_cluster_block_has_traffic_flows(ClusterBlockId block_id) const
Given a block from the clustered netlist, determine if the block has traffic flows that it is a part of. There
are three possible cases seen by this function. Case 1 is when the block is not a router. Case 2 is when the
block is a router and has not traffic flows it is a part of. And finally case three is when the block is a router
and has traffic flows it is a part of. This function should be used during placement when clusters are moved
or placed. This function can indicate if the moved cluster needs traffic flows to be re-routed. If a cluster is
a part of a traffic flow, then this means that the cluster is either the source or sink router of the traffic flow.

Parameters
block_id – A unique identifier that represents a cluster block in the clustered netlist

Returns
true The block has traffic flows that it is a part of

Returns
false The block has no traffic flows it is a prt of

void echo_noc_traffic_flows(char *file_name)
Writes out the NocTrafficFlows class information to a file. This includes printing out each internal datas-
tructure information.

Parameters
file_name – The name of the file that contains the NoC traffic flow information

Private Functions

void add_traffic_flow_to_associated_routers(NocTrafficFlowId traffic_flow_id, ClusterBlockId
associated_router_id)

Given a router that is either a source or sink of a traffic flow, the corresponding traffic flow is added to a
vector of traffic flows associated to the router.

Parameters
• traffic_flow_id – A unique id that represents a traffic flow.

• associated_router_id – A ClusterBlockId that represents a router block.

• router_associated_traffic_flows – A datastructure that stores a vector of
traffic flows for a given router block where the traffic flows have the router as a
source or sink within the flow.

556 Chapter 17. VPR INTERNALS

Verilog-to-Routing Documentation, Release 8.1.0-dev

Private Members

vtr::vector<NocTrafficFlowId, t_noc_traffic_flow> noc_traffic_flows
contains all the traffic flows provided by the user and their information

std::vector<NocTrafficFlowId> noc_traffic_flows_ids
contains all the traffic flows ids provided by the user

std::vector<ClusterBlockId> router_cluster_in_netlist
contains the ids of all the router cluster blocks within the design

std::unordered_map<ClusterBlockId, std::vector<NocTrafficFlowId>>
traffic_flows_associated_to_router_blocks

Each traffic flow is composed of a source and destination router. If the source/destination routers are
moved, then the traffic flow needs tp be re-routed.

This datastructure stores a vector of traffic flows that are associated to each router cluster block. A traffic
flow is associated to a router cluster block if the router block is either the source or destination router within
the traffic flow.

This is done so that during placement when a router cluster block is moved then the traffic flows that need
to be re-routed due to the moved block can quickly be found.

bool built_traffic_flows
Indicates whether the the NocTrafficFlows class has been fully constructed. The expectation is that all the
traffic flows will be added in one spot and will not be added later on. So this variable can be used to check
whether all the traffic flows have been added or or not. The variable should be used to ensure that this class
is not modified once all the traffic flows have been added.

vtr::vector<NocTrafficFlowId, std::vector<NocLinkId>> traffic_flow_routes
Stores the routes that were found by the routing algorithm for all traffic flows within the NoC. This is
initialized after all the traffic flows have been added. This datastructure should be used to store the path
found whenever a traffic flow needs to be routed/ re-routed. Also, this datastructure should be used to
access the routed path of a traffic flow.

17.4.5 NoC Routing

NocRouting

This file defines the NocRouting class, which handles the packet routing between routers within the NoC. It describes
the routing algorithm for the NoC.

17.4. VPR NoC 557

Verilog-to-Routing Documentation, Release 8.1.0-dev

Overview

The NocRouting class is an abstract class. It is intended to be used as a base class and should not be used on its own.
The NocRouting class is used as a base (interface) class.

Usage

When a new routing algorithm for the NoC is needed, a new class should be made that inherits this class. Then the
following needs to be done:

• The routing algorithm should be implemented inside the route_flow function and should match the prototype
declared below

class NocRouting
#include <noc_routing.h> Subclassed by BFSRouting, TurnModelRouting

Public Functions

virtual ~NocRouting() = default

virtual void route_flow(NocRouterId src_router_id, NocRouterId sink_router_id, NocTrafficFlowId
traffic_flow_id, std::vector<NocLinkId> &flow_route, const NocStorage
&noc_model) = 0

Finds a route that goes from the starting router in a traffic flow to the destination router. A route consists
of a series of links that should be traversed when travelling between two routers within the NoC. Derived
classes will primarily differ by the routing algorithm they use. The expectation is that this function should
be overridden in the derived classes to implement the routing algorithm.

Parameters
• src_router_id – The source router of a traffic flow. Identifies the starting point

of the route within the NoC. This represents a physical router on the FPGA.

• sink_router_id – The destination router of a traffic flow. Identifies the ending
point of the route within the NoC.This represents a physical router on the FPGA.

• traffic_flow_id – The unique ID for the traffic flow being routed.

• flow_route – Stores the path returned by this function as a series of NoC links
found by a NoC routing algorithm between two routers in a traffic flow. The function
will clear any previously stored path and re-insert the new found path between the
two routers.

• noc_model – A model of the NoC. This is used to traverse the NoC and find a route
between the two routers.

558 Chapter 17. VPR INTERNALS

Verilog-to-Routing Documentation, Release 8.1.0-dev

NocRoutingAlgorithmCreator

This file defines the NocRoutingAlgorithmCreator class, which creates the routing algorithm that will be used to route
packets within the NoC.

Overview

There are a number of different available NoC routing algorithms. This class is a factory object for the NocRouting
abstract class. This class constructs the appropriate routing algorithm based on the user specification in the command
line. The user identifies a specific routing algorithm in the command line by providing a string (which is the name of
routing algorithm). Then the corresponding routing algorithm is created here based on the provided string.

class NocRoutingAlgorithmCreator
#include <noc_routing_algorithm_creator.h>

Public Functions

NocRoutingAlgorithmCreator() = default

~NocRoutingAlgorithmCreator() = default

Public Static Functions

static std::unique_ptr<NocRouting> create_routing_algorithm(const std::string
&routing_algorithm_name)

Given a string that identifies a NoC routing algorithm, this function creates the corresponding routing al-
gorithm and returns a reference to it. If the provided string does not match any available routing algorithms
then an error is thrown.

Parameters
routing_algorithm_name – A user provided string that identifies a NoC routing al-
gorithm

Returns
std::unique_ptr<NocRouting> A reference to the created NoC routing algorithm

XYRouting

This file defines the XYRouting class, which represents a direction oriented routing algorithm.

Overview

The XYRouting class performs packet routing between routers in the NoC. This class is based on the XY routing
algorithm.

17.4. VPR NoC 559

Verilog-to-Routing Documentation, Release 8.1.0-dev

XY Routing Algorithm

The algorithm works by first travelling in the X-direction and then in the Y-direction.

First the algorithm compares the source router and the destination router, checking the coordinates in the X-axis. If
the coordinates are not the same (so not horizontally aligned), then the algorithm moves in the direction towards the
destination router in the X-axis. For each router in the path, the algorithm checks again to see whether it is horizon-
tally aligned with the destination router; otherwise it moves in the direction of the destination router (once again the
movement is done in the X-axis).

Once horizontally aligned (current router in the path has the same X-coordinate as the destination) the algorithm checks
to see whether the y-axis coordinates match between the destination router and the current router in the path (checking
for vertical alignment). Similar to the x-axis movement, the algorithm moves in the Y-axis towards the destination
router. Once again, at each router in the path the algorithm checks for vertical alignment; if not aligned it then moves
in the y-axis towards the destination router until it is aligned vertically.

The main aspect of this algorithm is that it is deterministic. It will always move in the horizontal direction and then the
vertical direction to reach the destination router. The path is never affected by things like congestion, latency, distance
and etc..).

Below we have an example of the path determined by this algorithm for a 3x3 mesh NoC:

--------- --------- ---------
/ / / / / /
/ $ / ----------------- / / ------------------ / /
/ / / / / /
--------- --------- ---------

/^ / /
/+ / /
/+ / /
/+ / /

--------- --------- ---------
/ / / / / /
/ / ----------------- / / ------------------ / /
/ / / / / /
--------- --------- ---------

/^ / /
/+ / /
/+ / /
/+ / /

--------- --------- ---------
/ /<++++++++++++++++++/ /<+++++++++++++++++++/ /
/ / ----------------- / / ------------------ / * /
/ / / / / /
--------- --------- ---------

In the example above, the router marked with the ‘*’ character is the start and the router marked with the ‘$’ character
is the destination. The path determined by the XY-Routing algorithm is shown as “<++++”.

Note that this routing algorithm in inherently deadlock free.

560 Chapter 17. VPR INTERNALS

Verilog-to-Routing Documentation, Release 8.1.0-dev

Usage

It is recommended to use this algorithm when the NoC topology is of type Mesh. This algorithm will work for other
types of topologies but the directional nature of the algorithm makes it ideal for mesh topologies. If the algorithm fails
to find a router then an error is thrown; this should only happen for non-mesh topologies. If this algorithms is used for
non-mesh topologies, it might be able to generate routes for all traffic flows, but the generated routes are not guaranteed
to be deadlock free in a non-mesh topology. Im mesh and torus topologies, xy-routing algorithm is guaranteed to
generate deadlock free routes.

class XYRouting : public TurnModelRouting
#include <xy_routing.h>

Public Functions

~XYRouting() override

Private Functions

virtual const std::vector<TurnModelRouting::Direction> &get_legal_directions(NocRouterId
src_router_id,
NocRouterId
curr_router_id,
NocRouterId
dst_router_id, const
NocStorage
&noc_model) override

Returns legal directions that the traffic flow can follow. The legal directions might be a subset of all
directions to guarantee deadlock freedom.

Parameters
• src_router_id – A unique ID identifying the source NoC router.

• curr_router_id – A unique ID identifying the current NoC router.

• dst_router_id – A unique ID identifying the destination NoC router.

• noc_model – A model of the NoC. This might be used by the derived class to
determine the position of NoC routers.

Returns
std::vector<TurnModelRouting::Direction> All legal directions that the a traffic flow can
follow.

virtual TurnModelRouting::Direction select_next_direction(const
std::vector<TurnModelRouting::Direction>
&legal_directions, NocRouterId
src_router_id, NocRouterId dst_router_id,
NocRouterId curr_router_id,
NocTrafficFlowId traffic_flow_id, const
NocStorage &noc_model) override

Selects a direction from legal directions. The traffic flow travels travels in that direction.

Parameters

17.4. VPR NoC 561

Verilog-to-Routing Documentation, Release 8.1.0-dev

• legal_directions – Legal directions that the traffic flow can follow. Legal di-
rections are usually a subset of all possible directions to ensure deadlock freedom.

• src_router_id – A unique ID identifying the source NoC router.

• dst_router_id – A unique ID identifying the destination NoC router.

• curr_router_id – A unique ID identifying the current NoC router.

• noc_model – A model of the NoC. This might be used by the derived class to
determine the position of NoC routers.

Returns
Direction The direction to travel next

Private Members

const std::vector<TurnModelRouting::Direction> x_axis_directions =
{TurnModelRouting::Direction::LEFT, TurnModelRouting::Direction::RIGHT}

const std::vector<TurnModelRouting::Direction> y_axis_directions = {TurnModelRouting::Direction::UP,
TurnModelRouting::Direction::DOWN}

BFSRouting

This file defines the BFSRouting class.

Overview

The BFSRouting class performs packet routing between physical routers in the FPGA. This class is based on the BFS
algorithm.

The BFS algorithm is used to explore the NoC from the starting router in the traffic flow. Once the destination router
is found a path from the source to the destination router is generated. The main advantage of this algorithm is that the
found path from the source to the destination router uses the minimum number of links required within the NoC. This
algorithm does not guarantee deadlock freedom. In other words, the algorithm might generate routes that form cycles
in channel dependency graph.

class BFSRouting : public NocRouting
#include <bfs_routing.h>

Public Functions

~BFSRouting() override

virtual void route_flow(NocRouterId src_router_id, NocRouterId sink_router_id, NocTrafficFlowId
traffic_flow_id, std::vector<NocLinkId> &flow_route, const NocStorage
&noc_model) override

Finds a route that goes from the starting router in a traffic flow to the destination router. Uses the BFS
algorithm to determine the route. A route consists of a series of links that should be traversed when
travelling between two routers within the NoC.

Parameters

562 Chapter 17. VPR INTERNALS

Verilog-to-Routing Documentation, Release 8.1.0-dev

• src_router_id – The source router of a traffic flow. Identifies the starting point
of the route within the NoC. This represents a physical router on the FPGA.

• sink_router_id – The destination router of a traffic flow. Identifies the ending
point of the route within the NoC.This represents a physical router on the FPGA.

• traffic_flow_id – The unique ID for the traffic flow being routed.

• flow_route – Stores the path returned by this fuction as a series of NoC links found
by a NoC routing algorithm between two routers in a traffic flow. The function will
clear any previously stored path and re-insert the new found path between the two
routers.

• noc_model – A model of the NoC. This is used to traverse the NoC and find a route
between the two routers.

Private Functions

void generate_route(NocRouterId sink_router_id, std::vector<NocLinkId> &flow_route, const NocStorage
&noc_model, const std::unordered_map<NocRouterId, NocLinkId>
&router_parent_link)

Traces the path taken by the BFS routing algorithm from the destination router to the starting router.
Starting with the destination router, the parent link (link taken to get to this router) is found and is added
to the path. Then the algorithm moves to the source router of the parent link. Then it repeats the previous
process of finding the parent link, adding it to the path and moving to the source router. This is repeated
until the starting router is reached.

Parameters
• start_router_id – The router to use as a starting point when tracing back the

route from the destination router. to the the starting router. Generally this would be
the sink router of the flow.

• flow_route – Stores the path as a series of NoC links found by a NoC routing al-
gorithm between two routers in a traffic flow. The function will clear any previously
stored path and re-insert the new found path between the two routers.

• noc_model – A model of the NoC. This is used to traverse the NoC and find a route
between the two routers.

• router_parent_link – Contains the parent link associated to each router in the
NoC (parent link is the link used to visit the router during the BFS routing algo-
rithm).

17.4.6 NoC Data Types

Data Types

This file contains datatype definitions which are used by the NoC datastructures.

17.4. VPR NoC 563

Verilog-to-Routing Documentation, Release 8.1.0-dev

Typedefs

typedef vtr::StrongId<noc_router_id_tag, int> NocRouterId
Datatype to index routers within the NoC

typedef vtr::StrongId<noc_link_id_tag, int> NocLinkId
Datatype to index links within the NoC

typedef vtr::StrongId<noc_traffic_flow_id_tag, int> NocTrafficFlowId
Datatype to index traffic flows within the application

564 Chapter 17. VPR INTERNALS

CHAPTER

EIGHTEEN

INDICES AND TABLES

• genindex

• search

565

Verilog-to-Routing Documentation, Release 8.1.0-dev

566 Chapter 18. Indices and tables

BIBLIOGRAPHY

[Xilinx Inc12] Virtex-6 FPGA Configurable Logic Block User Guide. Xilinx Inc, ug364 edition, feb 2012. URL: http:
//www.xilinx.com/support/documentation/user_guides/ug364.pdf.

[Abb19] Mustafa Abbas. System level communication challenges of large fpgas. Master's thesis, University
of Toronto, 2019. URL: https://tspace.library.utoronto.ca/bitstream/1807/97807/3/Abbas_Mustafa_S_
201911_MSc_thesis.pdf.

[ABR+21] Aman Arora, Andrew Boutros, Daniel Rauch, Aishwarya Rajen, Aatman Borda, Seyed A. Damghani,
Samidh Mehta, Sangram Kate, Pragnesh Patel, Kenneth B. Kent, Vaughn Betz, and Lizy K. John. Koios:
a deep learning benchmark suite for fpga architecture and cad research. In International Conference on
Field Programmable Logic and Applications (FPL). 2021.

[BR97a] V. Betz and J. Rose. Cluster-based logic blocks for fpgas: area-efficiency vs. input sharing and size. In
Custom Integrated Circuits Conference, 551–554. 1997. doi:10.1109/CICC.1997.606687.

[Bet98] Vaughn Betz. Architecture and CAD for the Speed and Area Optimization of FPGAs. PhD thesis, Univer-
sity of Toronto, 1998.

[BR96a] Vaughn Betz and Jonathan Rose. Directional bias and non-uniformity in fpga global routing architectures.
In Proceedings of the 1996 IEEE/ACM International Conference on Computer-aided Design, ICCAD '96,
652–659. Washington, DC, USA, 1996. IEEE Computer Society. doi:10.1109/ICCAD.1996.571342.

[BR96b] Vaughn Betz and Jonathan Rose. On biased and non-uniform global routing architectures and cad tools
for fpgas. CSRI Technical Report 358, University of Toronto, 1996. URL: http://www.eecg.toronto.edu/
~vaughn/papers/techrep.pdf.

[BR97b] Vaughn Betz and Jonathan Rose. Vpr: a new packing, placement and routing tool for fpga research. In
Proceedings of the 7th International Workshop on Field-Programmable Logic and Applications, FPL '97,
213–222. London, UK, 1997. Springer-Verlag. doi:10.1007/3-540-63465-7_226.

[BR00] Vaughn Betz and Jonathan Rose. Automatic generation of fpga routing architectures from high-level de-
scriptions. In Int. Symp. on Field Programmable Gate Arrays, FPGA, 175–184. New York, NY, USA,
2000. ACM. doi:10.1145/329166.329203.

[BRM99] Vaughn Betz, Jonathan Rose, and Alexander Marquardt. Architecture and CAD for Deep-Submicron FP-
GAs. Kluwer Academic Publishers, mar 1999. ISBN 0792384601.

[BFRV92] S. Brown, R. Francis, J. Rose, and Z. Vranesic. Field-Programmable Gate Arrays. Kluwer Academic
Publishers, 1992. ISBN 978-0-7923-9248-4.

[CWW96] Yao-Wen Chang, D. F. Wong, and C. K. Wong. Universal switch modules for fpga design. ACM Trans.
Des. Autom. Electron. Syst., 1(1):80–101, January 1996. doi:10.1145/225871.225886.

[CB13] C. Chiasson and V. Betz. Coffe: fully-automated transistor sizing for fpgas. In 2013 In-
ternational Conference on Field-Programmable Technology (FPT), volume, 34–41. Dec 2013.
doi:10.1109/FPT.2013.6718327.

567

http://www.xilinx.com/support/documentation/user_guides/ug364.pdf
http://www.xilinx.com/support/documentation/user_guides/ug364.pdf
https://tspace.library.utoronto.ca/bitstream/1807/97807/3/Abbas_Mustafa_S_201911_MSc_thesis.pdf
https://tspace.library.utoronto.ca/bitstream/1807/97807/3/Abbas_Mustafa_S_201911_MSc_thesis.pdf
https://doi.org/10.1109/CICC.1997.606687
https://doi.org/10.1109/ICCAD.1996.571342
http://www.eecg.toronto.edu/~vaughn/papers/techrep.pdf
http://www.eecg.toronto.edu/~vaughn/papers/techrep.pdf
https://doi.org/10.1007/3-540-63465-7_226
https://doi.org/10.1145/329166.329203
https://doi.org/10.1145/225871.225886
https://doi.org/10.1109/FPT.2013.6718327

Verilog-to-Routing Documentation, Release 8.1.0-dev

[CCMB07] S. Cho, S. Chatterjee, A. Mishcenko, and R. Brayton. Efficient fpga mapping using priority cuts. In FPGA.
2007.

[CD94] J. Cong and Y. Ding. Flowmap: an optimal technology mapping algorithm for delay optimization in
lookup-table based fpga designs. Computer-Aided Design of Integrated Circuits and Systems, IEEE Trans-
actions on, 13(1):1–12, Jan 1994. doi:10.1109/43.273754.

[FBC08] R. Fung, V. Betz, and W. Chow. Slack allocation and routing to improve fpga timing while repairing
short-path violations. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
27(4):686–697, April 2008. doi:10.1109/TCAD.2008.917585.

[HYL+09] Chun Hok Ho, Chi Wai Yu, Philip Leong, Wayne Luk, and Steven J. E. Wilton. Floating-point fpga:
architecture and modeling. IEEE Trans. Very Large Scale Integr. Syst., 17(12):1709–1718, December
2009. doi:10.1109/TVLSI.2008.2006616.

[JKGS10] P. Jamieson, K. Kent, F. Gharibian, and L. Shannon. Odin ii-an open-source verilog hdl synthesis tool
for cad research. In International Symposium on Field-Programmable Custom Computing Machines,
149–156. 2010. doi:10.1109/FCCM.2010.31.

[KTK23] V. Betz K. Talaei Khoozani, A. Ahmadian Dehkordi. Titan 2.0: enabling open-source cad evaluation with
a modern architecture capture. International Conference on Field-Programmable Logic and Applications,
2023.

[LW06] Julien Lamoureux and Steven J. E. Wilton. Activity estimation for field-programmable gate ar-
rays. In International Conference on Field Programmable Logic and Applications, 1–8. 2006.
doi:10.1109/FPL.2006.311199.

[LLTY04] G. Lemieux, E. Lee, M. Tom, and A. Yu. Direction and single-driver wires in fpga interconnect. In Inter-
national Conference on Field-Programmable Technology, 41–48. 2004. doi:10.1109/FPT.2004.1393249.

[LAK+14] Jason Luu, Nooruddin Ahmed, Kenneth B. Kent, Jason Anderson, Jonathan Rose, Vaughn Betz, Jeffrey
Goeders, Michael Wainberg, Andrew Somerville, Thien Yu, Konstantin Nasartschuk, Miad Nasr, Sen
Wang, and Tim Liu. VTR 7.0: Next Generation Architecture and CAD System for FPGAs. ACM Trans-
actions on Reconfigurable Technology and Systems, 7(2):1–30, jun 2014. doi:10.1145/2617593.

[LAR11] Jason Luu, Jason Anderson, and Jonathan Rose. Architecture description and packing for logic blocks
with hierarchy, modes and complex interconnect. In Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, FPGA '11, 227–236. New York, NY, USA, 2011. ACM.
doi:10.1145/1950413.1950457.

[LKJ+09] Jason Luu, Ian Kuon, Peter Jamieson, Ted Campbell, Andy Ye, Wei Mark Fang, and Jonathan Rose. Vpr
5.0: fpga cad and architecture exploration tools with single-driver routing, heterogeneity and process scal-
ing. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
FPGA '09, 133–142. New York, NY, USA, 2009. ACM. doi:10.1145/1508128.1508150.

[MBR99] A Marquardt, V. Betz, and J. Rose. Using cluster-based logic blocks and timing-driven packing to improve
fpga speed and density. In FPGA, 37–46. 1999. doi:10.1145/296399.296426.

[MBR00] Alexander Marquardt, Vaughn Betz, and Jonathan Rose. Timing-driven placement for fpgas. In Proceed-
ings of the 2000 ACM/SIGDA Eighth International Symposium on Field Programmable Gate Arrays,
FPGA '00, 203–213. New York, NY, USA, 2000. ACM. doi:10.1145/329166.329208.

[MZB20] K. E. Murray, S. Zhong, and V. Betz. Air: a fast but lazy timing-driven fpga router. In To appear in Asia
Pacific Design Automation Conference (ASP-DAC). 2020. doi:.

[MWL+13] K.E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz. Titan: enabling large and complex benchmarks in
academic cad. In Field Programmable Logic and Applications (FPL), 2013 23rd International Conference
on, 1–8. Sept 2013. doi:10.1109/FPL.2013.6645503.

568 Bibliography

https://doi.org/10.1109/43.273754
https://doi.org/10.1109/TCAD.2008.917585
https://doi.org/10.1109/TVLSI.2008.2006616
https://doi.org/10.1109/FCCM.2010.31
https://doi.org/10.1109/FPL.2006.311199
https://doi.org/10.1109/FPT.2004.1393249
https://doi.org/10.1145/2617593
https://doi.org/10.1145/1950413.1950457
https://doi.org/10.1145/1508128.1508150
https://doi.org/10.1145/296399.296426
https://doi.org/10.1145/329166.329208
https://doi.org/
https://doi.org/10.1109/FPL.2013.6645503

Verilog-to-Routing Documentation, Release 8.1.0-dev

[MWL+15] Kevin E. Murray, Scott Whitty, Suya Liu, Jason Luu, and Vaughn Betz. Timing-driven titan: enabling
large benchmarks and exploring the gap between academic and commercial cad. ACM Trans. Reconfig-
urable Technol. Syst., 8(2):10:1–10:18, March 2015. doi:10.1145/2629579.

[Pet16] Oleg Petelin. Cad tools and architectures for improved fpga interconnect. Master's thesis, University of
Toronto, 2016. URL: http://hdl.handle.net/1807/75854.

[PHMB07] J. Pistorius, M. Hutton, A. Mishcenko, and R. Brayton. Benchmarking method and designs targeting logic
synthesis for fpgas. In IWLS, 230–237. 2007.

[RLY+12] Jonathan Rose, Jason Luu, Chi Wai Yu, Opal Densmore, Jeffrey Goeders, Andrew Somerville, Kenneth B.
Kent, Peter Jamieson, and Jason Anderson. The vtr project: architecture and cad for fpgas from verilog
to routing. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA '12, 77–86. New York, NY, USA, 2012. ACM. doi:10.1145/2145694.2145708.

[SG] Berkeley Logic Synthesis and Verification Group. Abc: a system for sequential synthesis and verification.
URL: http://www.eecs.berkeley.edu/~alanmi/abc/.

[Wil97] S. Wilton. Architectures and Algorithms for Field-Programmable Gate Arrays with Embedded Memories.
PhD thesis, University of Toronto, 1997. URL: http://www.ece.ubc.ca/~stevew/publications.html.

[Wol] Clifford Wolf. Yosys open syynthesis suite. URL: http://www.clifford.at/yosys/about.html.

[Yan91] S. Yang. Logic Synthesis and Optimization Benchmarks User Guide 3.0. Technical Report, MCNC, 1991.

[YLS92] H. Youssef, R. B. Lin, and E. Shragowitz. Bounds on net delays for vlsi circuits. IEEE Transac-
tions on Circuits and Systems II: Analog and Digital Signal Processing, 39(11):815–824, Nov 1992.
doi:10.1109/82.204129.

[MurrayAnsellRothman+20] K. E. Murray, T. Ansell, K. Rothman, A. Comodi, M. Elgammal, and V. Betz. Symbiflow
& vpr: an open-source design flow for commercial and novel fpgas. IEEE Micro, ():1–1, 2020.

Bibliography 569

https://doi.org/10.1145/2629579
http://hdl.handle.net/1807/75854
https://doi.org/10.1145/2145694.2145708
http://www.eecs.berkeley.edu/~alanmi/abc/
http://www.ece.ubc.ca/~stevew/publications.html
http://www.clifford.at/yosys/about.html
https://doi.org/10.1109/82.204129

Verilog-to-Routing Documentation, Release 8.1.0-dev

570 Bibliography

INDEX

Symbols
#(comment),\\(linecontinued),*(wildcard),{}(stringescape)

SDC Command, 195
$VTR_ROOT, 405
--RL_agent_placement

vpr command line option, 156
--absorb_buffer_luts

vpr command line option, 149
--acc_fac

vpr command line option, 161
--activity_file

vpr command line option, 175
--allow_unrelated_clustering

vpr command line option, 151
--alpha_clustering

vpr command line option, 151
--alpha_decay

vpr command line option, 156
--alpha_max

vpr command line option, 156
--alpha_min

vpr command line option, 156
--alpha_t

vpr command line option, 154
--analysis

vpr command line option, 144
--anneal_success_min

vpr command line option, 156
--anneal_success_target

vpr command line option, 156
--astar_fac

vpr command line option, 163
--auto

vpr command line option, 145
--balance_block_type_utilization

vpr command line option, 152
--base_cost_type

vpr command line option, 161
--bb_factor

vpr command line option, 161
--bend_cost

vpr command line option, 162

--beta_clustering
vpr command line option, 151

--circuit_file
vpr command line option, 148

--circuit_format
vpr command line option, 148

--clock_modeling
vpr command line option, 147

--cluster_seed_type
vpr command line option, 151

--clustering_pin_feasibility_filter
vpr command line option, 151

--congested_routing_iteration_threshold
vpr command line option, 165

--connection_driven_clustering
vpr command line option, 151

--const_gen_inference
vpr command line option, 150

--constant_net_method
vpr command line option, 147

--criticality_exp
vpr command line option, 164

--device
vpr command line option, 146

--disp
vpr command line option, 145

--echo_dot_timing_graph_node
vpr command line option, 173

--echo_file
vpr command line option, 146

--enable_timing_computations
vpr command line option, 154

--exit_before_pack
vpr command line option, 147

--exit_t
vpr command line option, 154

--first_iter_pres_fac
vpr command line option, 161

--fix_clusters
vpr command line option, 155

--fix_pins
vpr command line option, 155

571

Verilog-to-Routing Documentation, Release 8.1.0-dev

--flat_routing
vpr command line option, 160

--full_stats
vpr command line option, 166

--gen_post_implementation_merged_netlist
vpr command line option, 167

--gen_post_synthesis_netlist
vpr command line option, 166

--generate_rr_node_overuse_report
vpr command line option, 163

--graphics_commands
vpr command line option, 145

--help
vpr command line option, 144

--incremental_reroute_delay_ripup
vpr command line option, 164

--init_t
vpr command line option, 154

--initial_pres_fac
vpr command line option, 161

--inner_loop_recompute_divider
vpr command line option, 158

--inner_num
vpr command line option, 154

--max_criticality
vpr command line option, 163

--max_logged_overused_rr_nodes
vpr command line option, 163

--max_router_iterations
vpr command line option, 161

--min_incremental_reroute_fanout
vpr command line option, 162

--min_route_chan_width_hint
vpr command line option, 162

--net_file
vpr command line option, 148

--netlist_verbosity
vpr command line option, 150

--noc
vpr command line option, 159

--noc_flows_file
vpr command line option, 159

--noc_latency_constraints_weighting
vpr command line option, 160

--noc_latency_weighting
vpr command line option, 160

--noc_placement_file_name
vpr command line option, 160

--noc_placement_weighting
vpr command line option, 160

--noc_routing_algorithm
vpr command line option, 159

--noc_swap_percentage
vpr command line option, 160

--num_workers
vpr command line option, 146

--outfile_prefix
vpr command line option, 149

--pack
vpr command line option, 144

--pack_feasible_block_array_size
vpr command line option, 153

--pack_high_fanout_threshold
vpr command line option, 153

--pack_prioritize_transitive_connectivity
vpr command line option, 153

--pack_transitive_fanout_threshold
vpr command line option, 153

--pack_verbosity
vpr command line option, 153

--place
vpr command line option, 144

--place_agent_algorithm
vpr command line option, 156

--place_agent_epsilon
vpr command line option, 157

--place_agent_gamma
vpr command line option, 157

--place_agent_multistate
vpr command line option, 156

--place_agent_space
vpr command line option, 157

--place_algorithm
vpr command line option, 155

--place_bounding_box_mode
vpr command line option, 155

--place_chan_width
vpr command line option, 155

--place_cost_exp
vpr command line option, 156

--place_delay_model
vpr command line option, 158

--place_delay_model_reducer
vpr command line option, 159

--place_delay_offset
vpr command line option, 159

--place_delay_ramp_delta_threshold
vpr command line option, 159

--place_delay_ramp_slope
vpr command line option, 159

--place_effort_scaling
vpr command line option, 154

--place_file
vpr command line option, 148

--place_quench_algorithm
vpr command line option, 155

--place_reward_fun
vpr command line option, 157

572 Index

Verilog-to-Routing Documentation, Release 8.1.0-dev

--place_rlim_escape
vpr command line option, 156

--place_tsu_abs_margin
vpr command line option, 159

--place_tsu_rel_margin
vpr command line option, 159

--placer_debug_block
vpr command line option, 157

--placer_debug_net
vpr command line option, 157

--post_place_timing_report
vpr command line option, 159

--post_synth_netlist_unconn_inputs
vpr command line option, 167

--post_synth_netlist_unconn_outputs
vpr command line option, 167

--power
vpr command line option, 175

--pres_fac_mult
vpr command line option, 161

--quench_recompute_divider
vpr command line option, 158

--read_placement_delay_lookup
vpr command line option, 149

--read_router_lookahead
vpr command line option, 149

--read_rr_graph
vpr command line option, 149

--read_vpr_constraints
vpr command line option, 149

--recompute_crit_iter
vpr command line option, 158

--route
vpr command line option, 144

--route_bb_update
vpr command line option, 165

--route_chan_width
vpr command line option, 162

--route_file
vpr command line option, 148

--route_type
vpr command line option, 162

--router_algorithm
vpr command line option, 162

--router_debug_net
vpr command line option, 166

--router_debug_sink_rr
command line option, 328
vpr command line option, 166

--router_first_iter_timing_report
vpr command line option, 165

--router_high_fanout_threshold
vpr command line option, 165

--router_init_wirelength_abort_threshold

vpr command line option, 164
--router_initial_timing

vpr command line option, 165
--router_lookahead

vpr command line option, 165
--router_max_convergence_count

vpr command line option, 165
--router_profiler_astar_fac

vpr command line option, 163
--router_reconvergence_cpd_threshold

vpr command line option, 165
--router_update_lower_bound_delays

vpr command line option, 165
--routing_budgets_algorithm

vpr command line option, 164
--routing_failure_predictor

vpr command line option, 164
--save_graphics

vpr command line option, 145
--save_routing_per_iteration

vpr command line option, 164
--sdc_file

vpr command line option, 148
--seed

vpr command line option, 154
--sink_rr_node

command line option, 328
--source_rr_node

command line option, 328
--strict_checks

vpr command line option, 147
--sweep_constant_primary_outputs

vpr command line option, 150
--sweep_dangling_blocks

vpr command line option, 150
--sweep_dangling_nets

vpr command line option, 150
--sweep_dangling_primary_ios

vpr command line option, 150
--target_ext_pin_util

vpr command line option, 152
--target_utilization

vpr command line option, 147
--td_place_exp_first

vpr command line option, 158
--td_place_exp_last

vpr command line option, 158
--tech_properties

vpr command line option, 175
--terminate_if_timing_fails

vpr command line option, 148
--timing_analysis

vpr command line option, 146
--timing_driven_clustering

Index 573

Verilog-to-Routing Documentation, Release 8.1.0-dev

vpr command line option, 151
--timing_report_detail

vpr command line option, 167
--timing_report_npaths

vpr command line option, 167
--timing_report_skew

vpr command line option, 175
--timing_tradeoff

vpr command line option, 158
--two_stage_clock_routing

vpr command line option, 147
--verify_binary_search

vpr command line option, 162
--verify_file_digests

vpr command line option, 147
--version

vpr command line option, 146
--write_block_usage

vpr command line option, 153
--write_initial_place_file

vpr command line option, 149
--write_placement_delay_lookup

vpr command line option, 149
--write_router_lookahead

vpr command line option, 149
--write_rr_graph

vpr command line option, 148
--write_timing_summary

vpr command line option, 163
--write_vpr_constraints

vpr command line option, 149
-a

command line option, 229
-adder_cin_global

run_vtr_flow.py command line option, 52
-c

command line option, 229
-check_golden

parse_vtr_task.py command line option, 57
-clock<virtualornetlistclock>

SDC Option, 193
-cmos_tech

run_vtr_flow.py command line option, 51
-create_golden

parse_vtr_task.py command line option, 57
-delete_intermediate_files

run_vtr_flow.py command line option, 51
-delete_result_files

run_vtr_flow.py command line option, 51
-early

SDC Option, 194
-ending_stage

run_vtr_flow.py command line option, 50
-exact_mults

command line option, 229
-exclusive

SDC Option, 189
-from[get_clocks<clocklistorregexes>]

SDC Option, 190, 191, 193
-from[get_pins<pinlistorregexes>]

SDC Option, 195
-group{<clocklistorregexes>}

SDC Option, 189
-h

vpr command line option, 144
-hold

SDC Option, 191, 194
-j

run_vtr_task.py command line option, 54
vpr command line option, 146

-l
parse_vtr_task.py command line option, 57
run_vtr_task.py command line option, 54

-late
SDC Option, 194

-limit_memory_usage
run_vtr_flow.py command line option, 51

-max
SDC Option, 193

-min
SDC Option, 193

-min_hard_adder_size
run_vtr_flow.py command line option, 52

-min_hard_mult_size
run_vtr_flow.py command line option, 52

-mults_ratio
command line option, 229

-name<string>
SDC Option, 188

-nopass
command line option, 229

-odin_xml
run_vtr_flow.py command line option, 52

-parser
run_vtr_flow.py command line option, 52

-period<float>
SDC Option, 188

-power
run_vtr_flow.py command line option, 51

-s
run_vtr_task.py command line option, 54

-setup
SDC Option, 191, 194

-source
SDC Option, 194

-starting_stage
run_vtr_flow.py command line option, 50

-system

574 Index

Verilog-to-Routing Documentation, Release 8.1.0-dev

run_vtr_task.py command line option, 54
-temp_dir

parse_vtr_task.py command line option, 57
run_vtr_flow.py command line option, 51
run_vtr_task.py command line option, 54

-timeout
run_vtr_flow.py command line option, 51

-top
command line option, 229

-top_module
run_vtr_flow.py command line option, 52

-to[get_clocks<clocklistorregexes>]
SDC Option, 190, 191, 193

-to[get_pins<pinlistorregexes>]
SDC Option, 192, 195

-track_memory_usage
run_vtr_flow.py command line option, 51

-use_odin_simulation
run_vtr_flow.py command line option, 52

-valgrind
run_vtr_flow.py command line option, 51

-vtr_prim
command line option, 229

-waveform{<float><float>}
SDC Option, 188

-yosys_script
run_vtr_flow.py command line option, 52

<T_clock_to_Qmax="float"min="float"port="string"clock="string"/>
Tag Attribute, 106

<T_holdvalue="float"port="string"clock="string"/>
Tag Attribute, 106

<T_setupvalue="float"port="string"clock="string"/>
Tag Attribute, 106

<Tdelnum_inputs="int"delay="float"/>
Tag Attribute, 84

<areagrid_logic_tile_area="float"/>
Tag Attribute, 82

<auto_layoutaspect_ratio="float">
Tag Attribute, 64

<block_typeid="int"name="unique_identifier"width="int"height="int">
Tag Attribute, 214

<bufferslogical_effort_factor="float"/>
Tag Attribute, 119

<cbtype="pattern">intlist</cb>
Tag Attribute, 111

<chan_width_distr>content</chan_width_distr>
Tag Attribute, 82

<channelchan_width_max="int"x_min="int"y_min="int"x_max="int"y_max="int"/>
Tag Attribute, 213

<channelsrc="logical_router_name"dst="logical_router_name"bandwidth="float"latency_cons="float"priority="int"/>
Tag Attribute, 219

<clockC_wire="float"C_wire_per_m="float"buffer_size={"float"|"auto"}/>
Tag Attribute, 112

<clock_networkname="string"num_inst="integer">

Tag Attribute, 116
<clockname="string"num_pins="int"equivalent="{none|full}"/>

Tag Attribute, 88, 99
<coltype="string"priority="int"startx="expr"repeatx="expr"starty="expr"incry="expr"/>

Tag Attribute, 70
<completename="string"input="string"output="string"/>

Tag Attribute, 100
<complexblocklist>content</complexblocklist>

Tag Attribute, 64
<connection_blockinput_switch_name="string"/>

Tag Attribute, 80
<cornerstype="string"priority="int"/>

Tag Attribute, 68
<default_fcin_type="{frac|abs}"in_val="{int|float}"out_type="{frac|abs}"out_val="{int|float}"/>

Tag Attribute, 82
<delay_constantmax="float"min="float"in_port="string"out_port="string"/>

Tag Attribute, 105
<delay_matrixtype="{max|min}"in_port="string"out_port="string">matrix</delay>

Tag Attribute, 105
<delay>

SDC Option, 190, 193
<device>content</device>

Tag Attribute, 63
<directfrom="string"to="string">

Tag Attribute, 89
<directname="string"from_pin="string"to_pin="string"x_offset="int"y_offset="int"z_offset="int"switch_name="string"/>

Tag Attribute, 119
<directname="string"input="string"output="string"/>

Tag Attribute, 100
<dynamic_powerpower_per_instance="float"C_internal="float"/>

Tag Attribute, 108
<edgesrc_node="int"sink_node="int"switch_id="int"/>

Tag Attribute, 216
<equivalent_sites>

Tag Attribute, 88
<fc_overridefc_type="{frac|abs}"fc_val="{int|float}",port_name="{string}"segment_name="{string}">

Tag Attribute, 90
<fcin_type="{frac|abs}"in_val="{int|float}"out_type="{frac|abs}"out_val="{int|float}">

Tag Attribute, 89
<filltype="string"priority="int"/>

Tag Attribute, 66
<fixed_layoutname="string"width="int"height="int">

Tag Attribute, 64
<fromtype="string"switchpoint="int,int,int,..."/>

Tag Attribute, 126
<functype="string"formula="string"/>

Tag Attribute, 121
<grid_locx="int"y="int"block_type_id="int"width_offset="int"height_offset="int">

Tag Attribute, 215
<inputname="string"num_pins="int"equivalent="{none|full}"is_non_clock_global="{true|false}"/>

Tag Attribute, 87, 97
<latency>

SDC Option, 194
<layerdie="int">

Index 575

Verilog-to-Routing Documentation, Release 8.1.0-dev

Tag Attribute, 65
<layerdie='int'>content</layer>

Tag Attribute, 63
<layout/>

Tag Attribute, 63
<local_interconnectC_wire="float"factor="float"/>

Tag Attribute, 119
<locside="{left|right|bottom|top}"xoffset="int"yoffset="int">name_of_complex_logic_block.port_name[int:int]...</loc>

Tag Attribute, 91
<locxlow="int"ylow="int"xhigh="int"yhigh="int"side="{LEFT|RIGHT|TOP|BOTTOM}"ptc="int">

Tag Attribute, 215
<metadata>

Tag Attribute, 127
<metal_layername="string"Rmetal="float"Cmetal="float"/>

Tag Attribute, 116
<metaname="string">

Tag Attribute, 127
<modename="string"disable_packing="bool">

Tag Attribute, 99
<muxname="string"/>

Tag Attribute, 111
<muxname="string"input="string"output="string"/>

Tag Attribute, 100
<netlistclocklistorregexes>

SDC Option, 188
<noclink_bandwidth="float"link_latency="float"router_latency="float"noc_router_tile_name="string">

Tag Attribute, 109
<noclink_bandwidth="float"link_latency="float"router_latency="float"noc_router_tile_name="string">content</noc>

Tag Attribute, 64
<nodeid="int"type="unique_type"direction="unique_direction"capacity="int">

Tag Attribute, 215
<opin_switchname="string"/>

Tag Attribute, 111
<outputname="string"num_pins="int"equivalent="{none|full|instance}"/>

Tag Attribute, 88, 98
<pack_patternname="string"in_port="string"out_port="string"/>

Tag Attribute, 103
<path_multiplier>

SDC Option, 192
<pb_typename="string"num_pb="int"blif_model="string"/>

Tag Attribute, 96
<perimetertype="string"priority="int"/>

Tag Attribute, 66
<pin_classtype="pin_type">

Tag Attribute, 214
<pinlocationspattern="{spread|perimeter|custom}">

Tag Attribute, 91
<pinptc="block_pin_index">name</pin>

Tag Attribute, 215
<portname="string"energy_per_toggle="float"scaled_by_static_prob="string"scaled_by_static_prob_n="string"/>

Tag Attribute, 108
<portname="string"is_clock="{0|1}clock="string"combinational_sink_ports="string1string2..."/>

Tag Attribute, 62
<powermethod="string">contents</power>

Tag Attribute, 108
<regiontype="string"priority="int"startx="expr"endx="exprrepeatx="expr"incrx="expr"starty="expr"endy="expr"repeaty="expr"incry="expr"/>

Tag Attribute, 74
<ribmetal_layer="string"y="expr"startx="expr"endx="expr"repeatx="expr"repeaty="expr"/>

Tag Attribute, 117
<routerid="int"positionx="float"positiony="float"connections="intintintint...">

Tag Attribute, 109
<rowtype="string"priority="int"starty="expr"repeaty="expr"startx="expr"/>

Tag Attribute, 71
<sb_loctype="{full|straight|turns|none}"xoffset="int"yoffset="int",switch_override="string">

Tag Attribute, 94
<sbtype="pattern">intlist</sb>

Tag Attribute, 111
<segmentaxis="{x|y}"name="unique_name"length="int"type="{bidir|unidir}"freq="float"Rmetal="float"Cmetal="float">content</segment>

Tag Attribute, 110
<segmentid="int"name="unique_identifier">

Tag Attribute, 214
<segmentlist>content</segmentlist>

Tag Attribute, 64
<segmentsegment_id="int">

Tag Attribute, 216
<singletype="string"priority="int"x="expr"y="expr"/>

Tag Attribute, 69
<sitepb_type="string"pin_mapping="string"/>

Tag Attribute, 89
<sizingR_minW_nmos="float"R_minW_pmos="float"/>

Tag Attribute, 80
<sizingmux_trans_size="int"buf_size="float"/>

Tag Attribute, 214
<spinemetal_layer="string"x="expr"starty="expr"endy="expr"repeatx="expr"repeaty="expr"/>

Tag Attribute, 116
<static_powerpower_per_instance="float"/>

Tag Attribute, 108
<sub_tilename"string"capacity="{int}">

Tag Attribute, 86
<switch_blocktype="{wilton|subset|universal|custom}"fs="int"/>

Tag Attribute, 82
<switch_pointtype="{drive|tap}"name="string"yoffset="expr"xoffset="expr"xinc="expr"yinc="expr"buffer="string">

Tag Attribute, 117
<switchblock_locationspattern="{external_full_internal_straight|all|external|internal|none|custom}"internal_switch="string">

Tag Attribute, 92
<switchblock_locationtype="string"/>

Tag Attribute, 121
<switchblockname="string"type="string">

Tag Attribute, 121
<switchfuncs>

Tag Attribute, 121
<switchid="int"name="unique_identifier"type="{mux|tristate|pass_gate|short|buffer}">

Tag Attribute, 213
<switchlist>content</switchlist>

Tag Attribute, 63
<switchtype="{mux|tristate|pass_gate|short|buffer}"name="string"R="float"Cin="float"Cout="float"Cinternal="float"Tdel="float"buf_size="{auto|float}"mux_trans_size="float",power_buf_size="int"/>

Tag Attribute, 83
<tapfrom="string"to="string"locationx="expr"locationy="expr"switch="string"fc_val="float">

576 Index

Verilog-to-Routing Documentation, Release 8.1.0-dev

Tag Attribute, 118
<tilename="string"capacity="int"width="int"height="int"area="float"/>

Tag Attribute, 86
<tiles>content</tiles>

Tag Attribute, 63
<timingR="float"C="float">

Tag Attribute, 216
<timingR="float"cin="float"Cout="float"Tdel="float/>

Tag Attribute, 213
<timingR_per_meter="float"C_per_meter="float">

Tag Attribute, 214
<totype="string"switchpoint="int,int,int,..."/>

Tag Attribute, 126
<uncertainty>

SDC Option, 194
<wire_switchname="string"/>

Tag Attribute, 111
<wireconnnum_conns="expr"from_type="string,string,string,..."to_type="string,string,string,..."from_switchpoint="int,int,int,..."to_switchpoint="int,int,int,..."from_order="{fixed|shuffled}"to_order="{fixed|shuffled}"switch_override="string"/>

Tag Attribute, 122
<x_listindex="int"info="int"/><y_listindex="int"info="int"/>

Tag Attribute, 213
<xdistr="{gaussian|uniform|pulse|delta}"peak="float"width="float"xpeak="float"dc="float"/>

Tag Attribute, 85
<ydistr="{gaussian|uniform|pulse|delta}"peak="float"width="float"xpeak="float"dc="float"/>

Tag Attribute, 86
[get_clocks<clocklistorregexes>]

SDC Option, 194
[get_ports{<I/Olistorregexes>}]

SDC Option, 193

A
add_warnings_to_suppress (C++ function), 505
architecture

vpr command line option, 144
arithmean

vpr command line option, 159
AtomContext (C++ struct), 410
AtomContext::atom_molecules (C++ member), 410
AtomContext::AtomContext (C++ function), 410
AtomContext::list_of_pack_molecules (C++

member), 410
AtomContext::lookup (C++ member), 410
AtomContext::nlist (C++ member), 410
AtomNetlist (C++ class), 435
AtomNetlist::add_net (C++ function), 437
AtomNetlist::add_net_alias (C++ function), 437
AtomNetlist::AtomNetlist (C++ function), 435
AtomNetlist::block_model (C++ function), 435
AtomNetlist::block_truth_table (C++ function),

435
AtomNetlist::block_type (C++ function), 435
AtomNetlist::create_block (C++ function), 436
AtomNetlist::create_net (C++ function), 437
AtomNetlist::create_pin (C++ function), 436

AtomNetlist::create_port (C++ function), 436
AtomNetlist::find_atom_pin_driver (C++ func-

tion), 436
AtomNetlist::find_atom_port (C++ function), 435
AtomNetlist::net_aliases (C++ function), 436
AtomNetlist::port_model (C++ function), 435
auto}

vpr command line option, 152

B
basic_button_setup (C++ function), 537
BFSRouting (C++ class), 562
BFSRouting::~BFSRouting (C++ function), 562
BFSRouting::generate_route (C++ function), 563
BFSRouting::route_flow (C++ function), 562
block_button_setup (C++ function), 537

C
check_my_atof_2D (C++ function), 527
checkTokenType (C++ function), 527
circuit

vpr command line option, 144
class="flipflop"

Tag Attribute, 104
class="lut"

Tag Attribute, 104
class="memory"

Tag Attribute, 104
ClusteredNetlist (C++ class), 431
ClusteredNetlist::block_contains_primary_output

(C++ function), 432
ClusteredNetlist::block_net (C++ function), 431
ClusteredNetlist::block_pb (C++ function), 431
ClusteredNetlist::block_pin (C++ function), 432
ClusteredNetlist::block_pin_net_index (C++

function), 431
ClusteredNetlist::block_type (C++ function), 431
ClusteredNetlist::blocks_per_type (C++ func-

tion), 431
ClusteredNetlist::ClusteredNetlist (C++ func-

tion), 431
ClusteredNetlist::create_block (C++ function),

432
ClusteredNetlist::create_net (C++ function), 432
ClusteredNetlist::create_pin (C++ function), 432
ClusteredNetlist::create_port (C++ function),

432
ClusteredNetlist::find_block_by_name_fragment

(C++ function), 433
ClusteredNetlist::net_pin_logical_index

(C++ function), 432
ClusteredNetlist::pin_logical_index (C++

function), 432
ClusteringContext (C++ struct), 410

Index 577

Verilog-to-Routing Documentation, Release 8.1.0-dev

ClusteringContext::clb_nlist (C++ member), 411
command line option

--router_debug_sink_rr, 328
--sink_rr_node, 328
--source_rr_node, 328
-a, 229
-c, 229
-exact_mults, 229
-mults_ratio, 229
-nopass, 229
-top, 229
-vtr_prim, 229

Context (C++ struct), 411
create_clock

SDC Command, 188
crit_path_button_setup (C++ function), 538

D
delta_override}

vpr command line option, 158
DeviceContext (C++ struct), 411
DeviceContext::chan_width (C++ member), 411
DeviceContext::grid (C++ member), 411
DeviceContext::has_multiple_equivalent_tiles

(C++ member), 411
DeviceContext::read_rr_graph_filename (C++

member), 412
DeviceContext::rr_node_to_non_config_node_set

(C++ member), 411
DeviceContext::rr_non_config_node_sets (C++

member), 411
DeviceContext::rr_rc_data (C++ member), 411
DeviceContext::switch_fanin_remap (C++ mem-

ber), 412
DeviceContext::virtual_clock_network_root_idx

(C++ member), 411
dynamic}

vpr command line option, 165

E
e_token_type (C++ enum), 527
e_token_type::TOKEN_CLOSE_SQUARE_BRACKET

(C++ enumerator), 527
e_token_type::TOKEN_CLOSE_SQUIG_BRACKET

(C++ enumerator), 527
e_token_type::TOKEN_COLON (C++ enumerator), 527
e_token_type::TOKEN_DOT (C++ enumerator), 527
e_token_type::TOKEN_INT (C++ enumerator), 527
e_token_type::TOKEN_NULL (C++ enumerator), 527
e_token_type::TOKEN_OPEN_SQUARE_BRACKET

(C++ enumerator), 527
e_token_type::TOKEN_OPEN_SQUIG_BRACKET (C++

enumerator), 527

e_token_type::TOKEN_STRING (C++ enumerator),
527

F
freeTokens (C++ function), 527

G
geomean}

vpr command line option, 159
get_bp_state_globals (C++ function), 512
GetTokensFromString (C++ function), 527

H
hide_crit_path_routing (C++ function), 538
hide_widget (C++ function), 538

L
load_block_names (C++ function), 538
load_net_names (C++ function), 538

M
map}

vpr command line option, 165
max

vpr command line option, 159
median

vpr command line option, 159
MWTA, 405
my_atof_2D (C++ function), 527

N
net_button_setup (C++ function), 537
Netlist (C++ class), 423
Netlist::block_attrs (C++ function), 424
Netlist::block_clock_pins (C++ function), 424
Netlist::block_clock_ports (C++ function), 424
Netlist::block_input_pins (C++ function), 424
Netlist::block_input_ports (C++ function), 424
Netlist::block_is_combinational (C++ function),

424
Netlist::block_name (C++ function), 424
Netlist::block_output_pins (C++ function), 424
Netlist::block_output_ports (C++ function), 424
Netlist::block_params (C++ function), 424
Netlist::block_pins (C++ function), 424
Netlist::block_ports (C++ function), 424
Netlist::blocks (C++ function), 427
Netlist::compress (C++ function), 429
Netlist::find_block (C++ function), 427
Netlist::find_block_by_name_fragment (C++

function), 427
Netlist::find_net (C++ function), 428
Netlist::find_pin (C++ function), 428

578 Index

Verilog-to-Routing Documentation, Release 8.1.0-dev

Netlist::find_port (C++ function), 427
Netlist::is_compressed (C++ function), 423
Netlist::is_dirty (C++ function), 423
Netlist::merge_nets (C++ function), 429
Netlist::net_driver (C++ function), 426
Netlist::net_driver_block (C++ function), 426
Netlist::net_is_constant (C++ function), 426
Netlist::net_is_global (C++ function), 424
Netlist::net_is_ignored (C++ function), 423
Netlist::net_name (C++ function), 426
Netlist::net_pin (C++ function), 426
Netlist::net_pin_block (C++ function), 426
Netlist::net_pins (C++ function), 426
Netlist::net_sinks (C++ function), 426
Netlist::netlist_id (C++ function), 423
Netlist::netlist_name (C++ function), 423
Netlist::nets (C++ function), 427
Netlist::pin_block (C++ function), 426
Netlist::pin_is_constant (C++ function), 426
Netlist::pin_name (C++ function), 425
Netlist::pin_net (C++ function), 425
Netlist::pin_net_index (C++ function), 425
Netlist::pin_port (C++ function), 425
Netlist::pin_port_bit (C++ function), 425
Netlist::pin_port_type (C++ function), 426
Netlist::pin_type (C++ function), 425
Netlist::pins (C++ function), 427
Netlist::port_block (C++ function), 425
Netlist::port_name (C++ function), 424
Netlist::port_net (C++ function), 425
Netlist::port_pin (C++ function), 425
Netlist::port_pins (C++ function), 425
Netlist::port_type (C++ function), 425
Netlist::port_width (C++ function), 425
Netlist::ports (C++ function), 427
Netlist::print_stats (C++ function), 424
Netlist::remove_and_compress (C++ function), 429
Netlist::remove_block (C++ function), 424
Netlist::remove_net (C++ function), 426
Netlist::remove_net_pin (C++ function), 426
Netlist::remove_pin (C++ function), 426
Netlist::remove_port (C++ function), 425
Netlist::remove_unused (C++ function), 429
Netlist::set_block_attr (C++ function), 428
Netlist::set_block_name (C++ function), 428
Netlist::set_block_param (C++ function), 429
Netlist::set_net_is_global (C++ function), 429
Netlist::set_net_is_ignored (C++ function), 429
Netlist::set_pin_is_constant (C++ function), 428
Netlist::set_pin_net (C++ function), 428
Netlist::verify (C++ function), 423
NocLink (C++ class), 544
NocLink::bandwidth (C++ member), 545
NocLink::bandwidth_usage (C++ member), 545

NocLink::get_bandwidth (C++ function), 544
NocLink::get_bandwidth_usage (C++ function), 544
NocLink::get_congested_bandwidth (C++ func-

tion), 544
NocLink::get_congested_bandwidth_ratio (C++

function), 544
NocLink::get_link_id (C++ function), 544
NocLink::get_sink_router (C++ function), 544
NocLink::get_source_router (C++ function), 544
NocLink::id (C++ member), 545
NocLink::NocLink (C++ function), 544
NocLink::operator NocLinkId (C++ function), 545
NocLink::set_bandwidth (C++ function), 545
NocLink::set_bandwidth_usage (C++ function), 545
NocLink::set_sink_router (C++ function), 545
NocLink::set_source_router (C++ function), 545
NocLink::sink_router (C++ member), 545
NocLink::source_router (C++ member), 545
NocLinkId (C++ type), 564
NocRouter (C++ class), 542
NocRouter::get_router_block_ref (C++ function),

542
NocRouter::get_router_grid_position_x (C++

function), 542
NocRouter::get_router_grid_position_y (C++

function), 542
NocRouter::get_router_layer_position (C++

function), 542
NocRouter::get_router_physical_location

(C++ function), 542
NocRouter::get_router_user_id (C++ function),

542
NocRouter::NocRouter (C++ function), 542
NocRouter::router_block_ref (C++ member), 543
NocRouter::router_grid_position_x (C++ mem-

ber), 543
NocRouter::router_grid_position_y (C++ mem-

ber), 543
NocRouter::router_layer_position (C++ mem-

ber), 543
NocRouter::router_user_id (C++ member), 543
NocRouter::set_router_block_ref (C++ function),

543
NocRouterId (C++ type), 564
NocRouting (C++ class), 558
NocRouting::~NocRouting (C++ function), 558
NocRouting::route_flow (C++ function), 558
NocRoutingAlgorithmCreator (C++ class), 559
NocRoutingAlgorithmCreator::~NocRoutingAlgorithmCreator

(C++ function), 559
NocRoutingAlgorithmCreator::create_routing_algorithm

(C++ function), 559
NocRoutingAlgorithmCreator::NocRoutingAlgorithmCreator

(C++ function), 559

Index 579

Verilog-to-Routing Documentation, Release 8.1.0-dev

NocStorage (C++ class), 546
NocStorage::add_link (C++ function), 549
NocStorage::add_router (C++ function), 548
NocStorage::built_noc (C++ member), 551
NocStorage::clear_noc (C++ function), 549
NocStorage::convert_router_id (C++ function),

549
NocStorage::device_grid_width (C++ member),

552
NocStorage::echo_noc (C++ function), 550
NocStorage::finished_building_noc (C++ func-

tion), 549
NocStorage::generate_router_key_from_grid_location

(C++ function), 550
NocStorage::get_mutable_noc_links (C++ func-

tion), 547
NocStorage::get_noc_link_bandwidth (C++ func-

tion), 547
NocStorage::get_noc_link_latency (C++ func-

tion), 547
NocStorage::get_noc_links (C++ function), 547
NocStorage::get_noc_router_connections (C++

function), 546
NocStorage::get_noc_router_latency (C++ func-

tion), 547
NocStorage::get_noc_routers (C++ function), 546
NocStorage::get_number_of_noc_links (C++

function), 547
NocStorage::get_number_of_noc_routers (C++

function), 546
NocStorage::get_parallel_link (C++ function),

550
NocStorage::get_router_at_grid_location

(C++ function), 548
NocStorage::get_single_mutable_noc_link

(C++ function), 548
NocStorage::get_single_mutable_noc_router

(C++ function), 547
NocStorage::get_single_noc_link (C++ function),

547
NocStorage::get_single_noc_link_id (C++ func-

tion), 548
NocStorage::get_single_noc_router (C++ func-

tion), 547
NocStorage::grid_location_to_router_id (C++

member), 551
NocStorage::layer_num_grid_locs (C++ member),

552
NocStorage::link_storage (C++ member), 551
NocStorage::make_room_for_noc_router_link_list

(C++ function), 550
NocStorage::noc_link_bandwidth (C++ member),

551
NocStorage::noc_link_latency (C++ member), 552

NocStorage::noc_router_latency (C++ member),
552

NocStorage::NocStorage (C++ function), 546, 551
NocStorage::operator= (C++ function), 551
NocStorage::remove_link (C++ function), 549
NocStorage::router_id_conversion_table (C++

member), 551
NocStorage::router_link_list (C++ member), 551
NocStorage::router_storage (C++ member), 551
NocStorage::set_device_grid_spec (C++ func-

tion), 549
NocStorage::set_device_grid_width (C++ func-

tion), 549
NocStorage::set_noc_link_bandwidth (C++ func-

tion), 549
NocStorage::set_noc_link_latency (C++ func-

tion), 549
NocStorage::set_noc_router_latency (C++ func-

tion), 549
NocTrafficFlowId (C++ type), 564
NocTrafficFlows (C++ class), 553
NocTrafficFlows::add_traffic_flow_to_associated_routers

(C++ function), 556
NocTrafficFlows::built_traffic_flows (C++

member), 557
NocTrafficFlows::check_if_cluster_block_has_traffic_flows

(C++ function), 556
NocTrafficFlows::clear_traffic_flows (C++

function), 556
NocTrafficFlows::create_noc_traffic_flow

(C++ function), 555
NocTrafficFlows::echo_noc_traffic_flows

(C++ function), 556
NocTrafficFlows::finished_noc_traffic_flows_setup

(C++ function), 556
NocTrafficFlows::get_all_traffic_flow_id

(C++ function), 555
NocTrafficFlows::get_all_traffic_flow_routes

(C++ function), 555
NocTrafficFlows::get_mutable_traffic_flow_route

(C++ function), 554
NocTrafficFlows::get_number_of_routers_used_in_traffic_flows

(C++ function), 554
NocTrafficFlows::get_number_of_traffic_flows

(C++ function), 554
NocTrafficFlows::get_router_clusters_in_netlist

(C++ function), 555
NocTrafficFlows::get_single_noc_traffic_flow

(C++ function), 554
NocTrafficFlows::get_traffic_flow_route

(C++ function), 554
NocTrafficFlows::get_traffic_flows_associated_to_router_block

(C++ function), 554
NocTrafficFlows::noc_traffic_flows (C++ mem-

580 Index

Verilog-to-Routing Documentation, Release 8.1.0-dev

ber), 557
NocTrafficFlows::noc_traffic_flows_ids (C++

member), 557
NocTrafficFlows::NocTrafficFlows (C++ func-

tion), 554
NocTrafficFlows::router_cluster_in_netlist

(C++ member), 557
NocTrafficFlows::set_router_cluster_in_netlist

(C++ function), 555
NocTrafficFlows::traffic_flow_routes (C++

member), 557
NocTrafficFlows::traffic_flows_associated_to_router_blocks

(C++ member), 557

O
off

vpr command line option, 152
off}

vpr command line option, 147, 148

P
parse_vtr_task.py command line option

-check_golden, 57
-create_golden, 57
-l, 57
-temp_dir, 57

PlacementContext (C++ struct), 412
PlacementContext::block_locs (C++ member), 412
PlacementContext::compressed_block_grids

(C++ member), 412
PlacementContext::cube_bb (C++ member), 413
PlacementContext::f_placer_debug (C++ mem-

ber), 412
PlacementContext::grid_blocks (C++ member),

412
PlacementContext::physical_pins (C++ member),

412
PlacementContext::pl_macros (C++ member), 412
PlacementContext::placement_id (C++ member),

412
PowerContext (C++ struct), 413
PowerContext::atom_net_power (C++ member), 413
print_or_suppress_warning (C++ function), 505

R
RouteTree (C++ class), 438
RouteTree::all_nodes (C++ function), 440
RouteTree::find_by_isink (C++ function), 439
RouteTree::find_by_rr_id (C++ function), 439
RouteTree::freeze (C++ function), 440
RouteTree::get_is_isink_reached (C++ function),

440
RouteTree::get_non_config_node_set_usage

(C++ function), 440

RouteTree::get_reached_isinks (C++ function),
440

RouteTree::get_remaining_isinks (C++ function),
440

RouteTree::is_uncongested (C++ function), 440
RouteTree::is_valid (C++ function), 440
RouteTree::IsinkIterator (C++ class), 441
RouteTree::num_sinks (C++ function), 439
RouteTree::print (C++ function), 440
RouteTree::prune (C++ function), 440
RouteTree::reload_timing (C++ function), 439
RouteTree::root (C++ function), 440
RouteTree::RouteTree (C++ function), 439
RouteTree::update_from_heap (C++ function), 439
RouteTreeNode (C++ class), 441
RouteTreeNode::all_nodes (C++ function), 441
RouteTreeNode::C_downstream (C++ member), 442
RouteTreeNode::child_nodes (C++ function), 441
RouteTreeNode::inode (C++ member), 441
RouteTreeNode::is_leaf (C++ function), 441
RouteTreeNode::Iterable (C++ class), 442
RouteTreeNode::net_pin_index (C++ member), 442
RouteTreeNode::operator== (C++ function), 442
RouteTreeNode::parent (C++ function), 441
RouteTreeNode::parent_switch (C++ member), 441
RouteTreeNode::print (C++ function), 441
RouteTreeNode::R_upstream (C++ member), 442
RouteTreeNode::re_expand (C++ member), 441
RouteTreeNode::RouteTreeNode (C++ function), 441
RouteTreeNode::RTIterator (C++ class), 442
RouteTreeNode::RTRecIterator (C++ class), 442
RouteTreeNode::Tdel (C++ member), 442
routing_button_setup (C++ function), 537
RoutingContext (C++ struct), 413
RoutingContext::cached_router_lookahead_

(C++ member), 413
RoutingContext::net_status (C++ member), 413
RoutingContext::non_configurable_bitset

(C++ member), 413
RoutingContext::route_bb (C++ member), 413
RoutingContext::routing_id (C++ member), 413
RRGraphBuilder (C++ class), 447
RRGraphBuilder::add_node_side (C++ function),

450
RRGraphBuilder::add_node_to_all_locs (C++

function), 448
RRGraphBuilder::add_rr_segment (C++ function),

448
RRGraphBuilder::add_rr_switch (C++ function),

448
RRGraphBuilder::alloc_and_load_edges (C++

function), 450
RRGraphBuilder::clear (C++ function), 449

Index 581

Verilog-to-Routing Documentation, Release 8.1.0-dev

RRGraphBuilder::count_rr_switches (C++ func-
tion), 450

RRGraphBuilder::emplace_back (C++ function), 450
RRGraphBuilder::emplace_back_edge (C++ func-

tion), 450
RRGraphBuilder::end_rr_edge_metadata (C++

function), 448
RRGraphBuilder::end_rr_node_metadata (C++

function), 448
RRGraphBuilder::find_rr_edge_metadata (C++

function), 447
RRGraphBuilder::find_rr_node_metadata (C++

function), 447
RRGraphBuilder::init_fan_in (C++ function), 451
RRGraphBuilder::mark_edges_as_rr_switch_ids

(C++ function), 450
RRGraphBuilder::node_lookup (C++ function), 447
RRGraphBuilder::partition_edges (C++ function),

451
RRGraphBuilder::remap_rr_node_switch_indices

(C++ function), 450
RRGraphBuilder::reorder_nodes (C++ function),

449
RRGraphBuilder::reserve_edges (C++ function),

450
RRGraphBuilder::reserve_nodes (C++ function),

451
RRGraphBuilder::reset_rr_graph_flags (C++

function), 451
RRGraphBuilder::resize_nodes (C++ function), 451
RRGraphBuilder::resize_ptc_twist_incr (C++

function), 451
RRGraphBuilder::resize_switches (C++ function),

451
RRGraphBuilder::rr_edge_metadata (C++ func-

tion), 447
RRGraphBuilder::rr_edge_metadata_size (C++

function), 447
RRGraphBuilder::rr_node_metadata (C++ func-

tion), 447
RRGraphBuilder::rr_node_metadata_size (C++

function), 447
RRGraphBuilder::rr_nodes (C++ function), 447
RRGraphBuilder::rr_segments (C++ function), 448
RRGraphBuilder::rr_switch (C++ function), 448
RRGraphBuilder::set_node_capacity (C++ func-

tion), 449
RRGraphBuilder::set_node_class_num (C++ func-

tion), 450
RRGraphBuilder::set_node_coordinates (C++

function), 449
RRGraphBuilder::set_node_cost_index (C++

function), 450
RRGraphBuilder::set_node_direction (C++ func-

tion), 450
RRGraphBuilder::set_node_layer (C++ function),

449
RRGraphBuilder::set_node_pin_num (C++ func-

tion), 450
RRGraphBuilder::set_node_ptc_num (C++ func-

tion), 449
RRGraphBuilder::set_node_ptc_twist_incr

(C++ function), 449
RRGraphBuilder::set_node_rc_index (C++ func-

tion), 450
RRGraphBuilder::set_node_track_num (C++ func-

tion), 450
RRGraphBuilder::set_node_type (C++ function),

448
RRGraphBuilder::validate (C++ function), 451
RRGraphView (C++ class), 443
RRGraphView::configurable_edges (C++ function),

445
RRGraphView::edge_is_configurable (C++ func-

tion), 445
RRGraphView::edge_range (C++ function), 443
RRGraphView::edge_sink_node (C++ function), 445
RRGraphView::edge_src_node (C++ function), 445
RRGraphView::edge_switch (C++ function), 444
RRGraphView::edges (C++ function), 445
RRGraphView::empty (C++ function), 443
RRGraphView::is_node_on_specific_side (C++

function), 444
RRGraphView::node_C (C++ function), 443
RRGraphView::node_capacity (C++ function), 443
RRGraphView::node_class_num (C++ function), 446
RRGraphView::node_coordinate_to_string (C++

function), 444
RRGraphView::node_cost_index (C++ function), 446
RRGraphView::node_direction (C++ function), 443
RRGraphView::node_direction_string (C++ func-

tion), 443
RRGraphView::node_fan_in (C++ function), 443
RRGraphView::node_first_edge (C++ function), 444
RRGraphView::node_is_initialized (C++ func-

tion), 444
RRGraphView::node_is_inside_bounding_box

(C++ function), 444
RRGraphView::node_last_edge (C++ function), 444
RRGraphView::node_layer (C++ function), 444
RRGraphView::node_length (C++ function), 444
RRGraphView::node_lookup (C++ function), 446
RRGraphView::node_pin_num (C++ function), 445
RRGraphView::node_ptc_num (C++ function), 445
RRGraphView::node_ptc_twist (C++ function), 444
RRGraphView::node_R (C++ function), 443
RRGraphView::node_rc_index (C++ function), 443

582 Index

Verilog-to-Routing Documentation, Release 8.1.0-dev

RRGraphView::node_side_string (C++ function),
444

RRGraphView::node_track_num (C++ function), 445
RRGraphView::node_type (C++ function), 443
RRGraphView::node_type_string (C++ function),

443
RRGraphView::node_xhigh (C++ function), 443
RRGraphView::node_xlow (C++ function), 443
RRGraphView::node_yhigh (C++ function), 444
RRGraphView::node_ylow (C++ function), 443
RRGraphView::nodes_are_adjacent (C++ function),

444
RRGraphView::non_configurable_edges (C++

function), 445
RRGraphView::num_configurable_edges (C++

function), 445
RRGraphView::num_edges (C++ function), 445
RRGraphView::num_nodes (C++ function), 443
RRGraphView::num_non_configurable_edges

(C++ function), 445
RRGraphView::num_rr_segments (C++ function), 446
RRGraphView::num_rr_switches (C++ function), 446
RRGraphView::rr_node_metadata_data (C++ func-

tion), 446
RRGraphView::rr_nodes (C++ function), 446
RRGraphView::rr_segments (C++ function), 446
RRGraphView::rr_switch (C++ function), 446
RRGraphView::rr_switch_inf (C++ function), 446
RRGraphView::validate_node (C++ function), 446
RRGraphView::x_in_node_range (C++ function), 444
RRGraphView::y_in_node_range (C++ function), 444
RRSpatialLookup (C++ class), 452
RRSpatialLookup::add_node (C++ function), 453
RRSpatialLookup::clear (C++ function), 454
RRSpatialLookup::find_channel_nodes (C++

function), 453
RRSpatialLookup::find_grid_nodes_at_all_sides

(C++ function), 453
RRSpatialLookup::find_node (C++ function), 452
RRSpatialLookup::find_nodes_at_all_sides

(C++ function), 453
RRSpatialLookup::mirror_nodes (C++ function),

454
RRSpatialLookup::reorder (C++ function), 454
RRSpatialLookup::reserve_nodes (C++ function),

453
RRSpatialLookup::resize_nodes (C++ function),

454
run_vtr_flow.py command line option

-adder_cin_global, 52
-cmos_tech, 51
-delete_intermediate_files, 51
-delete_result_files, 51
-ending_stage, 50

-limit_memory_usage, 51
-min_hard_adder_size, 52
-min_hard_mult_size, 52
-odin_xml, 52
-parser, 52
-power, 51
-starting_stage, 50
-temp_dir, 51
-timeout, 51
-top_module, 52
-track_memory_usage, 51
-use_odin_simulation, 52
-valgrind, 51
-yosys_script, 52

run_vtr_task.py command line option
-j, 54
-l, 54
-s, 54
-system, 54
-temp_dir, 54

S
SDC Command

#(comment),\\(linecontinued),*(wildcard),{}(stringescape),
195

create_clock, 188
set_clock_groups, 189
set_clock_latency, 194
set_clock_uncertainty, 193
set_disable_timing, 195
set_false_path, 190
set_input_delay/set_output_delay, 193
set_max_delay/set_min_delay, 190
set_multicycle_path, 191

SDC Option
-clock<virtualornetlistclock>, 193
-early, 194
-exclusive, 189
-from[get_clocks<clocklistorregexes>],

190, 191, 193
-from[get_pins<pinlistorregexes>], 195
-group{<clocklistorregexes>}, 189
-hold, 191, 194
-late, 194
-max, 193
-min, 193
-name<string>, 188
-period<float>, 188
-setup, 191, 194
-source, 194
-to[get_clocks<clocklistorregexes>], 190,

191, 193
-to[get_pins<pinlistorregexes>], 192, 195
-waveform{<float><float>}, 188

Index 583

Verilog-to-Routing Documentation, Release 8.1.0-dev

<delay>, 190, 193
<latency>, 194
<netlistclocklistorregexes>, 188
<path_multiplier>, 192
<uncertainty>, 194
[get_clocks<clocklistorregexes>], 194
[get_ports{<I/Olistorregexes>}], 193

search_setup (C++ function), 537
set_clock_groups

SDC Command, 189
set_clock_latency

SDC Command, 194
set_clock_uncertainty

SDC Command, 193
set_disable_timing

SDC Command, 195
set_false_path

SDC Command, 190
set_input_delay/set_output_delay

SDC Command, 193
set_max_delay/set_min_delay

SDC Command, 190
set_multicycle_path

SDC Command, 191
set_noisy_warn_log_file (C++ function), 505
show_widget (C++ function), 538
std (C++ type), 460

T
t_draw_coords (C++ struct), 536
t_draw_coords::blk_info (C++ member), 537
t_draw_coords::get_absolute_clb_bbox (C++

function), 536
t_draw_coords::get_absolute_pb_bbox (C++

function), 536
t_draw_coords::get_pb_bbox (C++ function), 536
t_draw_coords::get_tile_height (C++ function),

536
t_draw_coords::get_tile_width (C++ function),

536
t_draw_coords::pin_size (C++ member), 537
t_draw_coords::t_draw_coords (C++ function), 536
t_draw_coords::tile_x (C++ member), 537
t_draw_state (C++ struct), 533
t_draw_state::arch_info (C++ member), 535
t_draw_state::auto_proceed (C++ member), 534
t_draw_state::clip_routing_util (C++ member),

534
t_draw_state::cross_layer_display (C++ mem-

ber), 535
t_draw_state::default_message (C++ member),

535
t_draw_state::draw_block_outlines (C++ mem-

ber), 534

t_draw_state::draw_block_text (C++ member),
534

t_draw_state::draw_layer_display (C++ mem-
ber), 535

t_draw_state::draw_net_max_fanout (C++ mem-
ber), 534

t_draw_state::draw_noc (C++ member), 535
t_draw_state::draw_partitions (C++ member),

534
t_draw_state::draw_route_type (C++ member),

534
t_draw_state::draw_rr_node (C++ member), 535
t_draw_state::draw_rr_toggle (C++ member), 534
t_draw_state::forced_pause (C++ member), 535
t_draw_state::gr_automode (C++ member), 534
t_draw_state::justEnabled (C++ member), 535
t_draw_state::max_sub_blk_lvl (C++ member),

534
t_draw_state::net_color (C++ member), 535
t_draw_state::pic_on_screen (C++ member), 533
t_draw_state::pres_fac (C++ member), 535
t_draw_state::save_graphics (C++ member), 535
t_draw_state::save_graphics_file_base (C++

member), 535
t_draw_state::show_blk_internal (C++ member),

534
t_draw_state::show_blk_pin_util (C++ member),

533
t_draw_state::show_congestion (C++ member),

533
t_draw_state::show_crit_path (C++ member), 533
t_draw_state::show_graphics (C++ member), 534
t_draw_state::show_nets (C++ member), 533
t_draw_state::show_noc_button (C++ member),

535
t_draw_state::show_placement_macros (C++

member), 534
t_draw_state::show_router_expansion_cost

(C++ member), 534
t_draw_state::show_routing_costs (C++ mem-

ber), 533
t_draw_state::show_routing_util (C++ member),

534
t_noc_traffic_flow (C++ struct), 552
t_noc_traffic_flow::max_traffic_flow_latency

(C++ member), 553
t_noc_traffic_flow::sink_router_cluster_id

(C++ member), 553
t_noc_traffic_flow::sink_router_module_name

(C++ member), 553
t_noc_traffic_flow::source_router_cluster_id

(C++ member), 553
t_noc_traffic_flow::source_router_module_name

(C++ member), 553

584 Index

Verilog-to-Routing Documentation, Release 8.1.0-dev

t_noc_traffic_flow::t_noc_traffic_flow (C++
function), 553

t_noc_traffic_flow::traffic_flow_bandwidth
(C++ member), 553

t_noc_traffic_flow::traffic_flow_priority
(C++ member), 553

t_token (C++ struct), 527
t_token::data (C++ member), 528
t_token::type (C++ member), 528
Tag Attribute

<T_clock_to_Qmax="float"min="float"port="string"clock="string"/>,
106

<T_holdvalue="float"port="string"clock="string"/>,
106

<T_setupvalue="float"port="string"clock="string"/>,
106

<Tdelnum_inputs="int"delay="float"/>, 84
<areagrid_logic_tile_area="float"/>, 82
<auto_layoutaspect_ratio="float">, 64
<block_typeid="int"name="unique_identifier"width="int"height="int">,

214
<bufferslogical_effort_factor="float"/>,

119
<cbtype="pattern">intlist</cb>, 111
<chan_width_distr>content</chan_width_distr>,

82
<channelchan_width_max="int"x_min="int"y_min="int"x_max="int"y_max="int"/>,

213
<channelsrc="logical_router_name"dst="logical_router_name"bandwidth="float"latency_cons="float"priority="int"/>,

219
<clockC_wire="float"C_wire_per_m="float"buffer_size={"float"|"auto"}/>,

112
<clock_networkname="string"num_inst="integer">,

116
<clockname="string"num_pins="int"equivalent="{none|full}"/>,

88, 99
<coltype="string"priority="int"startx="expr"repeatx="expr"starty="expr"incry="expr"/>,

70
<completename="string"input="string"output="string"/>,

100
<complexblocklist>content</complexblocklist>,

64
<connection_blockinput_switch_name="string"/>,

80
<cornerstype="string"priority="int"/>, 68
<default_fcin_type="{frac|abs}"in_val="{int|float}"out_type="{frac|abs}"out_val="{int|float}"/>,

82
<delay_constantmax="float"min="float"in_port="string"out_port="string"/>,

105
<delay_matrixtype="{max|min}"in_port="string"out_port="string">matrix</delay>,

105
<device>content</device>, 63
<directfrom="string"to="string">, 89
<directname="string"from_pin="string"to_pin="string"x_offset="int"y_offset="int"z_offset="int"switch_name="string"/>,

119
<directname="string"input="string"output="string"/>,

100
<dynamic_powerpower_per_instance="float"C_internal="float"/>,

108
<edgesrc_node="int"sink_node="int"switch_id="int"/>,

216
<equivalent_sites>, 88
<fc_overridefc_type="{frac|abs}"fc_val="{int|float}",port_name="{string}"segment_name="{string}">,

90
<fcin_type="{frac|abs}"in_val="{int|float}"out_type="{frac|abs}"out_val="{int|float}">,

89
<filltype="string"priority="int"/>, 66
<fixed_layoutname="string"width="int"height="int">,

64
<fromtype="string"switchpoint="int,int,int,..."/>,

126
<functype="string"formula="string"/>, 121
<grid_locx="int"y="int"block_type_id="int"width_offset="int"height_offset="int">,

215
<inputname="string"num_pins="int"equivalent="{none|full}"is_non_clock_global="{true|false}"/>,

87, 97
<layerdie="int">, 65
<layerdie='int'>content</layer>, 63
<layout/>, 63
<local_interconnectC_wire="float"factor="float"/>,

119
<locside="{left|right|bottom|top}"xoffset="int"yoffset="int">name_of_complex_logic_block.port_name[int:int]...</loc>,

91
<locxlow="int"ylow="int"xhigh="int"yhigh="int"side="{LEFT|RIGHT|TOP|BOTTOM}"ptc="int">,

215
<metadata>, 127
<metal_layername="string"Rmetal="float"Cmetal="float"/>,

116
<metaname="string">, 127
<modename="string"disable_packing="bool">,

99
<muxname="string"/>, 111
<muxname="string"input="string"output="string"/>,

100
<noclink_bandwidth="float"link_latency="float"router_latency="float"noc_router_tile_name="string">,

109
<noclink_bandwidth="float"link_latency="float"router_latency="float"noc_router_tile_name="string">content</noc>,

64
<nodeid="int"type="unique_type"direction="unique_direction"capacity="int">,

215
<opin_switchname="string"/>, 111
<outputname="string"num_pins="int"equivalent="{none|full|instance}"/>,

88, 98
<pack_patternname="string"in_port="string"out_port="string"/>,

103
<pb_typename="string"num_pb="int"blif_model="string"/>,

96
<perimetertype="string"priority="int"/>,

Index 585

Verilog-to-Routing Documentation, Release 8.1.0-dev

66
<pin_classtype="pin_type">, 214
<pinlocationspattern="{spread|perimeter|custom}">,

91
<pinptc="block_pin_index">name</pin>, 215
<portname="string"energy_per_toggle="float"scaled_by_static_prob="string"scaled_by_static_prob_n="string"/>,

108
<portname="string"is_clock="{0|1}clock="string"combinational_sink_ports="string1string2..."/>,

62
<powermethod="string">contents</power>,

108
<regiontype="string"priority="int"startx="expr"endx="exprrepeatx="expr"incrx="expr"starty="expr"endy="expr"repeaty="expr"incry="expr"/>,

74
<ribmetal_layer="string"y="expr"startx="expr"endx="expr"repeatx="expr"repeaty="expr"/>,

117
<routerid="int"positionx="float"positiony="float"connections="intintintint...">,

109
<rowtype="string"priority="int"starty="expr"repeaty="expr"startx="expr"/>,

71
<sb_loctype="{full|straight|turns|none}"xoffset="int"yoffset="int",switch_override="string">,

94
<sbtype="pattern">intlist</sb>, 111
<segmentaxis="{x|y}"name="unique_name"length="int"type="{bidir|unidir}"freq="float"Rmetal="float"Cmetal="float">content</segment>,

110
<segmentid="int"name="unique_identifier">,

214
<segmentlist>content</segmentlist>, 64
<segmentsegment_id="int">, 216
<singletype="string"priority="int"x="expr"y="expr"/>,

69
<sitepb_type="string"pin_mapping="string"/>,

89
<sizingR_minW_nmos="float"R_minW_pmos="float"/>,

80
<sizingmux_trans_size="int"buf_size="float"/>,

214
<spinemetal_layer="string"x="expr"starty="expr"endy="expr"repeatx="expr"repeaty="expr"/>,

116
<static_powerpower_per_instance="float"/>,

108
<sub_tilename"string"capacity="{int}">,

86
<switch_blocktype="{wilton|subset|universal|custom}"fs="int"/>,

82
<switch_pointtype="{drive|tap}"name="string"yoffset="expr"xoffset="expr"xinc="expr"yinc="expr"buffer="string">,

117
<switchblock_locationspattern="{external_full_internal_straight|all|external|internal|none|custom}"internal_switch="string">,

92
<switchblock_locationtype="string"/>, 121
<switchblockname="string"type="string">,

121
<switchfuncs>, 121
<switchid="int"name="unique_identifier"type="{mux|tristate|pass_gate|short|buffer}">,

213

<switchlist>content</switchlist>, 63
<switchtype="{mux|tristate|pass_gate|short|buffer}"name="string"R="float"Cin="float"Cout="float"Cinternal="float"Tdel="float"buf_size="{auto|float}"mux_trans_size="float",power_buf_size="int"/>,

83
<tapfrom="string"to="string"locationx="expr"locationy="expr"switch="string"fc_val="float">,

118
<tilename="string"capacity="int"width="int"height="int"area="float"/>,

86
<tiles>content</tiles>, 63
<timingR="float"C="float">, 216
<timingR="float"cin="float"Cout="float"Tdel="float/>,

213
<timingR_per_meter="float"C_per_meter="float">,

214
<totype="string"switchpoint="int,int,int,..."/>,

126
<wire_switchname="string"/>, 111
<wireconnnum_conns="expr"from_type="string,string,string,..."to_type="string,string,string,..."from_switchpoint="int,int,int,..."to_switchpoint="int,int,int,..."from_order="{fixed|shuffled}"to_order="{fixed|shuffled}"switch_override="string"/>,

122
<x_listindex="int"info="int"/><y_listindex="int"info="int"/>,

213
<xdistr="{gaussian|uniform|pulse|delta}"peak="float"width="float"xpeak="float"dc="float"/>,

85
<ydistr="{gaussian|uniform|pulse|delta}"peak="float"width="float"xpeak="float"dc="float"/>,

86
class="flipflop", 104
class="lut", 104
class="memory", 104

TimingContext (C++ struct), 414
TimingContext::constraints (C++ member), 414
TimingContext::graph (C++ member), 414

V
view_button_setup (C++ function), 537
vpr command line option

--RL_agent_placement, 156
--absorb_buffer_luts, 149
--acc_fac, 161
--activity_file, 175
--allow_unrelated_clustering, 151
--alpha_clustering, 151
--alpha_decay, 156
--alpha_max, 156
--alpha_min, 156
--alpha_t, 154
--analysis, 144
--anneal_success_min, 156
--anneal_success_target, 156
--astar_fac, 163
--auto, 145
--balance_block_type_utilization, 152
--base_cost_type, 161
--bb_factor, 161
--bend_cost, 162
--beta_clustering, 151

586 Index

Verilog-to-Routing Documentation, Release 8.1.0-dev

--circuit_file, 148
--circuit_format, 148
--clock_modeling, 147
--cluster_seed_type, 151
--clustering_pin_feasibility_filter, 151
--congested_routing_iteration_threshold,

165
--connection_driven_clustering, 151
--const_gen_inference, 150
--constant_net_method, 147
--criticality_exp, 164
--device, 146
--disp, 145
--echo_dot_timing_graph_node, 173
--echo_file, 146
--enable_timing_computations, 154
--exit_before_pack, 147
--exit_t, 154
--first_iter_pres_fac, 161
--fix_clusters, 155
--fix_pins, 155
--flat_routing, 160
--full_stats, 166
--gen_post_implementation_merged_netlist,

167
--gen_post_synthesis_netlist, 166
--generate_rr_node_overuse_report, 163
--graphics_commands, 145
--help, 144
--incremental_reroute_delay_ripup, 164
--init_t, 154
--initial_pres_fac, 161
--inner_loop_recompute_divider, 158
--inner_num, 154
--max_criticality, 163
--max_logged_overused_rr_nodes, 163
--max_router_iterations, 161
--min_incremental_reroute_fanout, 162
--min_route_chan_width_hint, 162
--net_file, 148
--netlist_verbosity, 150
--noc, 159
--noc_flows_file, 159
--noc_latency_constraints_weighting, 160
--noc_latency_weighting, 160
--noc_placement_file_name, 160
--noc_placement_weighting, 160
--noc_routing_algorithm, 159
--noc_swap_percentage, 160
--num_workers, 146
--outfile_prefix, 149
--pack, 144
--pack_feasible_block_array_size, 153
--pack_high_fanout_threshold, 153

--pack_prioritize_transitive_connectivity,
153

--pack_transitive_fanout_threshold, 153
--pack_verbosity, 153
--place, 144
--place_agent_algorithm, 156
--place_agent_epsilon, 157
--place_agent_gamma, 157
--place_agent_multistate, 156
--place_agent_space, 157
--place_algorithm, 155
--place_bounding_box_mode, 155
--place_chan_width, 155
--place_cost_exp, 156
--place_delay_model, 158
--place_delay_model_reducer, 159
--place_delay_offset, 159
--place_delay_ramp_delta_threshold, 159
--place_delay_ramp_slope, 159
--place_effort_scaling, 154
--place_file, 148
--place_quench_algorithm, 155
--place_reward_fun, 157
--place_rlim_escape, 156
--place_tsu_abs_margin, 159
--place_tsu_rel_margin, 159
--placer_debug_block, 157
--placer_debug_net, 157
--post_place_timing_report, 159
--post_synth_netlist_unconn_inputs, 167
--post_synth_netlist_unconn_outputs, 167
--power, 175
--pres_fac_mult, 161
--quench_recompute_divider, 158
--read_placement_delay_lookup, 149
--read_router_lookahead, 149
--read_rr_graph, 149
--read_vpr_constraints, 149
--recompute_crit_iter, 158
--route, 144
--route_bb_update, 165
--route_chan_width, 162
--route_file, 148
--route_type, 162
--router_algorithm, 162
--router_debug_net, 166
--router_debug_sink_rr, 166
--router_first_iter_timing_report, 165
--router_high_fanout_threshold, 165
--router_init_wirelength_abort_threshold,

164
--router_initial_timing, 165
--router_lookahead, 165
--router_max_convergence_count, 165

Index 587

Verilog-to-Routing Documentation, Release 8.1.0-dev

--router_profiler_astar_fac, 163
--router_reconvergence_cpd_threshold, 165
--router_update_lower_bound_delays, 165
--routing_budgets_algorithm, 164
--routing_failure_predictor, 164
--save_graphics, 145
--save_routing_per_iteration, 164
--sdc_file, 148
--seed, 154
--strict_checks, 147
--sweep_constant_primary_outputs, 150
--sweep_dangling_blocks, 150
--sweep_dangling_nets, 150
--sweep_dangling_primary_ios, 150
--target_ext_pin_util, 152
--target_utilization, 147
--td_place_exp_first, 158
--td_place_exp_last, 158
--tech_properties, 175
--terminate_if_timing_fails, 148
--timing_analysis, 146
--timing_driven_clustering, 151
--timing_report_detail, 167
--timing_report_npaths, 167
--timing_report_skew, 175
--timing_tradeoff, 158
--two_stage_clock_routing, 147
--verify_binary_search, 162
--verify_file_digests, 147
--version, 146
--write_block_usage, 153
--write_initial_place_file, 149
--write_placement_delay_lookup, 149
--write_router_lookahead, 149
--write_rr_graph, 148
--write_timing_summary, 163
--write_vpr_constraints, 149
-h, 144
-j, 146
architecture, 144
arithmean, 159
auto}, 152
circuit, 144
delta_override}, 158
dynamic}, 165
geomean}, 159
map}, 165
max, 159
median, 159
off, 152
off}, 147, 148

VprContext (C++ class), 409
vtr (C++ type), 455, 459, 461, 463, 469, 471, 478, 479,

481, 482, 485, 489, 499–501, 503, 505, 506,

512, 516, 518–523, 528
vtr::aligned_allocator (C++ struct), 501
vtr::arithmean (C++ function), 519
vtr::array_view (C++ class), 495
vtr::array_view::array_view (C++ function), 496
vtr::array_view::at (C++ function), 496
vtr::array_view::back (C++ function), 496
vtr::array_view::begin (C++ function), 496
vtr::array_view::cbegin (C++ function), 496
vtr::array_view::cend (C++ function), 497
vtr::array_view::data (C++ function), 496
vtr::array_view::empty (C++ function), 496
vtr::array_view::end (C++ function), 496
vtr::array_view::front (C++ function), 496
vtr::array_view::length (C++ function), 496
vtr::array_view::operator[] (C++ function), 496
vtr::array_view::size (C++ function), 496
vtr::array_view_id (C++ class), 494
vtr::array_view_id::at (C++ function), 495
vtr::array_view_id::key_iterator (C++ class),

495
vtr::array_view_id::key_iterator::my_iter

(C++ type), 495
vtr::array_view_id::key_iterator::operator*

(C++ function), 495
vtr::array_view_id::key_iterator::operator++

(C++ function), 495
vtr::array_view_id::key_iterator::operator--

(C++ function), 495
vtr::array_view_id::key_iterator::operator->

(C++ function), 495
vtr::array_view_id::keys (C++ function), 495
vtr::array_view_id::operator[] (C++ function),

495
vtr::atod (C++ function), 530
vtr::atof (C++ function), 530
vtr::atoi (C++ function), 530
vtr::atoT (C++ function), 529
vtr::atou (C++ function), 530
vtr::basename (C++ function), 521
vtr::bimap (C++ class), 479
vtr::bimap::begin (C++ function), 479
vtr::bimap::bimap (C++ function), 480
vtr::bimap::clear (C++ function), 480
vtr::bimap::contains (C++ function), 480
vtr::bimap::empty (C++ function), 480
vtr::bimap::end (C++ function), 479
vtr::bimap::erase (C++ function), 480
vtr::bimap::find (C++ function), 479, 480
vtr::bimap::insert (C++ function), 480
vtr::bimap::inverse_begin (C++ function), 479
vtr::bimap::inverse_end (C++ function), 479
vtr::bimap::operator[] (C++ function), 480
vtr::bimap::size (C++ function), 480

588 Index

Verilog-to-Routing Documentation, Release 8.1.0-dev

vtr::bimap::update (C++ function), 480
vtr::bound_interned_string (C++ class), 525
vtr::bound_interned_string::begin (C++ func-

tion), 526
vtr::bound_interned_string::bound_interned_string

(C++ function), 526
vtr::bound_interned_string::end (C++ function),

526
vtr::Cache (C++ class), 498
vtr::Cache::clear (C++ function), 498
vtr::Cache::get (C++ function), 498
vtr::Cache::set (C++ function), 498
vtr::check_file_name_extension (C++ function),

531
vtr::chunk_delete (C++ function), 501
vtr::chunk_new (C++ function), 501
vtr::Color (C++ struct), 516
vtr::ColorMap (C++ class), 516
vtr::ColorMap::~ColorMap (C++ function), 517
vtr::ColorMap::color (C++ function), 517
vtr::ColorMap::ColorMap (C++ function), 517
vtr::ColorMap::max (C++ function), 517
vtr::ColorMap::min (C++ function), 517
vtr::ColorMap::range (C++ function), 517
vtr::CustomSentinel (C++ class), 523
vtr::DefaultSentinel (C++ class), 523
vtr::DefaultSentinel<T*> (C++ class), 523
vtr::delete_in_vptr_list (C++ function), 483
vtr::DimRange (C++ class), 489
vtr::DimRange::begin_index (C++ function), 490
vtr::DimRange::DimRange (C++ function), 490
vtr::DimRange::end_index (C++ function), 490
vtr::DimRange::size (C++ function), 490
vtr::dirname (C++ function), 521
vtr::dynamic_bitset (C++ class), 498
vtr::dynamic_bitset::clear (C++ function), 499
vtr::dynamic_bitset::count (C++ function), 499
vtr::dynamic_bitset::fill (C++ function), 499
vtr::dynamic_bitset::get (C++ function), 499
vtr::dynamic_bitset::kWidth (C++ member), 499
vtr::dynamic_bitset::operator&= (C++ function),

499
vtr::dynamic_bitset::operator~ (C++ function),

499
vtr::dynamic_bitset::operator|= (C++ function),

499
vtr::dynamic_bitset::resize (C++ function), 499
vtr::dynamic_bitset::set (C++ function), 499
vtr::dynamic_bitset::size (C++ function), 499
vtr::e_compound_operator (C++ enum), 514
vtr::e_compound_operator::E_COM_OP_AA (C++

enumerator), 514
vtr::e_compound_operator::E_COM_OP_AND (C++

enumerator), 514

vtr::e_compound_operator::E_COM_OP_EQ (C++
enumerator), 514

vtr::e_compound_operator::E_COM_OP_GTE (C++
enumerator), 514

vtr::e_compound_operator::E_COM_OP_LTE (C++
enumerator), 514

vtr::e_compound_operator::E_COM_OP_OR (C++
enumerator), 514

vtr::e_compound_operator::E_COM_OP_UNDEFINED
(C++ enumerator), 514

vtr::e_formula_obj (C++ enum), 513
vtr::e_formula_obj::E_FML_BRACKET (C++ enu-

merator), 513
vtr::e_formula_obj::E_FML_COMMA (C++ enumera-

tor), 513
vtr::e_formula_obj::E_FML_NUM_FORMULA_OBJS

(C++ enumerator), 513
vtr::e_formula_obj::E_FML_NUMBER (C++ enumer-

ator), 513
vtr::e_formula_obj::E_FML_OPERATOR (C++ enu-

merator), 513
vtr::e_formula_obj::E_FML_UNDEFINED (C++ enu-

merator), 513
vtr::e_formula_obj::E_FML_VARIABLE (C++ enu-

merator), 513
vtr::e_operator (C++ enum), 513
vtr::e_operator::E_OP_AA (C++ enumerator), 514
vtr::e_operator::E_OP_ADD (C++ enumerator), 513
vtr::e_operator::E_OP_AND (C++ enumerator), 513
vtr::e_operator::E_OP_DIV (C++ enumerator), 513
vtr::e_operator::E_OP_EQ (C++ enumerator), 514
vtr::e_operator::E_OP_GCD (C++ enumerator), 513
vtr::e_operator::E_OP_GT (C++ enumerator), 514
vtr::e_operator::E_OP_GTE (C++ enumerator), 514
vtr::e_operator::E_OP_LCM (C++ enumerator), 513
vtr::e_operator::E_OP_LT (C++ enumerator), 514
vtr::e_operator::E_OP_LTE (C++ enumerator), 514
vtr::e_operator::E_OP_MAX (C++ enumerator), 513
vtr::e_operator::E_OP_MIN (C++ enumerator), 513
vtr::e_operator::E_OP_MOD (C++ enumerator), 514
vtr::e_operator::E_OP_MULT (C++ enumerator),

513
vtr::e_operator::E_OP_NUM_OPS (C++ enumera-

tor), 514
vtr::e_operator::E_OP_OR (C++ enumerator), 514
vtr::e_operator::E_OP_SUB (C++ enumerator), 513
vtr::e_operator::E_OP_UNDEFINED (C++ enumera-

tor), 513
vtr::fclose (C++ function), 530
vtr::fgets (C++ function), 530
vtr::file_exists (C++ function), 531
vtr::flat_bimap (C++ type), 480
vtr::flat_map (C++ class), 475
vtr::flat_map2 (C++ class), 478

Index 589

Verilog-to-Routing Documentation, Release 8.1.0-dev

vtr::flat_map2::flat_map2 (C++ function), 478
vtr::flat_map2::operator[] (C++ function), 478
vtr::flat_map::assign (C++ function), 475
vtr::flat_map::assign_sorted (C++ function), 475
vtr::flat_map::at (C++ function), 476
vtr::flat_map::begin (C++ function), 475
vtr::flat_map::cbegin (C++ function), 476
vtr::flat_map::cend (C++ function), 476
vtr::flat_map::clear (C++ function), 477
vtr::flat_map::count (C++ function), 477
vtr::flat_map::crbegin (C++ function), 476
vtr::flat_map::crend (C++ function), 476
vtr::flat_map::emplace (C++ function), 476, 477
vtr::flat_map::emplace_hint (C++ function), 477
vtr::flat_map::empty (C++ function), 476
vtr::flat_map::end (C++ function), 475
vtr::flat_map::equal_range (C++ function), 477,

478
vtr::flat_map::erase (C++ function), 477
vtr::flat_map::find (C++ function), 477
vtr::flat_map::flat_map (C++ function), 475
vtr::flat_map::insert (C++ function), 476, 477
vtr::flat_map::lower_bound (C++ function), 477
vtr::flat_map::max_size (C++ function), 476
vtr::flat_map::operator[] (C++ function), 476
vtr::flat_map::rbegin (C++ function), 475, 476
vtr::flat_map::rend (C++ function), 476
vtr::flat_map::reserve (C++ function), 477
vtr::flat_map::shrink_to_fit (C++ function), 477
vtr::flat_map::size (C++ function), 476
vtr::flat_map::swap (C++ function), 477, 478
vtr::flat_map::upper_bound (C++ function), 477
vtr::flat_map::value_compare (C++ class), 478
vtr::FlatRaggedMatrix (C++ class), 483
vtr::FlatRaggedMatrix::begin (C++ function), 484
vtr::FlatRaggedMatrix::clear (C++ function), 484
vtr::FlatRaggedMatrix::empty (C++ function), 484
vtr::FlatRaggedMatrix::end (C++ function), 484
vtr::FlatRaggedMatrix::FlatRaggedMatrix

(C++ function), 483
vtr::FlatRaggedMatrix::operator[] (C++ func-

tion), 484
vtr::FlatRaggedMatrix::ProxyRow (C++ class),

484
vtr::FlatRaggedMatrix::ProxyRow::begin (C++

function), 484
vtr::FlatRaggedMatrix::ProxyRow::data (C++

function), 485
vtr::FlatRaggedMatrix::ProxyRow::end (C++

function), 484, 485
vtr::FlatRaggedMatrix::ProxyRow::operator[]

(C++ function), 485
vtr::FlatRaggedMatrix::ProxyRow::ProxyRow

(C++ function), 484

vtr::FlatRaggedMatrix::ProxyRow::size (C++
function), 485

vtr::FlatRaggedMatrix::size (C++ function), 484
vtr::FlatRaggedMatrix::swap (C++ function), 484
vtr::fopen (C++ function), 530
vtr::Formula_Object (C++ class), 514
vtr::Formula_Object::Formula_Object (C++

function), 515
vtr::Formula_Object::to_string (C++ function),

515
vtr::Formula_Object::type (C++ member), 515
vtr::Formula_Object::u_Data (C++ union), 515
vtr::Formula_Object::u_Data::left_bracket

(C++ member), 515
vtr::Formula_Object::u_Data::num (C++ mem-

ber), 515
vtr::Formula_Object::u_Data::op (C++ member),

515
vtr::FormulaParser (C++ class), 515
vtr::FormulaParser::is_piecewise_formula

(C++ function), 516
vtr::FormulaParser::parse_formula (C++ func-

tion), 515
vtr::FormulaParser::parse_piecewise_formula

(C++ function), 515
vtr::frand (C++ function), 522
vtr::gcd (C++ function), 519
vtr::geomean (C++ function), 519
vtr::get_file_line_number_of_last_opened_file

(C++ function), 531
vtr::get_max_rss (C++ function), 523
vtr::get_pid (C++ function), 531
vtr::get_random_state (C++ function), 522
vtr::getcwd (C++ function), 521
vtr::getline (C++ function), 530
vtr::hash_combine (C++ function), 500
vtr::hash_pair (C++ struct), 500
vtr::hash_pair::operator() (C++ function), 500
vtr::InfernoColorMap (C++ class), 517
vtr::InfernoColorMap::InfernoColorMap (C++

function), 517
vtr::insert_in_vptr_list (C++ function), 483
vtr::interned_string (C++ class), 524
vtr::interned_string::begin (C++ function), 525
vtr::interned_string::bind (C++ function), 525
vtr::interned_string::end (C++ function), 525
vtr::interned_string::get (C++ function), 525
vtr::interned_string::interned_string (C++

function), 525
vtr::interned_string::operator!= (C++ func-

tion), 525
vtr::interned_string::operator== (C++ func-

tion), 525
vtr::interned_string_iterator (C++ class), 526

590 Index

Verilog-to-Routing Documentation, Release 8.1.0-dev

vtr::interned_string_iterator::interned_string_iterator
(C++ function), 526

vtr::interned_string_iterator::operator++
(C++ function), 526

vtr::interned_string_iterator::operator==
(C++ function), 526

vtr::ipow (C++ function), 520
vtr::irand (C++ function), 522
vtr::isclose (C++ function), 519
vtr::join (C++ function), 528
vtr::lcm (C++ function), 519
vtr::Line (C++ class), 511
vtr::Line::bounding_box (C++ function), 511
vtr::Line::Line (C++ function), 511
vtr::Line::points (C++ function), 511
vtr::linear_bimap (C++ type), 481
vtr::linear_interpolate_or_extrapolate (C++

function), 520
vtr::linear_map (C++ class), 472
vtr::linear_map::at (C++ function), 473
vtr::linear_map::begin (C++ function), 472
vtr::linear_map::cbegin (C++ function), 473
vtr::linear_map::cend (C++ function), 473
vtr::linear_map::clear (C++ function), 474
vtr::linear_map::count (C++ function), 474
vtr::linear_map::crbegin (C++ function), 473
vtr::linear_map::crend (C++ function), 473
vtr::linear_map::emplace (C++ function), 474
vtr::linear_map::empty (C++ function), 473
vtr::linear_map::end (C++ function), 472
vtr::linear_map::equal_range (C++ function), 474
vtr::linear_map::erase (C++ function), 473
vtr::linear_map::find (C++ function), 474
vtr::linear_map::insert (C++ function), 473
vtr::linear_map::linear_map (C++ function), 472
vtr::linear_map::lower_bound (C++ function), 474
vtr::linear_map::max_size (C++ function), 473
vtr::linear_map::operator= (C++ function), 472
vtr::linear_map::operator[] (C++ function), 473
vtr::linear_map::rbegin (C++ function), 472, 473
vtr::linear_map::rend (C++ function), 473
vtr::linear_map::reserve (C++ function), 474
vtr::linear_map::shrink_to_fit (C++ function),

474
vtr::linear_map::size (C++ function), 473
vtr::linear_map::swap (C++ function), 474
vtr::linear_map::upper_bound (C++ function), 474
vtr::linear_map::valid_size (C++ function), 474
vtr::LogicValue (C++ enum), 518
vtr::LogicValue::DONT_CARE (C++ enumerator),

518
vtr::LogicValue::FALSE (C++ enumerator), 518
vtr::LogicValue::TRUE (C++ enumerator), 518
vtr::LogicValue::UNKOWN (C++ enumerator), 518

vtr::make_flat_map (C++ function), 478
vtr::make_flat_map2 (C++ function), 478
vtr::make_key_range (C++ function), 503
vtr::make_range (C++ function), 455
vtr::make_value_range (C++ function), 503
vtr::map_key_iter (C++ type), 503
vtr::map_value_iter (C++ type), 503
vtr::Matrix (C++ type), 489
vtr::median (C++ function), 518, 520
vtr::memalign (C++ function), 501
vtr::NdMatrix (C++ class), 488
vtr::NdMatrix::operator[] (C++ function), 488
vtr::NdMatrix<T, 1> (C++ class), 488
vtr::NdMatrix<T, 1>::operator[] (C++ function),

489
vtr::NdMatrixBase (C++ class), 486
vtr::NdMatrixBase::begin_index (C++ function),

487
vtr::NdMatrixBase::clear (C++ function), 487
vtr::NdMatrixBase::dim_size (C++ function), 487
vtr::NdMatrixBase::empty (C++ function), 487
vtr::NdMatrixBase::end_index (C++ function), 487
vtr::NdMatrixBase::fill (C++ function), 487
vtr::NdMatrixBase::get (C++ function), 487
vtr::NdMatrixBase::ndims (C++ function), 487
vtr::NdMatrixBase::NdMatrixBase (C++ function),

487
vtr::NdMatrixBase::operator= (C++ function), 487
vtr::NdMatrixBase::resize (C++ function), 487
vtr::NdMatrixBase::size (C++ function), 487
vtr::NdMatrixProxy (C++ class), 485
vtr::NdMatrixProxy::NdMatrixProxy (C++ func-

tion), 485
vtr::NdMatrixProxy::operator= (C++ function),

485
vtr::NdMatrixProxy::operator[] (C++ function),

485, 486
vtr::NdMatrixProxy<T, 1> (C++ class), 486
vtr::NdMatrixProxy<T, 1>::data (C++ function),

486
vtr::NdMatrixProxy<T, 1>::NdMatrixProxy

(C++ function), 486
vtr::NdMatrixProxy<T, 1>::operator= (C++

function), 486
vtr::NdMatrixProxy<T, 1>::operator[] (C++

function), 486
vtr::NdOffsetMatrix (C++ class), 492
vtr::NdOffsetMatrix::operator[] (C++ function),

493
vtr::NdOffsetMatrix<T, 1> (C++ class), 493
vtr::NdOffsetMatrix<T, 1>::operator[] (C++

function), 494
vtr::NdOffsetMatrixBase (C++ class), 491

Index 591

Verilog-to-Routing Documentation, Release 8.1.0-dev

vtr::NdOffsetMatrixBase::begin_index (C++
function), 492

vtr::NdOffsetMatrixBase::clear (C++ function),
492

vtr::NdOffsetMatrixBase::dim_size (C++ func-
tion), 492

vtr::NdOffsetMatrixBase::empty (C++ function),
492

vtr::NdOffsetMatrixBase::end_index (C++ func-
tion), 492

vtr::NdOffsetMatrixBase::fill (C++ function),
492

vtr::NdOffsetMatrixBase::ndims (C++ function),
492

vtr::NdOffsetMatrixBase::NdOffsetMatrixBase
(C++ function), 491, 492

vtr::NdOffsetMatrixBase::operator= (C++ func-
tion), 492

vtr::NdOffsetMatrixBase::resize (C++ function),
492

vtr::NdOffsetMatrixBase::size (C++ function),
492

vtr::NdOffsetMatrixProxy (C++ class), 490
vtr::NdOffsetMatrixProxy::NdOffsetMatrixProxy

(C++ function), 490
vtr::NdOffsetMatrixProxy::operator[] (C++

function), 490
vtr::NdOffsetMatrixProxy<T, 1> (C++ class), 490
vtr::NdOffsetMatrixProxy<T,

1>::NdOffsetMatrixProxy (C++ func-
tion), 491

vtr::NdOffsetMatrixProxy<T, 1>::operator[]
(C++ function), 491

vtr::nint (C++ function), 518
vtr::OffsetMatrix (C++ type), 494
vtr::operator+ (C++ function), 461
vtr::operator== (C++ function), 501
vtr::operator- (C++ function), 461
vtr::OsFormatGuard (C++ class), 520
vtr::OsFormatGuard::~OsFormatGuard (C++ func-

tion), 521
vtr::OsFormatGuard::operator= (C++ function),

521
vtr::OsFormatGuard::OsFormatGuard (C++ func-

tion), 521
vtr::pair_first_iter (C++ class), 501
vtr::pair_first_iter::operator* (C++ function),

502
vtr::pair_first_iter::operator++ (C++ func-

tion), 502
vtr::pair_first_iter::operator-- (C++ func-

tion), 502
vtr::pair_first_iter::operator-> (C++ func-

tion), 502

vtr::pair_first_iter::pair_first_iter (C++
function), 502

vtr::pair_second_iter (C++ class), 502
vtr::pair_second_iter::operator* (C++ func-

tion), 502
vtr::pair_second_iter::operator++ (C++ func-

tion), 502
vtr::pair_second_iter::operator-- (C++ func-

tion), 502
vtr::pair_second_iter::operator-> (C++ func-

tion), 502
vtr::pair_second_iter::pair_second_iter

(C++ function), 502
vtr::PlasmaColorMap (C++ class), 517
vtr::PlasmaColorMap::PlasmaColorMap (C++

function), 517
vtr::Point (C++ class), 508
vtr::Point::operator!= (C++ function), 509
vtr::Point::operator== (C++ function), 509
vtr::Point::operator< (C++ function), 509
vtr::Point::set (C++ function), 509
vtr::Point::set_x (C++ function), 509
vtr::Point::set_y (C++ function), 509
vtr::Point::swap (C++ function), 509
vtr::Point::x (C++ function), 509
vtr::Point::y (C++ function), 509
vtr::Range (C++ class), 455
vtr::Range::begin (C++ function), 456
vtr::Range::empty (C++ function), 456
vtr::Range::end (C++ function), 456
vtr::Range::Range (C++ function), 456
vtr::Range::size (C++ function), 456
vtr::ReadLineTokens (C++ function), 531
vtr::Rect (C++ class), 509
vtr::Rect::bottom_left (C++ function), 510
vtr::Rect::coincident (C++ function), 510
vtr::Rect::contains (C++ function), 510
vtr::Rect::empty (C++ function), 510
vtr::Rect::expand_bounding_box (C++ function),

510
vtr::Rect::height (C++ function), 510
vtr::Rect::operator!= (C++ function), 511
vtr::Rect::operator== (C++ function), 511
vtr::Rect::Rect (C++ function), 509
vtr::Rect::set_xmax (C++ function), 510
vtr::Rect::set_xmin (C++ function), 510
vtr::Rect::set_ymax (C++ function), 510
vtr::Rect::set_ymin (C++ function), 510
vtr::Rect::strictly_contains (C++ function), 510
vtr::Rect::top_right (C++ function), 510
vtr::Rect::width (C++ function), 510
vtr::Rect::xmax (C++ function), 510
vtr::Rect::xmin (C++ function), 510
vtr::Rect::ymax (C++ function), 510

592 Index

Verilog-to-Routing Documentation, Release 8.1.0-dev

vtr::Rect::ymin (C++ function), 510
vtr::RectUnion (C++ class), 511
vtr::RectUnion::bounding_box (C++ function), 511
vtr::RectUnion::coincident (C++ function), 511
vtr::RectUnion::contains (C++ function), 511
vtr::RectUnion::operator!= (C++ function), 512
vtr::RectUnion::operator== (C++ function), 512
vtr::RectUnion::rects (C++ function), 511
vtr::RectUnion::RectUnion (C++ function), 511
vtr::RectUnion::strictly_contains (C++ func-

tion), 511
vtr::release_memory (C++ function), 501
vtr::replace_all (C++ function), 529
vtr::replace_first (C++ function), 529
vtr::safe_ratio (C++ function), 518
vtr::ScopedActionTimer (C++ class), 508
vtr::ScopedFinishTimer (C++ class), 508
vtr::ScopedStartFinishTimer (C++ class), 508
vtr::secure_digest_file (C++ function), 518
vtr::secure_digest_stream (C++ function), 518
vtr::shuffle (C++ function), 522
vtr::small_vector (C++ class), 465
vtr::small_vector::~small_vector (C++ func-

tion), 468
vtr::small_vector::assign (C++ function), 467
vtr::small_vector::at (C++ function), 466, 467
vtr::small_vector::back (C++ function), 466, 467
vtr::small_vector::begin (C++ function), 466, 467
vtr::small_vector::capacity (C++ function), 466
vtr::small_vector::cbegin (C++ function), 466
vtr::small_vector::cend (C++ function), 466
vtr::small_vector::clear (C++ function), 468
vtr::small_vector::crbegin (C++ function), 466
vtr::small_vector::crend (C++ function), 466
vtr::small_vector::data (C++ function), 466
vtr::small_vector::emplace_back (C++ function),

468
vtr::small_vector::empty (C++ function), 466
vtr::small_vector::end (C++ function), 466, 467
vtr::small_vector::erase (C++ function), 468
vtr::small_vector::front (C++ function), 466, 467
vtr::small_vector::insert (C++ function), 468
vtr::small_vector::max_size (C++ function), 466
vtr::small_vector::operator!= (C++ function),

469
vtr::small_vector::operator== (C++ function),

469
vtr::small_vector::operator> (C++ function), 469
vtr::small_vector::operator>= (C++ function),

469
vtr::small_vector::operator< (C++ function), 469
vtr::small_vector::operator<= (C++ function),

469

vtr::small_vector::operator[] (C++ function),
466, 467

vtr::small_vector::pop_back (C++ function), 468
vtr::small_vector::push_back (C++ function), 468
vtr::small_vector::rbegin (C++ function), 466,

467
vtr::small_vector::rend (C++ function), 466, 467
vtr::small_vector::reserve (C++ function), 467
vtr::small_vector::resize (C++ function), 467
vtr::small_vector::shrink_to_fit (C++ func-

tion), 467
vtr::small_vector::size (C++ function), 466
vtr::small_vector::small_vector (C++ function),

466, 468
vtr::small_vector::swap (C++ function), 468, 469
vtr::split (C++ function), 529
vtr::split_ext (C++ function), 521
vtr::srandom (C++ function), 522
vtr::starts_with (C++ function), 529
vtr::strdup (C++ function), 529
vtr::string_fmt (C++ function), 529
vtr::string_internment (C++ class), 524
vtr::string_internment::get_string (C++ func-

tion), 524
vtr::string_internment::intern_string (C++

function), 524
vtr::string_internment::unique_strings (C++

function), 524
vtr::string_view (C++ class), 497
vtr::string_view::at (C++ function), 497
vtr::string_view::back (C++ function), 497
vtr::string_view::begin (C++ function), 497
vtr::string_view::cbegin (C++ function), 497
vtr::string_view::cend (C++ function), 498
vtr::string_view::data (C++ function), 497
vtr::string_view::empty (C++ function), 497
vtr::string_view::end (C++ function), 498
vtr::string_view::front (C++ function), 497
vtr::string_view::length (C++ function), 497
vtr::string_view::operator= (C++ function), 497
vtr::string_view::operator[] (C++ function), 497
vtr::string_view::size (C++ function), 497
vtr::string_view::string_view (C++ function),

497
vtr::string_view::substr (C++ function), 498
vtr::string_view::swap (C++ function), 498
vtr::strncpy (C++ function), 529
vtr::StrongId (C++ class), 460
vtr::StrongId::INVALID (C++ function), 460
vtr::StrongId::is_valid (C++ function), 460
vtr::StrongId::operator bool (C++ function), 460
vtr::StrongId::operator std::size_t (C++

function), 460
vtr::StrongId::operator<< (C++ function), 460

Index 593

Verilog-to-Routing Documentation, Release 8.1.0-dev

vtr::StrongId::StrongId (C++ function), 460
vtr::StrongIdIterator (C++ class), 461
vtr::StrongIdIterator::operator!= (C++ func-

tion), 462
vtr::StrongIdIterator::operator* (C++ func-

tion), 462
vtr::StrongIdIterator::operator++ (C++ func-

tion), 462
vtr::StrongIdIterator::operator+= (C++ func-

tion), 462
vtr::StrongIdIterator::operator= (C++ func-

tion), 462
vtr::StrongIdIterator::operator== (C++ func-

tion), 462
vtr::StrongIdIterator::operator- (C++ func-

tion), 462
vtr::StrongIdIterator::operator-= (C++ func-

tion), 462
vtr::StrongIdIterator::operator-- (C++ func-

tion), 462
vtr::StrongIdIterator::operator< (C++ func-

tion), 462
vtr::StrongIdIterator::operator[] (C++ func-

tion), 462
vtr::StrongIdIterator::StrongIdIterator

(C++ function), 462
vtr::StrongIdRange (C++ class), 462
vtr::StrongIdRange::begin (C++ function), 463
vtr::StrongIdRange::empty (C++ function), 463
vtr::StrongIdRange::end (C++ function), 463
vtr::StrongIdRange::size (C++ function), 463
vtr::StrongIdRange::StrongIdRange (C++ func-

tion), 463
vtr::strtok (C++ function), 530
vtr::t_chunk (C++ struct), 500
vtr::t_formula_data (C++ class), 516
vtr::t_formula_data::clear (C++ function), 516
vtr::t_formula_data::get_var_value (C++ func-

tion), 516
vtr::t_formula_data::set_var_value (C++ func-

tion), 516
vtr::t_linked_vptr (C++ struct), 482
vtr::Timer (C++ class), 508
vtr::uniquify (C++ function), 528
vtr::unordered_bimap (C++ type), 480
vtr::vec_id_set (C++ class), 481
vtr::vec_id_set::begin (C++ function), 482
vtr::vec_id_set::cbegin (C++ function), 482
vtr::vec_id_set::cend (C++ function), 482
vtr::vec_id_set::clear (C++ function), 482
vtr::vec_id_set::count (C++ function), 482
vtr::vec_id_set::end (C++ function), 482
vtr::vec_id_set::insert (C++ function), 482
vtr::vec_id_set::size (C++ function), 482

vtr::vec_id_set::sort (C++ function), 482
vtr::vector (C++ class), 463
vtr::vector::at (C++ function), 465
vtr::vector::data (C++ function), 465
vtr::vector::key_iterator (C++ class), 464
vtr::vector::key_iterator::key_iterator

(C++ function), 464
vtr::vector::key_iterator::operator* (C++

function), 464
vtr::vector::key_iterator::operator++ (C++

function), 464
vtr::vector::key_iterator::operator-- (C++

function), 464
vtr::vector::key_iterator::operator-> (C++

function), 465
vtr::vector::keys (C++ function), 465
vtr::vector::operator[] (C++ function), 465
vtr::vector::swap (C++ function), 465
vtr::vector_map (C++ class), 469
vtr::vector_map::begin (C++ function), 470, 471
vtr::vector_map::capacity (C++ function), 471
vtr::vector_map::clear (C++ function), 471
vtr::vector_map::contains (C++ function), 470
vtr::vector_map::count (C++ function), 470
vtr::vector_map::emplace_back (C++ function),

471
vtr::vector_map::empty (C++ function), 470
vtr::vector_map::end (C++ function), 470, 471
vtr::vector_map::find (C++ function), 470, 471
vtr::vector_map::insert (C++ function), 471
vtr::vector_map::operator[] (C++ function), 470,

471
vtr::vector_map::push_back (C++ function), 471
vtr::vector_map::rbegin (C++ function), 470
vtr::vector_map::rend (C++ function), 470
vtr::vector_map::resize (C++ function), 471
vtr::vector_map::shrink_to_fit (C++ function),

471
vtr::vector_map::size (C++ function), 470
vtr::vector_map::update (C++ function), 471
vtr::vector_map::vector_map (C++ function), 470
vtr::ViridisColorMap (C++ class), 517
vtr::ViridisColorMap::ViridisColorMap (C++

function), 517
vtr::vstring_fmt (C++ function), 529
vtr::VtrError (C++ class), 506
vtr::VtrError::filename (C++ function), 507
vtr::VtrError::filename_c_str (C++ function),

507
vtr::VtrError::line (C++ function), 507
vtr::VtrError::VtrError (C++ function), 507

X
XYRouting (C++ class), 561

594 Index

Verilog-to-Routing Documentation, Release 8.1.0-dev

XYRouting::~XYRouting (C++ function), 561
XYRouting::get_legal_directions (C++ function),

561
XYRouting::select_next_direction (C++ func-

tion), 561
XYRouting::x_axis_directions (C++ member), 562
XYRouting::y_axis_directions (C++ member), 562

Index 595

	VTR Quick Start
	Setting Up VTR
	Download VTR
	Environment Setup
	Build VTR

	Running VPR
	Running VPR on a Pre-Synthesized Circuit
	Visualizing Circuit Implementation

	Running the VTR Flow
	Example Circuit
	Manually Running the VTR Flow
	Synthesizing with ODIN II
	Optimizing and Technology Mapping with ABC
	Re-inserting clocks

	Implementing the circuit with VPR

	Automatically Running the VTR Flow

	Next Steps

	VTR
	VTR CAD Flow
	CAD Flow Variations
	Titan CAD Flow
	Other CAD Flow Variants

	Bitstream Generation

	Get VTR
	How to Cite
	Download
	VTR Docker Image
	Release
	Development Repository

	Building VTR
	Setting up Your Environment
	Building
	Verifying Installation

	Optional Build Information
	Dependencies
	CMake
	Tested Compilers
	Package Dependencies

	Build Options
	Build Type
	Passing parameters to CMake
	Using CMake directly
	Changing configuration on the command line
	Changing configuration interactively with ccmake

	Other platforms
	Nix
	Microsoft Windows
	WSL
	Cygwin
	Cross-compiling from Linux to Microsoft Windows with MinGW-W64
	Microsoft Visual Studio
	Installing additional tools
	Generating the Visual Studio Project

	Running the VTR Flow
	Running a Single Benchmark
	Running Multiple Benchmarks & Architectures with Tasks
	Extracting Information & Statistics

	Benchmarks
	VTR Benchmarks
	Titan Benchmarks
	Koios 2.0 Benchmarks
	MCNC20 Benchmarks
	SymbiFlow Benchmarks
	NoC Benchmarks

	Power Estimation
	Running VTR with Power Estimation
	VTR Flow
	VPR

	Supporting Tools
	Technology Properties
	ACE 2.0 Activity Estimation

	Architecture Modelling
	Complex Blocks
	specify-size
	auto-size
	pin-toggle
	C-internal
	absolute

	Global Routing
	Switch Boxes
	Input Connection Boxes

	Clock Network

	Other Architecture Options & Techniques
	Local Wire Auto-Sizing
	Buffer Sizing
	Local Interconnect Capacitance

	Tasks
	Example Tasks
	Directory Layout
	Creating a New Task
	Task Configuration File
	Required Fields
	Optional Fields

	run_vtr_flow
	Basic Usage
	Output
	Advanced Usage
	Detailed Command-line Options

	run_vtr_task
	Basic Usage
	Output
	Detailed Command-line Options

	parse_vtr_flow
	Usage
	Output

	parse_vtr_task
	Usage
	Output
	Detailed Command-line Options

	Parse Configuration
	Format
	Example File

	Pass Requirements
	Task Configuration
	File Location
	File Format
	Example File

	VTR Flow Python library
	VTR flow
	Parmys
	ODIN II
	ABC
	ACE
	VPR

	FPGA Architecture Description
	Architecture Reference
	Top Level Tags
	Recognized BLIF Models (<models>)
	Global FPGA Information
	FPGA Grid Layout
	FPGA Layer Information
	Grid Location Priorities
	Empty Grid Locations
	Grid Location Expressions
	Grid Location Tags
	Grid Layout Example

	FPGA Device Information
	Switches
	Global Routing Information

	Physical Tiles
	Tile

	Complex Blocks
	PB Type
	Interconnect
	Classes
	Timing
	Modeling Sequential Primitive Internal Timing Paths

	Power

	NoC Description
	NoC topology
	NoC Description Example

	Wire Segments
	Clocks
	Specifing Clocking Purely for Power Estimation
	Specifing a Clock Architecture
	Clock Architecture Example
	Clock Architecture Tags

	Power
	Direct Inter-block Connections
	Custom Switch Blocks
	Architecture metadata

	Example Architecture Specification

	VPR
	Basic flow
	Packing
	Placement
	Routing
	Analysis

	Command-line Options
	Basic Usage
	Detailed Command-line Options
	Stage Options
	Graphics Options
	General Options
	Filename Options
	Netlist Options
	Packing Options
	Placer Options
	Timing-Driven Placer Options
	NoC Options
	Router Options
	Timing-Driven Router Options
	Analysis Options
	Power Estimation Options

	Command-line Auto Completion

	Graphics
	Enabling Graphics
	Compiling with Graphics Support
	Enabling Graphics at Run-time
	Saving Graphics at Run-time

	Navigation
	Visualizing Placement
	Visualizing Netlist Connectivity
	Visualizing the Critical Path
	Visualizing Routing Architecture
	Visualizing Routing Congestion
	Visualizing Routing Utilization
	Toggle Block Internal
	View Menu
	Button Description Table
	Manual Moves

	Timing Constraints
	Default Timing Constraints
	Combinational Circuits
	Single-Clock Circuits
	Multi-Clock Circuits

	VPR Placement Constraints
	A Constraints File Example
	Constraints File Format
	Partitions, Atoms, and Regions
	Partition
	Atom
	Region

	SDC Commands
	create_clock
	set_clock_groups
	set_false_path
	set_max_delay/set_min_delay
	set_multicycle_path
	set_input_delay/set_output_delay
	set_clock_uncertainty
	set_clock_latency
	set_disable_timing
	Special Characters
	SDC Examples
	A
	B
	C
	D
	E
	F

	File Formats
	FPGA Architecture (.xml)
	BLIF Netlist (.blif)
	Black Box Primitives
	Unconnected Primitive Pins
	BLIF File Format Example
	BLIF Naming Convention
	Net Names
	Primitive Names
	Pin Names
	Built-in Primitive Pin Names

	Extended BLIF (.eblif)
	.conn
	.cname
	.param
	.attr
	Extended BLIF File Format Example

	Timing Constraints (.sdc)
	Timing Constraints File Format Example

	Packed Netlist Format (.net)
	Packing File Format Example

	Placement File Format (.place)
	Placement File Format Example

	Routing File Format (.route)
	Routing File Format Examples

	Routing Resource Graph File Format (.xml)
	Top Level Tags
	Detailed Tag Information
	Channel
	Switches
	Segments
	Blocks
	Grid
	Nodes
	Edges
	Node and Edge Metadata

	Routing Resource Graph Format Example
	Binary Format (Cap’n Proto)

	Network-on-Chip (NoC) Traffic Flows Format (.flows)
	Top Level Tags
	Detailed Tag Information
	Single Flow

	NoC Traffic Flows File Example

	Block types usage summary (.txt .xml or .json)
	TXT
	JSON
	XML

	Timing summary (.txt .xml or .json)
	TXT
	JSON
	XML

	Debugging Aids
	Placer and Router Debugger
	Overview
	Adding a breakpoint
	Enabling/Disabling a breakpoint
	Deleting a breakpoint
	Reaching a breakpoint
	Available Variables
	Available Operators

	Parmys
	Quickstart
	Prerequisites
	Building
	Basic Usage

	Yosys
	Parmys Plugin
	Available parameters

	Structure
	Structure of Parmys Frontend (Yosys + Parmys Plugin)

	Odin II
	Quickstart
	Prerequisites
	Building
	Basic Usage
	Example Usage

	User guide
	Synthesis Arguments
	Simulation Arguments
	Examples
	Example for -p
	Example of .xml configuration file for -c
	Examples vector file for -t or -T
	Examples using vector files -t and -T
	Example using vector files -g

	Getting Help
	Reporting Bugs and Feature Requests
	Creating an Issue on GitHub
	Feature Requests

	Verilog Support
	Lexicon
	Verilog Synthesizable Operators Support
	Verilog NON-Synthesizable Operator Support
	Verilog Synthesizable Keyword Support
	Verilog NON-Synthesizable Keyword Support
	C Functions support
	Verilog Synthesizable preprocessor Keywords Support

	Syntax

	Contributing
	Creating a Pull Request (PR)
	Creating a “Work in progress” (WIP) PR
	Formating

	Odin II’s Flow
	Building the Abstract Syntax Tree (AST)
	AST Elaboration
	Building the Netlist
	Partial Mapping
	Simulator

	Useful tools of Odin II for Developers

	Regression Tests
	Benchmarks
	Unit Benchmarks
	Micro Benchmarks
	Macro Benchmarks
	External Benchmarks

	Creating Regression Tests
	New Regression Test Checklist
	New Benchmarks added to Regression Test Checklist
	Include
	Creating Benchmarks
	Creating a Configuration File
	Creating a Task
	Creating a Complicated Task
	Creating a Suite

	Regenerating Results

	Regression Test Summaries
	c_functions
	cmd_line_args
	FIR
	full
	large
	micro
	mixing_optimization
	operators
	syntax
	keywords
	preprocessor
	Regression Tests Directory Tree

	Verify Script
	Arguments
	Examples
	Generating Results for a New Task
	Regenerating Results for a Changed Test
	Generating Results for a Suite
	Checking the configuration file
	Running a subset of tests in a suite

	TESTING ODIN II
	USING MODELSIM TO TEST ODIN II

	ABC
	Tutorials
	Design Flow Tutorials
	Basic Design Flow Tutorial

	Architecture Modeling
	Classic Soft Logic Block Tutorial
	Classic Soft Logic Block Complete Example

	Multi-mode Logic Block Tutorial
	Definition
	Architecture Description
	Validation in packer
	Tips for Debugging

	Configurable Memory Bus-Based Tutorial
	Configurable Memory Bus-Based Complete Example

	Fracturable Multiplier Bus-Based Tutorial
	Fracturable Multiplier Bus-Based Complete Example

	Fracturable Multiplier Example
	Configurable Memory Block Example
	Virtex 6 like Logic Slice Example
	Equivalent Sites tutorial
	Heterogeneous tiles tutorial
	Heterogeneous tiles examples
	Sub-tiles with different pin locations
	Sub-tiles containing different block types

	Primitive Block Timing Modeling Tutorial
	Combinational block
	Sequential block (no internal paths)
	Mixed Sequential/Combinational Block
	Sequential block (with internal paths)
	Sequential block (with internal paths and combinational input)
	Multi-clock Sequential block (with internal paths)
	Clock Generators
	Clock Buffers & Muxes
	Clock Buffers/Gates
	Clock Muxes
	Clock Mux Timing Constraints

	Running the Titan Benchmarks
	Integrating the Titan benchmarks into VTR
	Running benchmarks manually

	Post-Implementation Timing Simulation
	Generating the Post-Implementation Netlist
	Inspecting the Post-Implementation Netlist
	Creating a Test Bench
	Performing Timing Simulation in Modelsim

	Utilities
	FPGA Assembly (FASM) Output Support
	FASM metadata
	Invoking genfasm
	FASM prefixing
	Construction of the prefix

	Simple FASM feature emissions
	Emitting LUTs
	Within tile interconnect features
	Passing parameters through to the FASM Output

	Router Diagnosis Tool

	Developer Guide
	Contribution Guidelines
	Common Scenarios
	I have a question
	I found a bug!
	It would be great if VTR supported …
	I have a bug-fix/feature I’d like to include in VTR

	The Details
	Enhancing Documentation
	How do I build the documentation?
	Filling Bug Reports
	Filling Enhancement Requests
	Submitting Code to VTR
	Making Pull Requests

	Commit Procedures
	Commit Messages and Structure
	Commit Messages
	Commit Structure

	Code Formatting
	Large Scale Reformatting
	Python Linting

	Running Tests
	Tests
	vtr_reg_basic
	vtr_reg_strong
	vtr_reg_nightly_test1-N
	vtr_reg_weekly

	Running in a large cluster using SLURM
	Continuous integration (CI)
	Re-run CI Tests

	Odin Functionality Tests
	Unit Tests

	Evaluating Quality of Result (QoR) Changes
	General QoR Evaluation Principles
	Key QoR Metrics
	Benchmark Selection
	Fairly measuring tool run-time

	Collecting QoR Measurements
	Example: VTR Benchmarks QoR Measurement
	Example: Titan Benchmarks QoR Measurement
	Running and Integrating the Titan Benchmarks with VTR

	Example: NoC Benchmarks QoR Measurements
	Running and Integrating the NoC Benchmarks with VTR

	Example: Koios Benchmarks QoR Measurement
	Example: Extracting QoR Data from CI Runs

	Comparing QoR Measurements
	QoR Comparison Gotchas
	Example QoR Comparison
	Automated QoR Comparison Script
	Generating New QoR Golden Result

	Adding Tests
	Adding a test to vtr_reg_strong

	Debugging Aids
	Sanitizers
	Valgrind
	Assertion Levels
	GDB Pretty Printers
	STL Pretty Printers
	VTR Pretty Printers

	RR (Record Replay) Debugger

	Speeding up the edit-compile-test cycle
	Speeding Compilation
	Profiling VTR
	External Subtrees
	Updating an existing Subtree
	Adding a new Subtree
	Subtree Rational

	Finding Bugs with Coverity
	Browsing Defects
	Submitting a build
	No files emitted

	Release Procedures
	General Principles
	Checklist

	Sphinx API Documentation for C/C++ Projects
	Create Doxyfile
	Breathe Configuration
	Create RST with API Documentation
	Generate the Documentation

	Documenting VTR Code with Doxygen
	Documenting Code
	Block Comments
	One-line Comments Before an Element
	One-line Comments After an Element Member

	Documenting Files
	Validation of Doxygen Comments (Updating API Reference)
	Additional Resources

	Developer Tutorials
	New Developer Tutorial
	Overview
	Environment Setup
	Background Reading
	Setup VTR
	Use VTR
	Open the Black Box
	Submitting Changes and Regression Testing

	Timing Graph Debugging Tutorial
	Generating a GraphViz DOT file of the Entire Timing Graph
	Generating a GraphViz DOT file of a subset of the Timing Graph
	Cross-referencing Node IDs with VPR Timing Reports

	VPR UI and Graphics

	VTR Support Resources
	VTR License

	VTR Change Log
	Unreleased
	Added
	Changed
	Fixed
	Deprecated
	Removed

	v8.0.0 - 2020-03-24
	Added
	Changed
	Fixed
	Removed
	Deprecated
	Docker Image

	v8.0.0-rc2 - 2019-08-01
	Changed

	v8.0.0-rc1 - 2019-06-13
	Added
	Changed
	Fixed
	Deprecated
	Removed

	Contact
	Mailing Lists
	Issue Tracker

	Glossary
	Publications & References
	VPR API
	Contexts
	Classes
	Structures

	Netlist mapping
	Block Id
	Atom block Id to Cluster block Id
	Cluster block Id to Atom block Id

	Net Id
	Atom net Id to Cluster net Id
	Cluster net Id to Atom net Id

	Netlists
	Netlist
	Overview
	Block
	Pins
	Nets
	Ports

	Usage
	Walking the netlist
	Tracing cross-references
	Creating the netlist
	Modifying the netlist
	Verifying the netlist

	Invariants
	Netlist is compressed (‘not dirty’)
	Netlist is NOT compressed (‘dirty’)

	Implementation Details
	Strings
	Block pins/Block ports data layout
	Adding data to the netlist
	Interactions with other netlists

	Clustered Netlist
	Overview
	Blocks
	Differences between block_nets_ & block_pin_nets_
	Pins
	Example of logical_pin_index_

	Implementation

	Atom Netlist
	Overview
	Components
	Blocks
	Ports
	Pins
	Nets
	Models
	Truth Table

	Implementation

	Route Tree
	RouteTree
	Overview
	Usage

	RouteTreeNode

	Routing Resource Graph
	RRGraphView
	RRGraphBuilder
	RRSpatialLookup

	VTRUTIL API
	IDs - Ranges
	vtr_range
	vtr_strong_id
	Motivation
	Usage

	vtr_strong_id_range

	Containers
	vtr_vector
	vtr_small_vector
	vtr_vector_map
	vtr_linear_map
	vtr_flat_map
	vtr_bimap
	vtr_vec_id_set
	vtr_list
	vtr_ragged_matrix
	vtr_ndmatrix
	vtr_ndoffsetmatrix
	vtr_array_view
	vtr_string_view
	vtr_cache
	vtr_dynamic_bitset

	Container Utils
	vtr_hash
	vtr_memory
	vtr_pair_util
	vtr_map_util

	Logging - Errors - Assertions
	vtr_log
	Message Type
	Conditional Logging
	Custom Location Logging
	Debug Logging

	vtr_error
	vtr_assertion
	vtr_time

	Geometry
	vtr_geometry

	Other
	vtr_expr_eval
	vtr_color_map
	vtr_digest
	vtr_logic
	vtr_math
	vtr_ostream_guard
	vtr_path
	vtr_random
	vtr_rusage
	vtr_sentinels
	vtr_string_interning
	vtr_token
	vtr_util

	VPR INTERNALS
	VPR Draw Structures
	T_Draw_State
	T_Draw_Coords

	VPR UI
	UI SETUP

	VPR Draw Files
	breakpoint.h/cpp
	draw_basic.h/cpp
	draw_color.h
	draw_debug.h/cpp
	draw_floorplanning.h/cpp
	draw_global.h/cpp
	draw_mux.h/cpp
	draw_noc.h/cpp
	Overview

	draw_rr_edges.h/cpp
	draw_rr.h/cpp
	draw_searchbar.h/cpp
	draw_toggle_functions.h/cpp
	draw_triangle.h/cpp
	draw_types.h/cpp
	draw.h/cpp
	hsl.h/cpp
	intra_logic_block.h/cpp
	manual_moves.h/cpp
	save_graphics.h/cpp
	search_bar.h/cpp
	ui_setup.h/cpp

	VPR NoC
	NoC Router
	NocRouter
	Overview

	NoC Link
	NocLink
	Overview

	NoC Storage
	NocStorage
	Overview
	Router
	Link

	NoC Traffic Flows
	NocTrafficFlows
	Overview

	NoC Routing
	NocRouting
	Overview
	Usage

	NocRoutingAlgorithmCreator
	Overview

	XYRouting
	Overview
	XY Routing Algorithm
	Usage

	BFSRouting
	Overview

	NoC Data Types
	Data Types

	Indices and tables
	Bibliography
	Index

